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Abstract—Electric vehicles are seen as an option to reduce
greenhouse emissions, directly related with the electricity genera-
tion mix and with the time of charging due to the variations of the
generation sources during the day. At the same time, with their
widespread adoption the increase in the demand for electricity
to charge these vehicles could pose significant challenges to the
electrical grid in terms of additional load due to unmanaged
charge strategies. In order to mitigate these problems, the
charging of the electrical vehicles must be managed. This paper
presents the development of a system architecture to dynamically
control the charging of electric vehicles to maintain the proper
operation of the local distribution grid and minimize the environ-
mental impact. The hardware consists of two modules, a meter
and controllable plugs both with communication capabilities,
while the software consists in a forecast and scheduler module.
The forecast module calculates the load based on the power
consumption behavior and uses the renewable generation forecast
to assign the best time slot to charge the vehicle. The system
aims to minimize the load peaks and flatten the load profile,
while minimizing the environmental impacts. Based on the user
preferences, system characteristics, consumption and renewable
generation forecast, the system will assign the most suitable
time slot to charge the electric vehicle. For the case of multiple
electric vehicles, the system will schedule their charge based on a
calculated priority level, in order to maintain a reliable operation
of the local electrical grid.

Index Terms—Battery Electric Vehicles, Plug-in Hybrid Elec-
tric Vehicles, Charge Management, Demand Response, Smart
Grid, Environmental Impacts

I. INTRODUCTION

Electric Vehicles (EVs) are expected to have a large share
in the future of the transportation system, which will cause
an additional load on the electric grid. The introduction in the
market of vehicles with the capability to be plugged into the
grid associated with a daily commute distance under 50 km
(which requires up to 10 kWh of energy) for the majority of
the users will make the EV one of the major energy consuming
devices in a household. An EV charging, using a Level 2
charging station will draw 3.6 kW of power during around
3 hours per day for a 50 km commute.

Currently, due to the EVs low penetration rate the additional
load imposed to the grid by the vehicles charging is not an
issue, however in the future, with a higher penetration rate,
this could bring serious consequences to the grid reliability [1].
The main problem is not in the extra energy required to charge

the batteries, but the peak load of the charging [2]. Since the
majority of EVs will be charged at home, it is expected that
the vehicle will be plugged in when their owners get home,
at the end of the afternoon. The simultaneous charging of
several EVs will lead to a considerable additional load that
can overload the grid.

In order to mitigate these problems, the charging cycle of
EVs must be managed. This concept of coordinate charging
is being explored due to the wake of smart grids, where the
exchange of information using several communication tech-
nologies can improve the efficiency, reliability, economics, and
sustainability of the production and distribution of electricity
[2]. Coordinate charging can also be beneficial for grids with
a large share of renewable energy sources by concentrating the
charging phase in periods of high renewable generation and
therefore contributing to the grid reliability and to minimize
the Greenhouse Gas (GHG) emissions [3].

Coordinated charging approaches are currently being inves-
tigated by using devices with bi-directional communication
capabilities [4] [5]. This type of coordination is intended to
minimize the negative impacts on the grid, due to a large
number of vehicles charging at the same time by distributing
this charge over a large period of time, flattening the load peak.
Intelligent control over the introduction of new loads into the
grid has the potential to provide economic benefits since peak
demands affect the grid investments and operational costs [6]
[7]. Minimizing demand peaks by distributing the load over
a longer period of time in each household will contribute to
reducing the transmission and distribution losses and stress
in the grid equipment [8]. Despite the benefits for the grid
in terms of increased reliability, this service can also bring
economic advantages to the users [9].

Based on the commute profile of the users, it is reasonable to
expect that EVs will be plugged in at least during 8 hours per
day which is more than the required time to restore the energy
spent, resulting in a flexibility that also can be harnessed to
provide grid services while ensuring the requirements of the
user. EVs could be an excellent demand dispatch resource
given their potential for rapid response (can be turned on or
off in a matter of seconds), the significant amount of power
that they can draw during large periods of time and expected
market penetration.



