ULISSES L. MORAIS, ADELINO M. G. FORTUNATO & ERNESTO J. F. COSTA

New-Issues Markets as behavioral barriers to entry: an agent-based model of choices and market structure

ESTUDOS DO GEMF

N.º 7 2016

Este trabalho é financiado por Fundos Nacionais através da FCT – Fundação para a Ciência e a Tecnologia no âmbito do projeto UID/ECO/00031/2013.
New-Issues Markets as behavioral barriers to entry: an agent-based model of choices and market structure

Ulisses L. Morais • Adelino M. G. Fortunato • Ernesto J. F. Costa

Abstract The possibility that the existence of New-Issues Markets (NIM) could promote, through a behavioral response of potential entrants, a greater market concentration on economic sectors is the object of the present work. We analyze in what conditions do entrepreneurs choose to abandon their plans of entering some industry in order to invest in securities of companies in that same industry. To engage this matter an agent-based model, named Utility Load, was developed and simulated in NetLogo platform, where the entrepreneurs rely on a hybrid heuristic among Prospect Theory and Random Walk Model of perceptual decision-making to choose between starting a firm, assembling a portfolio or doing neither by postponing their decision. We arrive at the conclusion that a lengthy investment horizon or high bonds’ coupon, by offering greater prospective gains, attracts the vast majority of potential entrants to the NIM, which has a nefarious effect on the sector’s structure by increasing its concentration – measured by the Herfindahl-Hirschman Index. Moreover, the model indicates that a more bounded rationale is welfare increasing whilst allowing firms to continuously issue new debt to the public diminishes welfare. The results narrow the scope of reality to be emulated in experimental works and open the door for future empirical researches on this matter by making them more attainable.

Keywords Agent-Based Model, Barriers to Entry, Entrepreneurship, New-Issues Markets, Market Concentration.

JEL Classification C63 • D81 • L26

U. L. Morais, Faculty of Economics of the University of Coimbra, Portugal
E-mail: ulisses.lm@gmail.com

A. M. G. Fortunato, Center for Business and Economics Research of the University of Coimbra, Portugal
E-mail: adelino@fe.uc.pt

E. J. F. Costa, Department of Informatics Engineering of the University of Coimbra, Portugal
E-mail: ernesto@dei.uc.pt

Conflict of Interest: The authors declare that they have no conflict of interest.
1 Introduction

Market structure has been a fascination of Industrial Economics for decades and, mainly for normative reasons, the focus of the overwhelming majority of the studies has been on the behavior of firms and regulation.

Even though entrepreneurship has become an important agenda with the recent necessity of structural reforms in several countries, little was written about the relationship between entrepreneurship and market structure.

Strategic competition occurs in various battlegrounds and encompasses many aspects; erecting barriers to entry is one way, since the conditions of entering a market are one of the shapers of its structure. However, what constitutes an entry barrier has been historically a topic of controversy and interest in Industrial Organization (McAfee, Mialon, & Williams, 2004).

In the present work we adopt a raw definition of entry barrier as «a factor that prevents welfare-increasing entry», the latter definition descends from Fisher’s statement that “a barrier to entry exists when entry would be socially beneficial but is somehow prevented” (1978, p. 28). Furthermore, we use the term behavioral barrier to entry to emphasize how the entry is prevented, which is by inducing some behavioral response from potential entrants.

Hereafter, the firm-centered focus will be defied by shifting the spotlight to the decision-making of the entrepreneurs. The argument is grounded on the assumption of a trade-off that potential entrants have – assuming they possess the monetary resources – between, on one hand, creating a start-up company or, the alternative, investing in a portfolio of securities in the same industry that they intended to join.

Hence, our departure question will be: in what conditions, if any, the portfolio prospect would render an opportunity cost high enough to convert the majority of potential entrants (entrepreneurs) into security holders (investors)? The concern is that, if this happens in reality, then the capital markets might contribute to diminish competition within economic sectors, not to mention that part of the inflow of resources would be financing the incumbents’ growth via New-Issues Market (NIM), thus also contributing to a greater industrial concentration.
To engage this matter, we implement an interdisciplinary approach by using a spatial model of product differentiation\(^1\) integrated in an Agent-Based Model (ABM) of an economic sector where, on each period, entrepreneurs must choose between entering the market, investing on firms by acquiring stocks and bonds\(^2\), or doing neither and delaying their decision to the forthcoming period.

The entrepreneurs rely on cognitive rules based on the Prospect Theory (PT) (Kahneman & Tversky, 1979; 1992)\(^3\) and Random Walk Models of perceptual decision-making (RWM) (Smith & Ratcliff, 2004; Bogacz, 2007). The model, named Utility Load, was built to run into NetLogo, a freeware under constant improvement by Northwestern University and available at their website\(^4\).

The remainder of this work is divided among three parts: next part presents the model’s framework at the end of which the reader is advised to investigate the attached figures of the model’s interface [Figures 1 and 2] and to interact with the model by downloading a copy\(^5\), before proceeding to part three, where the methodology and the Utility Load Model are formally presented. Part four discusses the dynamics of the model and presents the results of the simulations. Finally, part five concludes the discussion and offers some pointers for future works\(^6\).