This paper presents the development of a hardware and
software architecture for demand response, where the main
goal is to manage in real time the additional load introduced
by EVs when charging at home, avoiding triggering the
installation protections due to overload, thus flattening the
load profile in order to increase the reliability of the grid.
Such system also reduces the energy costs of the charging
process as well as minimizes the GHG emissions based on
user preferences, EV battery State of Charge (SoC) and local
installation power capabilities. The reminder of the paper is
structured as follows: on Section II the hardware and software
of the system architecture is presented. Then, the benefits that
can be achieved with such architecture are assessed in Section
IIT in terms of impact on the load diagram and in Section IV in
terms of environmental impacts. Finally, section V summarizes
the paper and draws conclusions.

II. SYSTEM ARCHITECTURE

To implement a system able to optimize the load profile
and associated GHG, while achieving the user preferences,
the following parameters are required from the user:

o Contracted power: Defines the maximum power that can
be used from the grid without tripping the installation
protections. To avoid such effect, if at a given moment
the present or foretasted power reaches 80% of the
contracted power, the EV is disconnected or the time slot
is considered invalid for charge.

o Vehicle charger power: Specifies the amount of power
that the electric vehicle will draw during the charging
cycle (for a Level 2 charger this value is about 3.6 kWW).

« Battery SoC required: Specifies the State of Charge (SoC)
that is required by the user for the EV at a given time.

o Unplug time: This time defines the deadline to achieve
the required battery SoC.

o Energy tariffs: Specifies the different costs of the con-
sumed energy to different time periods. If several time
slots are suitable to charge the electric vehicle, the chosen
one will be the one with the lower tariff.

« Renewable generation forecast: This data is obtained from
the Transmission System Operator (TSO) website and
is used to determine the periods with higher available
renewable generation. If several time slots are suitable to
charge the electric vehicle, the chosen one will be the
one with higher renewable generation.

A. Hardware Architecture

The system, described as SMARTplug, is composed by two
main devices, an energy meter and a smart plug (Figure 1),
both with communication, data storage and local processing
capabilities. The energy meter module is intended to be
installed on the feed point of the infrastructure, to measure
in real time the global energy consumption, while the smart
plug will replace the standard plug used to charge the EV.
Such plug does not provides just energy as in a standard plug,
but also ensures the control (ON/OFF) and the consumption
monitoring. To ensure it, it has a solid state relay to ensure
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Fig. 1. SMARTplug system architecture with the energy meter (top) and the
smart plug (bottom).

the control and the energy measurement unit and the micro-
controller for communication, energy monitoring and data
processing. The energy meter module will store the load
diagram data from, at least, the previous three weeks to be
used to forecast the future energy consumption.

The system architecture was intended to be modular, as such
the communication between the different components of each
module can be made through several standard communication
interfaces, such as RS485, Inter-Integrated Circuit (I2C) or
Serial Peripheral Interface (SPI). The communication between
the energy meter and smart plug modules follows the same
principle and can be implemented using Ethernet, Wi-Fi,
RS485, etc. Any given communication interface can be used
as long the software module that allows to use that interface
is implemented in the micro-controller of the module.

Depending on the number of charging points for EVs, it is
possible to have multiple intelligent plugs in the same infras-
tructure, but only one energy meter module is required. In the
same building or infrastructure could be necessary to charge
several EVs. To do it, multiple smart plugs are required (one
for each EV). However, since the energy should be controlled
globally to the building or infrastructure, only one meter for
the global energy consumption of the building/infrastructure is
needed. For a single charging point it is possible to integrate
these two devices into one to avoid complexity and reduce
costs.

The stored data is used to forecast the load during the time
when the electric vehicle is plugged in and to assign a time
slot to charge the EVs. If the EV is plugged in eight hours
and only two hours are required to achieve the desired SoC,



Fig. 2. Smart plug module prototype built using off the shelf DIN rail
compatible components.

the time slot chosen will be the one with the lower tariff, with
the highest share of RES (based on TSO RES forecast) and
the lower impact on the load diagram in terms of peak power.
This is presented in the software architecture.