2 Framework

The possibility that the mere existence of a capital market could promote, through a behavioral response of entrepreneurs, a greater concentration on various economic sectors falls on what Salop categorizes as an innocent entry barrier, one that is “unintentionally erected as a side effect of innocent profit maximization” (1979b, p. 335). Nonetheless, an innocent barrier still influences the market structure, hence affecting welfare distribution. This statement exposes the multiple layers associated with the problem and, accordingly, the necessity of “an ‘issue-oriented’ rather than a discipline-confined style of research”

1. Slight variation (detailed later) of the model presented by the seminal work of Salop (1979a).
2. Henceforth we shall refer to these alternatives as «start-up prospect» and «portfolio prospect» respectively.
3. The authors understand Cumulative Prospect Theory (Kahneman & Tversky, 1992) as an extension of the original theory (Kahneman & Tversky, 1979) and implement the former.
4. To download a copy of NetLogo please access: http://ccl.northwestern.edu/netlogo/
5. The model is openly available at the NetLogo User Community Models webpage: http://goo.gl/Ct1iZi
6. This work was first developed as part of a Master’s thesis in Economics, in the specialty of Industrial Economics and it was presented to the Faculty of Economics of the University of Coimbra.
(Squazzoni, 2010) arises, particularly, one favorable to an interdisciplinary and more holistic approach.

Gilbert formally defines agent-based modelling as “a computational method that enables researchers to create, analyze, and experiment with models composed of agents that interact within an environment” (2008, p. 4).

Heterogeneity, autonomy, explicit space, local interactions, bounded rationality and non-equilibrium dynamics. These are simultaneously key features of an ABM (Epstein, 2006, p. 1588) and the most accurate reasons for the increasing popularity of this generative method as the par excellence explanatory technique for complex social phenomena (Squazzoni, 2010, p. 200).

The generality of agent-based modelling is a main epistemological issue since much of the explanatory power of an ABM derives from a realistic representation of the social actors, thus the agents must rely on cognitive rules that, ideally, are guided by empirically founded research.

To our knowledge, the seminal works of Kahneman and Tversky (1992; 1979) on Prospect Theory (PT) are still the best approximation for the behavior of people choosing under conditions of risk and uncertainty, the fourfold pattern of risk attitudes defined as “risk aversion for gains and risk seeking for losses of high probability; risk seeking for gains and risk aversion for losses of low probability” (Kahneman & Tversky, 1992) has been extensively verified by several researches7.

Despite its prestige, however, PT’s parameters are typically estimated for choices made during one period of time. To implement PT dynamically an effective method8 can be derived from perceptual decision-making models. These are broadly studied models derived from experimental data, were subjects are given two choices and rely on sensory stimuli to choose one, their response-time and neuronal activity are then measured with the intent of inferring causality (Bogacz, 2007).

The results from several studies link the decision timing with the neural activity reaching a cognitive threshold (e.g.: confidence level), although the timing also depends on the decision’s difficulty – the delay increases as the sensorial information perceived by the subjects becomes more ambiguous (Smith & Ratcliff, 2004).

7 To find empirical works supporting Prospect Theory see Table 11.3 (Fox & Poldrack, 2009, p. 158).
8 See (Rustichini, 2009).
Leaning on these evidences, the Utility Load Model integrates PT with what is known in the Neurosciences’ literature as Random Walk Model (RWM) of perceptual decision-making. Under this class of models the evidence in favor of each alternative is continuously “accumulated as a single total: information in favor of one response is evidence against the other” (Smith & Ratcliff, 2004, p. 162). To explain this further, the concurrent signals from the environment are perceived by different neuronal groups whose activities are inhibitory of each other, when the surplus of evidence gathered (neural activity) in favor of one signal surpasses some cognitive threshold, the decision assigned to that signal is made.

3 Methodology

The ABM reported here\(^9\) applies PT as the cognitive rule used by the entrepreneurs on each time step of the RWM to evaluate and compare the start-up prospect\(^10\) against the portfolio prospect\(^11\). Also, we use a variation\(^12\) of Salop’s circular model (1979a) as the industry’s architecture, so firms act as if they were in a product differentiated market with non-price local competition. Additionally, an environmental parameter – partially determined exogenously and partially by firms’ performance – is defined to represent the economic climate\(^13\). The resultant ABM is one where people behave with bounded rationality\(^14\) and, in order to assess each alternative, observe the conjunctures of the sector and the economy.

We have mentioned the major theories underlying the ABM presented here, which was named «Utility Load Model», in tribute to the core attribute of the model being the load of information resultant from past comparisons of utilities and carried out from one period to another by entrepreneurs, hence, working as a robust memory.

\(^9\) This part follows the «Overview, Design concepts, and Details (ODD) protocol», which is an ABM internationally standardized report procedure that aims “to create factual model descriptions that are complete, quick and easy to grasp, and organized to present information in a consistent order” (Railsback & Grimm, 2011, p. 36).

\(^10\) Henceforth we use italic as a notation for code related terms.

\(^11\) It’s worth noticing that a similar idea – although with different methodology – for integrating utility assessment functions into RWM was proposed by Rustichini (2009, pp. 38-41).

\(^12\) We diverge from Salop’s model with respect to adopting non-price competition, rigidity of firms’ addresses and in the determination of the demand as changeable.