In the current implementation, shown in Figure 2, the
communication between the micro-controller and the energy
measurement unit is through RS485, while the communication
between the smart plug and the energy meter is through
Ethernet (with Power over Ethernet comp ability). For testing
purpose the energy meter module is emulated in a PC using
load diagrams obtained from several monitored households.

B. Software Architecture

In terms of software architecture the SMARTplug system is
composed by three main modules: a Load Forecast Module,
a Classifier Module and a Scheduler Module. These software
modules run in the energy meter micro-controller. The Load
Forecast module is responsible to forecast the load based on
previous data. This module uses the power data stored by the
energy meter, excluding the contribution of the smart plugs for
the global power consumption. The forecast is performed using
the averaged previous data for the same time frame and taking
into account if it is a working day or weekend, since the load
diagram varies significantly from working days to weekend.
The forecast is performed with five minutes interval, despite
data is being stored at each second.

The Classifier module (Figure 3) is responsible by assessing
the time slots where the charge of the EV may occur and
classify them as valid or invalid. This module will run when
the EV is plugged in and based on the load and renewable
generation forecasts, electricity price, contracted power and
power draw by the vehicle will determine a set of valid
time frames to charge. The load forecast for a given timeslot
considers the past five identical timeslots (e.g. the load from
the previous five days at 15:00 hours) and is calculated using
Equation 1:
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Fig. 3. Diagram for the classifier implemented in the SMARTplug system.
The classifier determines the valid time slots to charge the EV based on the
load forecast, electricity price and planned power consumption.

Where L,, is one of the past timeslots and «,, the weight
factor considered for that timeslot. A given time slot is only
valid if the contracted power is higher than the load forecast
plus the power draw by the vehicle. The availability of a time
slot is calculated using Equation 2:

Avt:Pcont_(Fpt+SM)_Pch (2)

Where P, is the contracted power, F}; is power con-
sumption forecast for time 7', P, is the power of the EV
charger (3.6 kW for Level 2) and SM is a safety margin
(0.2 kW). From Figure 3, in the validation of availability,
depending on the ratio between A,; and P.,, a grade is
assigned. The values for the grade were chosen arbitrarily
to penalize time slots with high energy tariffs and demand
forecast.
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Fig. 4. Diagram for the scheduler implemented in the SMARTplug system.
The scheduler generates a charge plan based on the available time slots and
load requirements.

The Scheduler module (Figure 4) is responsible by the
generation of a charging plan. After the validation of the time



slots, the planner will assign the best slot to charge the vehicle,
based on load requirements (in this case the load is the EV).
The load requirements are the capacity of the battery, the SoC
of the battery when the vehicle is plugged in, the required
SoC and the time of unplug. Based on these parameters the
charging requirements are calculated using Equation 3:

Tcr = (Bcap - Bcap . (SOCznz/loo))/Pch (3)

Where T, is the required time to charge in hours, SoCj,;
is the initial SoC' in % and B, in KW h is the useful battery
capacity (on the Nissan Leaf from the 24 kW h only 20 kWh
are useful). The feasibility is only validated if a set of available
time slots required to charge the vehicle are less or equal than
the ones available. If several sets of time slots are available to
charge the vehicle, the chosen one will be the one with less
impact in the load diagram and maximum RES contribution,
based on the TSO forecast for the RES generation, in order
to minimize the environmental impacts.

III. IMPACT ON THE LOAD DIAGRAM

To understand the extent in which the management of the
additional load introduced by EVs could be controlled by a
system with minimal intervention by the user, it is important
to have detailed information regarding the energy consumption
during a large period of time.

Figure 5 shows an extract from a load diagram, for a
weekend and three working days, of a residence that was
monitored. These load diagrams are only for the household
loads, excluding EVs. By observing the load diagrams it
is visible that the consumption is concentrated in specific
points in time and is very similar from day to day. For a
given residence the load diagram tends to be very stable for
working days and weekends. Based on these facts and using
consumption data gathered over time, the consumption for
the next 12 hours can be predicted. Without access to this
information it would be very difficult to the user to choose
the ideal time to start charging the vehicle. The benefits of an
automated system over the common approach, where the user
is responsible for the process of start charging the vehicle, is
that the system can choose the best time to charge the EV
taking into account several variables.