\(^13\) Note that this could be interpreted as a market or economic index.

\(^14\) An axiom of Prospect Theory (Kahneman & Tversky, 1992).
3.1 Purpose

The Utility Load Model was designed to study the relationship amongst entrepreneurship and market structure of an economic sector. The model allows direct interaction between firms and people\(^{15}\) via New-Issues Market and indirect interaction through an environmental parameter.

Under what circumstances are the decisions of entrepreneurs conditioned by the existence of the NIM as an opportunity cost for starting a new firm? And what are the consequences for the industry’s concentration?

3.2 Entities, state variables, and scales

The Utility Load Model contains three main types (breeds) of agents: people, firms and investors. The world is a box of 33 x 33 patches and the agents’ locations are determined at their creation by a random variable \((heading)\) ranging from 0 to 359. Additionally, this variable organizes them clockwise in ascendant order.

Simulation can run indefinitely, although it’s advised to pay attention to the long-term trend of the number of agents, since an increasing quantity of agents might reduce the simulation’s velocity. The time step is not specified, but could be interpreted as the time needed for firms to account and report new profits (e.g. a month).

All agents own the following state variables determined at creation:

- **Heading**: for firms is the address in the circular product space, i.e., their brand specification or the variety of their manufactured product; for people represents the address that a new firm would have if the person chose to create it\(^{16}\).
- **Age**: it starts at 1 and grows linearly with each time step that the agent exists.
- **Size**: for firms is set as 1.5 times their resources; for people is fixed at 1.5 and 0.6 for investors.
- **Resources**: equals 1000.
- **Who**: a unique number attributed to each agent.
- **Color**: brown for incumbent firms; green for new firms; red for investors; grey for people or in the rare case of not existing firms in the market when a person decides to invest, yellow.

\(^{15}\) Please note that hereafter we use the terms «entrepreneurs» and «people» interchangeably since people is the coding term adopted in the Utility Load Model to represent entrepreneurs.

\(^{16}\) A straightforward interpretation is that, for them to even consider starting a company as an option, entrepreneurs have an idea or a business plan of what they would produce if they enter the market.
- **Shape**: people’s shape is «person business»; firms is «factory» and investors is «circle».

Apart from the above common attributes, people and investors also own **threshold** (random variable ranging from 1 to 10); bias (random variable ranging from -3 to 3) and **longevity** (defined by the slider life-expectancy on the interface).

Technically, the undirected links (titled securities) in the model are also agents, but then again, they don’t own state variables.

3.3 Process overview and scheduling

The processes run within each time step (tick) by each entity are:

- **Observer** (the user): setup; run, and update plots.
- **People**: get older; check if is dead; compare the utility of prospects; verify if utility load reached a threshold; turn into a firm, investor or wait.
- **Firms**: get older; check if is dead; calculate revenues, report results and update their attributes values.
- **Investors**: get older; check if is dead.
- **Environment**: update the environmental parameter.

The main agents’ processes are run by each agent of a certain breed in random order, this does not influence the results because agents of the same breed do not directly interact with each other.

The schedule of the model is fairly complicated due to numerous recursive procedures so, for the sake of perspicuity, it is represented as a pseudo-code in the Attachments.

3.4 Design concepts

3.4.1 Basic principles

The decision-making process of people (entrepreneurs) in the Utility Load Model is based on a rather harmonious hybrid model of PT and RWM, where every person has an attribute named load, which the current value reflects how close from deciding one is.

It’s assumed that people’s decision **threshold** is the amount of evidence (or information) one must gather (i.e. load variable must achieve) before deciding in favor of the portfolio prospect. The threshold for the start-up prospect is the additive inverse\(^{17}\).

\(^{17}\) This symmetry is actually supported by Kahneman and Tversky theory, see (1992, p. 307).
Additionally, each person has a randomly determined bias towards one of the alternatives. The bias is simply the initial value of load.

At each time step (tick), every person in the model compares the subjective utility of the start-up prospect with the portfolio prospect one, if the latter is the highest value, then one unit is added to the current load value, otherwise one unit is subtracted. If, at any point, load is greater than threshold or lower than its additive inverse a decision is made to become an investor or a firm, respectively.

All entrepreneurs own «1000 resources», upon decision these resources will become the assets of a newly formed firm or a portfolio of stocks and/or bonds.

Firms can freely enter a circular market, there’s no entry deterrence nor institutional entry barriers. The circumference’s perimeter consists of 360 demand segments containing a uniformly distributed demand of 500 – i.e. 500 is the perimeter of a sector with a central angle of 1 – which varies 20% in conjunction with the environmental parameter deviation (positive or negative).

Following entry, firms engage in non-price competition (e.g.: research and development, marketing, advertisement, etc.) with their immediate neighbors for the local demand – clockwise and counter-clockwise demand segments. Consequently, the proportion of each demand segment captured by one firm is straightforwardly defined as the firm’s resources relative to sum of the neighbor’s resources to its own.

Soon after, market-share is defined to be the percentage of the circumference’s perimeter (total demand) that is captured by a firm, i.e., the sum of the held clockwise and counter-clockwise demand segments divided by the total demand.

All firms participate in the NIW for their entire existence, the first one thousand securities sold by any new firm will be accounted as shares, and all investments received

18 The model has a switch to turn-off the bias attribute (see Figure 1) for hypothesis testing which sets bias equals zero for all people.
19 For technical reasons a precise definition for «resources» was avoided, the rationale is that this perhaps ambiguous definition allows for a lighter code via easier intra-breeds communication. So the interpretation of this attribute is done contextually: if we refer to a person’s resources, then these are monetary resources; if it’s a firm’s resources, it translates as assets; and an investor’s resources is just his portfolio.
20 Design based on Salop’s model of a circular market (1979a, p. 144).
21 There’s no special reason for the 500 value, in fact, a back-of-the-envelope test of several different values showed that as long as the distribution of the demand is uniform, there’s none significant departure from the model’s behaviour.
22 For simplicity, the model ignores the intermediate stages between starting a firm and its initial public offering. The justification is that our main focus is on the conditions that lead to people’s decision, thus a detailed post-choice behaviour would be an unnecessary complication.
after that are assumed to originate from the sales of bonds with periodically interest payments, the magnitude of the interest is defined by the respective slide bar on the model’s interface (see Figure 1).

When a person decides to invest, she builds a portfolio based on the use of a simple ($1/N$) investment strategy, as Gigerenzer (2008, p. 22) demonstrates, this is not an implausible nor necessarily sub-optimal assumption. «N» is defined as the sum of her threshold and bias divided by twenty (the length of the threshold interval, from -10 to 10), the result is used as proxy for the extent of the diversification that the agent will perform.23

The portfolio will then be the investor’s resources divided equally between the top N companies given some criterion 24, subsequently, N undirected links are created to connect the investor with her portfolio’s firms.

Finally, the environmental parameter or lambda, is partially endogenously defined as an addition of 1 to its past value if more than 50% of the firms made profit in the current period (which also changes the background color to blue), otherwise the endogenous part will be a subtraction of 1 (background changes its color to red). There is also an exogenous part which is randomly defined as positive or negative 1 and added to the current parameter value.25

3.4.2 Adaptation

People are able to adapt to their present economic conjuncture due to the input variables of the PT functions being contingent on the values assumed by the global parameters at each iteration.

The PT functions are defined as:26

\[
v(x) = \begin{cases}
 x^{0.88} & \text{if } x \geq 0 \\
 -2.25(-x)^{0.88} & \text{if } x < 0
\end{cases}
\]

\[
w^+(p) = \frac{p^{0.61}}{(p^{0.61} + (1 - p)^{0.61})^{1/0.61}}
\]

23 It’s assumed that an original inclination towards the start-up prospect (negative bias) derives from a more risk-seeking profile, implying less diversification if such agent would opt towards building a portfolio.

24 The default criterion is market-share, but it could be easily substituted by reliability (number of periods a company made profit over her age) or performance.

25 The environmental parameter is defined at the end of a period and will only affect the decisions in the next iteration.

26 See (Kahneman & Tversky, 1992, p. 309).
\[w^{-}(p) = \frac{p^{0.69}}{(p^{0.69} + (1 - p)^{0.69})^{1/0.69}} \]

(3)

Where (1) is the PT value function, which attributes a subjective value to a gain or a loss; (2) and (3) are the weighting functions which yield, respectively, the subjective probabilities in gain and loss contexts.

For the purposes of the Utility Load Model, \(x \) and \(p \) must be defined for both the portfolio and the start-up prospects. The maximum loss in both cases is simply people’s resources, to calculate the maximum gain the entrepreneurs emulate both scenarios, however, they do it based on present information, so there are no guarantees that the market will be the same in the following period.

Keeping the «heuristic spirit» of the Utility Load Model, the probabilities \((p)\) are simply obtainable values, for the probability of loss \(sp(loss)\) of the portfolio prospect the algorithm is to retrieve the values of the firms’ «risk-measure» which comprises the firms’ mortality rate if a firm is selling bonds in the NIM and \((1 - \text{reliability})^{27}\) if it’s selling stocks instead. The probability of gain with the portfolio prospect is just \((1 - p(loss))\).

For the start-up prospect, the entrepreneurs observe the environmental parameter and make use of a rule inspired by the mechanics of the Availability Heuristic, a well-known cognitive bias defined as “the ease with which instances come to mind” (Kahneman & Tversky, 1973, p. 220). Under this, for the probability of gain, people observe the number of positive observations relative to the series’ length and, analogously, the negative observations for the probability of loss, ergo, if the economic scenario shifts, the relation among the entrepreneurs’ assessment of each prospect’s utility will follow.

3.4.3 Heterogeneity

With the exception of resources and the parameters defined in the interface by the user, all other agents’ attributes are dimensions of their heterogeneity.

3.4.4 Stochasticity

Given that the function of a random variable is also a random variable, the dimensions of stochasticity in the model arise from the randomly determined\(^{28}\) heading, threshold

\(^{27}\)Recall from footnote 23 that “reliability” is defined as the number of periods that the firm made profit over its age.

\(^{28}\)Based on pseudorandom numbers.
and bias attributes of the agents, in addition to the random part of the environmental parameter.

3.5 Initialization

The topography of the model is such that people, firms and investors are organized around three concentric circumferences with radius 15, 12 and 8, respectively. The firms’ circumference is visible and coincides with their product space, where each position corresponds to a variety of the product. The innermost circumference is the NIM, populated by the investors.