To assess the impact that an EV can have in the energy and
power consumption of a residence, the load profile during the
charging cycle must be analyzed. Figure 6 presents the load
profile of a Nissan Leaf for full charge and for a partial charge.
The full charge absorbs around 21 kWh of energy from the
grid at an approximately constant rate of 3.6 kW during a
period of five and a half hours. The profile of a partial charge
is identical to the one of a full charge, except in the duration.
This partial charge has absorbed 5.5 kWh during one and a half
hour. For an EV with an energy consumption of 150 Wh/km,
a charge of 20 kWh will provide a range of about 130 km,
while a charge of 6 kWh will be suitable for 40 km.

Figure 7 and Figure 8 present the impact of the additional
load imposed by the EV in different scenarios, where the EV
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Fig. 5. Load diagram for three work days (top) and for a weekend (bottom)

for a given residence.
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Fig. 6. Charge profile for the Nissan Leaf over a full charge cycle (top), with
an energy consumption of 20 kW h over five and a half, and a partial charge
cycle (bottom), with an energy consumption of 5.5 kW h over one and a half

is plugged at 19:00 and must be fully charged at 08:00. Such
results are experimental data obtained with the current system
implementation. The managed charge is based on the load
forecast while the real load profile is presented for comparison.
Figure 7 represents the impact of a partial unmanaged charge,
where the vehicle starts charging when is plugged, and for a
managed scenario, managed by the SMARTplug system.
Observing Figure 7, it is noticeable that the managed charge
has a better performance than the unmanaged charge since it
will occur in the valley of the load diagram that take place
during the night, when the energy is cheaper. The managed
charge also reduces the peak power required to charge the
vehicle, since it only tries to charge it when the forecasted
power consumption for the household, in a given time period,
is minimum. Therefore, the system is able to reduce costs and
power requirements and thus increasing the grid reliability. If
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Fig. 8. Load diagram (real and forecast) for a household with an EV

unmanaged (EV_PCDC) and managed (EV_PCSC) full charge. The vehicle
is plugged in at 19:00 hours and must be charged at 08:00. The charge takes
six hours and consumes around 21 kWh.

the vehicle is plugged in only at 23:00 hours the peak power
will be much higher and the household protections could be
tripped due to overload. The benefit of a managed charge
is more visible for full charge cycles where a large amount
of power is drawn over a long period of time (Figure 8). In
such situation the system is also able to reduce the costs and
power requirements, but with a higher impact due to the longer
duration of the charging.

In this approach, a simple forecast algorithm was used and
by observing the load diagram from Figure 7 it is noticeable
that for a given time period the load forecast will not match
the real load accurately. This happens for periods where the
load variation for a given time period is not very constant
during the past days. Upgrading it to consider the different
types of loads found in a household and including a model
based on their use could improve the load forecast, however
this approach would require a more complex configuration
of the system. If multiple EVs are charging at the same
time, the algorithm takes into account the charging plan of
the remaining (their load is considered in the load forecast)
vehicles. The system will give priority to the vehicles with
tighter deadlines to achieve a pre-determined battery SoC. If
a given vehicle cannot meet the user requirements, the user

intervention is required to change the parameters.

IV. ENVIRONMENTAL IMPACTS

The main aim of the presented system is to ensure a flatter
load diagram and to decrease the charging costs. However, a
second objective is to maximize the use of energy in periods
were the environmental impacts associated to the EV charging
are lower (based on the RES generation forecast). The first
priority is to select the period for charging the EV which
ensures a minimum impact on the total required power, but
when different periods are available to ensure it, the system
selects the period with lower environmental impact.

The environmental impacts associated with the EV battery
charging are directly related with the electricity generation.
The electricity generation mix varies from region to region
and in a daily and seasonal basis, due to the variation on the
renewable generation resources. To assess these impacts the
Portuguese electricity mix was considered, taking into account
their daily variation during a year. The monthly impacts
were assessed considering the days with the minimum and
maximum share of RES for a given day in that month. This
allows the evaluation of the system performance in extreme
situations of the RES share.
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Fig. 9. Evolution of the contribution from the primary energy sources for
the Portuguese electricity mix during 2011, considering the highest (top) and
lowest (bottom) contribution from RES.

The impacts associated with electricity generation were
calculated taking into account the emissions from Table I,
which represent the life-cycle impacts of average European
technologies, and the daily variation during a year for the sev-
eral energy sources that contribute to the Portuguese electricity
mix (Figures 9). Figure 10 represents the real RES generation
and the forecast by the TSO for the same period.
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The following impact categories from CML 2001 were
assessed: Abiotic Depletion; Acidification; Eutrophication and
Global Warming Potential. In terms of environmental impacts,
Abiotic Depletion is associated with the depletion of non re-
newable resources and their availability for future generations;
Acidification estimates the potential contribution from SOs,
NO,, HCL, NHs and HF to the potential acid deposition
(potential to form H™ ions); Eutrophication estimates the
potential to cause over-fertilization of water and soil, which
can lead to an increase growth of biomass and GWP is the sum
of emissions of the greenhouse gas (C'O3, NoO, CHy and
Volatile Organic Compounds) multiplied by their respective
GWP factors.

TABLE I
LIFE CYCLE ENVIRONMENTAL IMPACTS BY TYPE OF GENERATOR [10].
GW

Ab. Depletion Acidification  Eutrophication

[gSbe/kW h] [gSO2e/kW h] [gPOZ’fe/kWh] [gCO2e/kWh]

Coal 7.8 2.8 2.3 1020
Wind 0.08 0.05 0.027 11.3
Hydro. 0.03 0.16 0.05 6.5
Solar PV 0.36 0.246 0.157 50.9
Nat. Gas 3.7 0.413 0.07 434
Diesel, Oil 59 19 0.57 911

The environmental impacts were calculated for the managed
and unmanaged charge of the EV, both for a partial and full
charge. The scenario were the RES generation forecast is taken
into account for the attribution of charging slots was also
considered. These results were calculated assuming a 90%
efficiency for the electricity transport and distribution grid, and

a traveled distance of 40 km/day (15000 km/year) for an
EV with an energy consumption of 150 Wh/km. The partial
charge of the EV occurs in a daily basis and requires around
two hours to charge 6 kKW h, while the full charge occurs
approximately two times a week and requires six hours to
charge around 21 kW h.

This type of assessment allows the comparison between
different charging strategies and to identify the strategy with
the lower environmental impacts. The results considering the
electricity mix with the highest share of RES sources are
presented on Figure 11, while the results for the mix with
the lowest share of RES sources are presented on Figure 12.

Observing Figures 7 and 8, for the load diagram impact,
and Figure 11 and 12, for the environmental impacts, it is
noticeable that a managed charge is beneficial by distributing
the load diagram peaks along the day. A partial charge is
also beneficial since it allows a broader period to be selected
to charge the EV and thus reducing the load diagram peak.
In terms of environmental impacts, a managed charge is also
beneficial, when compared with an unmanaged charge, being
the benefits higher if the RES forecast is taken into account,
, as it is ensured by this system. In this case, a partial charge
presents more benefits than a full charge, being this type of
managed charge more beneficial for a system with a large
share from RES. The total impacts per year for each impact
category are presented on Table II and III.

TABLE 11
ENVIRONMENTAL IMPACTS, PER YEAR, FOR A MANAGED AND
UNMANAGED CHARGE OF EV FOR THE PORTUGUESE ELECTRICITY MIX,
WITH THE HIGHEST SHARES OF RES.

Ab. Depletion Acidification Eutrophication =~ GW

[kgSbel  [kgSO2el [kgPO>" el [kgCOzel
FCDC 5.08 1.48 1.07 645.12
PCDC 5.38 1.56 1.14 639.38
FCSC 421 1.24 0.89 534.62
PCSC 4.63 1.34 0.96 54927
FCSC+maxRES 421 1.24 0.89 534.62
PCSC+maxRES  4.01 1.16 0.82 475.59
TABLE IIT

ENVIRONMENTAL IMPACTS, PER YEAR, FOR A MANAGED AND
UNMANAGED CHARGE OF EV FOR THE PORTUGUESE ELECTRICITY MIX,
WITH THE LOWEST SHARES OF RES.