The agents are initialized by the Setup button that will create a number of firms equal the value in the «incumbents» slide bar, the analogous is true for people and the «newcomers» slide bar.

The «exogenous-death» will add a death rate for the population of people in the model, and the «exogenous-exit» will add a probability to firms go bankrupt on each period. The «without-market?» switch turns off the option of portfolio investment (see Figure 1).

The interface also contains ten plots (see Figure 1) which are draw from internal global parameters whose initial values are determined at setup procedure and updated on every tick. Plots A, G and B display the progress over time of the quantity of agents from each breed, the environmental parameter and its mean, and the Herfindahl-Hirschman Index (HHI) and its mean, respectively. Additionally, C is a monitor that shows the current value of the HHI mean.

Plot J displays the number of positive (and negative) observations of the environmental parameter, over time, as a percentage of the total number of observations. Plot K indicates the firms’ mortality rate for each period.

Finally, Plots D, E and we present the histograms for the current distributions of people’s biases and thresholds attributes, and the environmental parameter values, respectively. Plots F and H display the subjective value of gains and the subjective probability of gain for each prospect, these values are requested from a random person at

29 This radius is merely aesthetic and has no role in defining the sector perimeter (demand segment).

30 Caution is advised when altering this input since, even at 1%, the mortality rate of firms will rise abruptly.

31 Herfindahl-Hirschman Index is an indicator of the amount of competition within an industry, it ranges from 0 (perfect competition) to 10000 (monopoly), and it’s defined as the sum of the squared market-shares (in whole percentage form) of all firms in some sector.
each time step and, as such, the value of the series in a particular period has little meaning, only the long-term trend of these charts are informative.

3.6 Input data

According to Kahneman and Tversky, “when faced with a complex problem, people employ a variety of heuristic procedures in order to simplify the evaluation of prospects” (1992, p. 317). Pursuant to this, simple heuristics are applied to approximate the probabilities \(p \) and afterwards inputted into people’s weighting function\(^{32} \); whereas for the subjective value function, the maximum possible gain and loss \(x \) are emulated for each prospect. All values for the parameters in the PT’s functions are the same as those estimated by Kahneman and Tversky (1992, pp. 311-312).

3.7 Submodels

The setup procedures set the layout of the environment, create the initial agents and set the global variables and agents’ attributes initial values. Setup also resets everything if there is a previous run of the model displaying.

The running procedures encompass three major submodels: companies, people and environment procedures.

3.7.1 Companies procedures

Firms get older mainly for the calculation of the reliability attribute, which is defined at their creation as profit-history\(^{33} \) over age and updated every period. They may exit the market due to endogenous reasons (resources being less than zero) or to exogenous ones – the «exogenous-exit» slider assigns a probability of exit per period to all firms.

The revenues are calculated in all time steps \(t \) and the result is stored in the revenue attribute for the remaining of the period. For a given firm \(j \), revenue is set as follows:

\[
\text{revenue}_{j,t} = (d \cdot r \cdot rm) + (d \cdot l \cdot lm)
\]

(4)

Where «\(d \)» is the value of demand segment for the period, «\(r \)» is the distance to nearest clockwise neighbor and «\(rm \)» the portion of the clockwise demand captured by the firm\(^{34} \), «\(l \)» and «\(lm \)» are the analogous variables for the counter clockwise segment. The market-share «ms» attribute is simply defined as:

\[^{32}\text{This assumption is motivated by the study of Availability Heuristic as well (Kahneman & Tversky, 1973).}\]

\[^{33}\text{A stock variable that stores the total number of periods that the firm obtained profit.}\]

\[^{34}\text{Recall that rm is just the firm’s resources relative to its neighbour.}\]
\[ms_{j,t} = \frac{(r \cdot rm) + (l \cdot lm)}{360} \]

Next, the firms report their performance as being:

\[\text{performance}_{j,t} = (\text{revenue} - \text{costs} - (i \cdot \text{debt}))_{j,t} \]

Where «i» is the interest paid regularly to bondholders (coupon), debt is the amount of bonds the firms sold in the NIM, and costs are defined as:

\[\text{costs}_{j,t} = tc \cdot (\text{revenue} + \text{resources})_{j,t} \]

Where «tc» is the percentage input given by the interface’s total-cost slider. Thus, costs are defined linearly as a fixed proportion of the revenues and resources of each period\(^{35}\).

3.7.2 People procedures

People get older and, if they achieve their life expectancy, die. On every period they evaluate and compare the utility of each prospect to check if their decision threshold was reached. If people choose to form a portfolio they will divide their resources equally among \(N\) firms, where \(N\) is the diversification proxy for a subject \(i\) at period \(t\), and it’s defined as:

\[N_{i,t} = \text{int} \left(\text{firms}_t \cdot \left(\frac{\text{threshold} + \text{bias}}{20} \right) \right) \]

Where «firmst» is the current number of firms in the market and «int» is the operator that extracts the integer part of the result\(^{36}\).

In order to determine the subjective value of the gain with the portfolio prospect\(^{37}\) people multiply the maximum possible gain with a bond or stock by their respective quantities in the prospective portfolio. Subsequently, the result will be inputted into Equation 1.