Ab. Depletion Acidification Eutrophication =~ GW

[kgSbel  [kgSOzel [kgPO3 el [kgCOzel
FCDC 8.38 232 1.67 1057.97
PCDC 7.66 2.07 1.47 903.57
FCSC 9.74 2.77 2.03 1232.81
PCSC 9.49 2.69 1.96 1123.88
FCSC+maxRES 9.74 2.77 2.03 1232.81
PCSC+maxRES  9.89 2.81 2.05 1170.32

V. CONCLUSIONS

In the future EVs will have an active contribution in the
electrical grid management, due to a significant penetration
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Fig. 11. Environmental impacts for each impact category for the Portuguese
electricity mix, with the highest share of RES, for a year. The results are for
a managed (FCSC and PCSC) and unmanaged (FCDC and PCDC), both for
full and partial charges, respectively. The scenario where the managed charge
takes into account the RES forecast is also considered (FCSC+maxRES and
PCSC+maxRES), both for full and partial charges.

ratio, by being able to absorb and inject power in a smart grid
environment). However, nowadays even with a low penetration
ratio of EVs and with the smart grid in an embryonic stage
it is already possible to develop solutions that can implement
some concepts from the smart grid. The capacity to inject
power into the grid will lead to additional cycling of the
EV battery, and contributes to accelerate the battery aging,
however this impact will depend on the frequency that the
grid will require this service. Due to cheaper electronics,

Fig. 12. Environmental impacts for each impact category for the Portuguese
electricity mix, with the lowest share of RES, for a year. The results are for
a managed (FCSC and PCSC) and unmanaged (FCDC and PCDC), both for
full and partial charges, respectively. The scenario where the managed charge
takes into account the RES forecast is also considered (FCSC+maxRES and
PCSC+maxRES), both for full and partial charges.

standardization and mass use of communication infrastructures
it is possible to develop a system than can be integrated in a
smart grid, by implementing state of the art concepts without
or with minimal intervention from the consumer, simply by
updating the software in the device. By using a system similar
to the described, the charging of an EV is straightforward
and situations that can pose a risk to the household electrical
system can be mitigated.

Several other approaches of charging systems to manage the



required power and costs were already proposed [11] [12] [13]
[14] [15]. However, they are typically ensured by the design
of new chargers and additional control infrastructure, which
increases the costs and the complexity of the system. The
system proposed in this paper is based on a simple controllable
plug and a meter. Therefore, such system can already be easily
used since it does not require any additional infrastructure and
only uses data that is already available. Due to the simplicity
of such system it has potential to be a very cheap solution with
high reliability. The system is reliable in its operation, however
if the energy use profile is changes suddenly the charge of the
EV cannot be assured, since the charge scheduling is based
in a forecast based on the energy use profile. This could be
adjusted by increasing the safety margin, which in turn could
increase periods where the EV could not be charged.
Currently, demand side management requires the active
consumer involvement, which is not very effective. By relying
on a system that only requires the consumer input to specify
its preferences, it can be shown that the additional load
due to the charge of EVs can be easily integrated in the
daily load diagram of a household without contributing to
increase the peak demand and ensuring the minimization of
environmental impacts. A partial charge of the EV, in a daily
basis, is preferred to a full charge two times a week, since
it allows a larger margin for the system to schedule the EV
charge. This allows not only the reduction the impact on the
grid, in terms of peak power demand, but also contributes to
a higher reduction in terms of environmental impacts. The
system is also able to detected abnormal situations and notify
the consumer (when it is not possible to meet the charge
requirements) or act accordingly (when the EV is charging
and an overload situation is imminent the charge is stopped).