The maximum possible gain with a bond is computed as:

\[bg_{i,t} = \left(\frac{\text{resources}}{N_{i,t}} \right) \cdot (1 + i)^{rt} \]

\(^{35}\) Assumption made for the sake of simplicity.

\(^{36}\) Equation 8 is a portfolio diversification proxy, the numerator captures how risk-taker some agent is (assuming risk-taking as lower values of the numerator) and the denominator is the length of the thresholds range (extending from -10 to 10).

\(^{37}\) Recall that the maximum loss is just the amount of resources.
Where «bg» is the maximum gain with a bond and «rl» is the person’s «remaining life» defined as life-expectancy minus age. Note that rl could also be understood as the investment horizon, i.e., how long the person expects to hold the bonds.

Likewise, people compute the maximum gain with stocks using a simple proxy «bs» for the share appreciation:

\[
bs_{t} = \left(\frac{\text{resources}}{N_{t}} \right) \cdot \left(\frac{\text{sector}}{\text{firms}} \right)_{t}\tag{10}
\]

Where bs indicates how large would the firm be in the present if the demand was distributed equally; «sector» is the sum of all firms' current resources.

To estimate the maximum possible gain with the start-up prospect, people emulate the scenario of the present market while including their «possible future start-up», the resulting computation is the revenue that their start-up would get, ceteris paribus, if they chose to create one.

The investors breed are considered people38 for what concerns the aging process and they are hidden from the layout in case of all the companies in their portfolios exiting the market.

3.7.3 Environment procedures

The environmental parameter is resolved and plotted every period, it’s partially defined by the percentage of firms that had a positive performance – if more than half, assumes the value 1, or else (-1) – and partly a randomly selection from \{-1, 1\}; both parts are added to the last value of the parameter to determine its present value. The endogenous part of this parameter also sets the background color to blue or red depending on whether more than half of the firms made a profit or not.

Additionally, the sum of the parts of this parameter, which can assume one of \{-2, 0, 2\}, define the value of the demand segment39 in the forthcoming period to be one of \{400, 500, 600\}, respectively.

38 For technical reasons a distinction was inevitable, thus investors may be interpreted as «post-choice people».

39 Recall as being the perimeter of the sector with a one degree central angle.
4 Results

4.1 Simulations

The Utility Load Model was simulated 368 times in order to explore all the combinations of the following parameters’ values:\footnote{See Figure 1 attached.}

- no-bias? \{on, off\}
- incumbents \{2, 20\}
- newcomers \{3, 6\}
- life-expectancy \{36, 180\}
- interest \{0.05\}
- exogenous-exit \{0.001\}
- total-cost \{0.5\}
- without-market? \{off\}
- exogenous-death \{0.01\}

Each combination ran the K number of times – shown inside the parenthesis in the third column of the attached Tables – for 600 periods, which gave a total of 221.168 observations.\footnote{A spreadsheet containing these simulations’ results is available at: \url{https://goo.gl/g8FLWI}} The HHI and its mean (μ) as well as the environmental parameter (λ) and its mean were reported for each run, the results in the attached Table 1.

The previous table illustrates the relations of three user-defined parameters (first three columns) and their impact on λ and HHI, while all other parameters are hold constant (tuned to the values shown above the table).

The statistics displayed in the fourth to sixth columns are, respectively: the mean of the HHI values reported in the last period of each run $\mu(\text{HHI}_{t=600})$; the mean of the λ values conveyed at the final step of each run $\mu(\lambda_{t=600})$; \footnote{Usually, industries with HHI values between 1500 and 2500 are considered by antitrust agencies as moderately concentrated whilst HHI above 2500 represent a highly concentrated market structure.\footnote{Hereby referred as end-point mean.} Usually, industries with HHI values between 1500 and 2500 are considered by antitrust agencies as moderately concentrated whilst HHI above 2500 represent a highly concentrated market structure.\footnote{Hereby referred as end-point mean.}} and the correlation amongst the K observations of the two previous values $\rho(\text{HHI}, \lambda)$.\footnote{The λ values by their own have no interpretative meaning, their only relevance to this analysis comes from their comparison among different scenarios.\footnote{Hereby referred as end-point λ.}}

The last three columns show, respectively: the mean of K observations of the HHI’s mean for the 600 periods of each simulation and their standard deviation (sd); the

\footnote{See Figure 1 attached.}
\footnote{A spreadsheet containing these simulations’ results is available at: \url{https://goo.gl/g8FLWI}}
\footnote{Usually, industries with HHI values between 1500 and 2500 are considered by antitrust agencies as moderately concentrated whilst HHI above 2500 represent a highly concentrated market structure.\footnote{Hereby referred as end-point mean.} Usually, industries with HHI values between 1500 and 2500 are considered by antitrust agencies as moderately concentrated whilst HHI above 2500 represent a highly concentrated market structure.\footnote{Hereby referred as end-point mean.}}
\footnote{The λ values by their own have no interpretative meaning, their only relevance to this analysis comes from their comparison among different scenarios.\footnote{Hereby referred as end-point λ.}}
\footnote{Hereby referred as end-point correlation.\footnote{Hereby referred as end-point correlation.}}
\footnote{Hereafter dubbed as inner mean.\footnote{Hereafter dubbed as inner mean.}}
analogous measure for the lambda parameter48; and the correlation between K observations of the preceding measures (expect sd).