ACKNOWLEDGMENTS

This work has been framed under the Energy for Sustain-
ability Initiative of the University of Coimbra and supported
by the FEDER/COMPETE FCT Grant MIT/MCA/0066/2009
(Economic and Environmental Sustainability of Electric Ve-
hicle Systems) and FEDER/PORC FCT Grant CENTRO-07-
0224-FEDER-002004 (EMSURE - Energy and Mobility for
Sustainable Regions).

REFERENCES

[1] Robert C. Green II, Lingfeng Wang, and Mansoor Alam. The impact of
plug-in hybrid electric vehicles on distribution networks: A review and
outlook. Renewable and Sustainable Energy Reviews, 15(1):544 — 553,
2011.

[2] Verzijlbergh R.A., Grond M.O.W., Lukszo Z., Slootweg J.G., and Ilic
M.D. Network impacts and cost savings of controlled ev charging. Smart
Grid, IEEE Transactions on, 3(3):1203-1212, 2012.

[3] Khodayar M.E., Lei Wu, and Shahidehpour M. Hourly coordination of
electric vehicle operation and volatile wind power generation in scuc.
Smart Grid, IEEE Transactions on, 3(3):1271-1279, 2012.

[4] Mets K., Verschueren T., Haerick W., Develder C., and De Turck F.
Optimizing smart energy control strategies for plug-in hybrid electric
vehicle charging. In Network Operations and Management Symposium
Workshops (NOMS Wksps), 2010 IEEE/IFIP, pages 293-299, 2010.

[5] Dahai Han, Jie Zhang, Yongjun Zhang, and Wanyi Gu. Convergence of
sensor networks/internet of things and power grid information network
at aggregation layer. In Power System Technology (POWERCON), 2010
International Conference on, pages 1-6, 2010.

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

Monteiro V., Goncalves H., and Afonso J.L. Impact of electric vehicles
on power quality in a smart grid context. In Electrical Power Quality
and Utilisation (EPQU), 2011 11th International Conference on, pages
1-6, 2011.

Glanzer G., Sivaraman T., Buffalo J.I., Kohl M., and Berger H. Cost-
efficient integration of electric vehicles with the power grid by means
of smart charging strategies and integrated on-board chargers. In Envi-
ronment and Electrical Engineering (EEEIC), 2011 10th International
Conference on, pages 1-4, 2011.

Barker S., Mishra A., Irwin D., Shenoy P., and Albrecht J. Smartcap:
Flattening peak electricity demand in smart homes. In Pervasive
Computing and Communications (PerCom), 2012 IEEE International
Conference on, pages 67-75, 2012.

Daniel Freund, Marco Liitzenberger, and Sahin Albayrak. Costs and
gains of smart charging electric vehicles to provide regulation services.
Procedia Computer Science, 10(0):846 — 853, 2012.

Swiss Centre for Life Cycle Inventories. Ecoinvent Centre, July 2011.
A.W. Cousland, R.J. Ciaravolo, G. Blieden, and N. Hosseinzadeh.
Design of a battery charger and charging management system for
an electric vehicle. In Universities Power Engineering Conference
(AUPEC), 2010 20th Australasian, pages 1-6, Dec 2010.

K.L. Lam, K.T. Ko, H.Y. Tung, H. C. Tung, K.F. Tsang, and L.L.
Lai. Zigbee electric vehicle charging system. In Consumer Electronics
(ICCE), 2011 IEEE International Conference on, pages 507-508, Jan
2011.

Zengquan Yuan, Haiping Xu, Huachun Han, and Yingjie Zhao. Research
of smart charging management system for electric vehicles based on
wireless communication networks. In Information and Automation for
Sustainability (ICIAfS), 2012 IEEE 6th International Conference on,
pages 242-247, Sept 2012.

A. Davydova, R. Chakirov, Y. Vagapov, T. Komenda, and S. Lupin. Co-
ordinated in-home charging of plug-in electric vehicles from a household
smart microgrid. In AFRICON, 2013, pages 1-4, Sept 2013.

Gregorio Lopez, Victor Custodio, Francisco J. Herrera, and José Ignacio
Moreno. Machine-to-machine communications infrastructure for smart
electric vehicle charging in private parking lots. International Journal
of Communication Systems, 2013.