The afore described sets of statistics49 give us two distinct perspectives on the model’s comportment, namely, while the first three inform the expected final state of the model for the given parameters’ values, the last ones provide an idea of the model’s expected behavior throughout the 600 periods50.

We can infer that the initial conditions of the system are of significant importance to its final state. In the «without bias version» of the simulations51, the HHI’s inner mean tend not to be far, in relative terms, from the end-point mean. The environmental parameter is more erratic and has a strong descending trend for the scenarios starting with fewer incumbents, although for the high newcomers value and longer life-expectancy this trend balances out. As it does in the scenarios with a higher number of incumbents.

The strong negative correlations between the HHI and lambda for the low incumbents’ scenarios tells us that a downward movement of the economic environment is related to an increase in the industry’s concentration, possibly due to a higher firms’ mortality rate on recessionary periods. However, as the number of agents participating and interested in the market grows, this reading reverses, i.e., in recession the HHI lowers and vice versa52.

The solid difference in the HHI figures for both incumbents settings enlighten the significant impact of latter on the former. Another interesting regularity emerges from the observation of the life-expectancy effect, recall that life-expectancy also determines the investment horizon53, and the substantial impact of a five times greater horizon in the HHI’s inner and end-point means conveys that the portfolio prospect consistently beats the alternative when the choice is between «starting a company» or «doing a long-term investment».

The reason is that a lengthier investment horizon grants, via the PT function, a greater prospective gain with bonds, subsequently attracting the vast majority of potential entrants (newcomers) to the NIM. The prior has a nefarious effect on the sector’s structure which is pushed towards an oligopoly, reflected by the HHI. The relative impact on the

48 Hereafter dubbed as inner lambda.
49 Fourth to sixth columns and fifth to ninth.
50 Hereafter dubbed as inner correlation.
51 See Table 1.
52 Koellinger and Thurik verify a similar regularity in a 22 OECD cross-country panel study (2009).
53 Vide Equation 10.
HHI is even greater in the scenario with a higher number of *incumbents* and potentials entrants, as the last two rows of Table 1 illustrate.

Table 2 gives the same measurements as the prior table, but with the «no-bias?» parameter altered, i.e., people exhibit personal inclination towards one of the prospects.

Trivially, adding another dimension of stochasticity (*bias*) to the model makes the patterns of the inner and end-point correlations less clear, in contrast, the relative effects of a longer life-expectancy on the HHI become more pronounced. Albeit, the magnitude of the HHI’s inner and end-point means are considerably reduced by the augmented randomness of the model.

Another conspicuous distinction of the «with bias» simulations are the strictly positive values of the lambda statistics, which indicate that less rationale from entrepreneurs favors growth. In model terms, the *bias* attribute increases the probability of *load* reaching a *threshold* earlier, therefore, allowing for more uncertain decisions from *people*. Despite the fact that a greater tolerance for uncertainty does not benefit entrepreneurs, it serves the economy by increasing the inflow of investments and new firms in the sector.

Succinctly, by comparing the results of both tables, we can infer that a more bounded rationale is welfare increasing – reflected by the less concentrated market indexes and long-term economic growth trend of Table 2.

Moreover, as a general trend of the simulations, in a context where firms are allowed to continuously issue new debt to the public, the sector tends to be more concentrated that would be otherwise, therefore, diminishing welfare.

4.2 Observed dynamics

4.2.1 Dynamic equilibria

After a warm-up period, the populations of the main agents tend to stabilize around some constant value, which depends on the initial conditions. This is considered a dynamic equilibrium, i.e., a state of the system where continuously opposing forces balance each other, in this case, the creation and death rates of the agents grow at the same rate. Nonetheless, since the model is not a closed system (due to stochastic factors), this equilibrium can be disrupted. Indeed, abrupt changes in the state of the system have been observed for very long simulations (over 5000 periods).
4.2.2 **Monopolist disadvantage**

More easily observed with combinations of parameters that yield a higher HHI, in this dynamic, when a firm gets to be the only one in the market and continuously supplies bonds for the entire industry’s NIM, it can be brought to bankruptcy due to financial debt.

4.2.3 **Squeeze-out**

Typically observed when three or more firms occupy the same address in the product space, if two of them start to grow concurrently, the other(s) is(are) pushed out of the market due to the shortage of local demand, illustrating a seemingly paradoxical scenario where aggressive competition amongst immediate neighbors effectively increases market concentration.

4.2.4 **Recessionary entrepreneurship**

Recessionary periods do not prevent entry. Indeed, it follows from the dynamic equilibrium of the firms’ population that the rate of entry floats around some constant value. The fourfold pattern observed by Kahneman and Tversky\(^\text{54}\) actually explains this dynamic, they observe that people tend to present risk-seeking behavior for losses with high probability. Since the ABM assumes that recessionary periods are equivalent to the loss context, the longer the recession, the higher will be the probability of loss and more risk-seeking the entrepreneurs will be – entailing the creation of start-ups\(^\text{55}\) even in bad economic environments.

4.3 **An alternative interpretation**

It is worthwhile underlining that the Utility Load Model also has an alternative reading as a multi-brand duopoly, where the incumbent (brown firm) faces the threat of a potential rival (green firm) in the same product space. In this interpretation, the two firms not only compete for market-share through multiple varieties of a product, but also for equity and security investors (people).

4.4 **Discussion**

4.4.1 **Conditions in which the NIM is a behavioral barrier to entry**

The simulations delivered beforehand, which are not exhaustive of the model’s behavioral space, identify two conditions in which the NIM can be understood as a

\(^{54}\) Vide (Kahneman & Tversky, 1992)

\(^{55}\) Remember that we assume the start-up prospect as the more uncertain one.
behavioral entry barrier for entrepreneurs, namely: long-term investments’ horizons and/or high interest rate (coupon) of bonds – since both increase the prospective gains with a portfolio.

4.4.2 Model’s realism

The empirical validation of an ABM is an extensive econometric analysis, which by itself is a workload equivalent to a Master’s thesis. Therefore, to counter the downside of a purely abstract model, we have based the cognitive rules of the agents on empirically founded theories, namely, PT and RWM.

Furthermore, most of the resulting dynamics of the Utility Load Model can be observed in everyday life, except, perhaps, recessionary entrepreneurship. Koellinger and Thurik (2009) made a panel data study with 22 OECD countries on the relations between entrepreneurship and business cycles, which concluded that some categories of the first precede the upturn of the second. In other words, they empirically observed a regularity similar to recessionary entrepreneurship. They attributed this effect mainly to unemployment and a «nothing to lose» mentality of people. In this regard, the Utility Load Model contributes to their explanation of this phenomenon by bestowing a link between the cognition of entrepreneurs and the correspondent economic reality, via PT functions.

4.4.3 Caveats

Any assumption is a limitation, still some deserve further attention. The Utility Load Model is anchored in a handful of assumptions for the sake of simplicity, namely:

i. **No intermediary stages between start-up and initial public offering**: the reason is to keep the focus of the analysis in the firms that successfully integrate the capital markets. However this creates some theoretical issues, for instance: is the firms’ mortality rate being underestimated? Are people a combination of entrepreneur and venture capitalist? The answer to both questions is affirmative.

To include intermediary stages is certainly an improvement to be done in future versions of the model in order to adjust the mortality rate of firms to a more realistic demeanor.

The people breed can in fact be interpreted as twofold, although this might appear ambiguous, their categorization does not interfere with the interpretation. Again, the concern of the model is the decision-making, hence, post-choice classification is irrelevant.
ii. **All firms participate in the NIM:** this assumption follows from the previous one, and may be responsible for an underestimated number of *firms* in the market, since not all firms that compete in the product space opt to go public. Notwithstanding, this is very likely a minor deviation, since commonly most private companies are in the tail of the market-share distribution.

iii. **Firms don’t compete through prices:** the reasoning is that, in Salop’s circular market, price competition leads to zero profits equilibrium. So the circular market design adopted here diverges from Salop’s horizontal differentiation with respect to the type of competition, to the rigidity of *firms’* addresses, and in determining demand.

iv. **Demand is uniformly distributed:** inherited from horizontal differentiated models, it is an ordinarily used assumption for the sake of the analysis, which might cause an underestimation of the leading *firms’* market power. This assumption could be easily relaxed in future works.

v. **Fixed lifelong portfolios:** investors change strategy in order to adapt to new circumstances, even if a lifelong portfolio is a realistic alternative to a «lifelong investment in a newly created firm», at least some amount of fine tuning should be expected in practice. An effect of such assumption in the results are a more equal distribution of *investors* among *firms*.

vi. **Resources evenness:** all *people* start with the same amount of resources (1000), this assumption could be easily loosened so as to follow a more realistic distribution of societal resources. Thus, becoming a dimension of heterogeneity in a future version of the Utility Load Model.

vii. **No speculation:** not as much an assumption as a default interpretation, investors habitually speculate in secondary markets, since the supply of newly issued securities is scarce. The user can easily emulate speculative behavior in the model by setting *life-expectancy* to low values.

56 Vide [*Salop, 1979a*]
5 Final remarks

5.1 Relevance

A novelty of the present thesis was the study of the connection between the cognitive processes of entrepreneurs (cognition scale) and the industry's correspondent structure (market scale) of an economic system. A researcher trying to find, empirically, a connection between the two scales would encounter many practical issues, one of them being, simply, where to look? There are countless factors that an educated guess would consider as valid candidates to explain the presence (or absence) of such a link.

There are three fundamental questions to be answered before deliberating about the relevance of the Utility Load Model, namely: does the model provide conclusive evidence to accept the hypothesis that the manner in which entrepreneurs make choices influences the market structure? «No». Then, does the model give enough evidence to reject this hypothesis? «No». Lastly, does the model provide more information about the system that one would have had otherwise? «Yes». Perhaps, one might say, the latter is the main contribution of this kind of work.

The results presented here, which were not exhaustive\(^\text{57}\), narrow the range of reality where one could research for the relationship among cognition and market scales. In turn, making an empirical or experimental study on this matter more attainable. Moreover, the results exposed anteriorly ascertain that NIM as a behavioral barrier to entry is a plausible collateral effect of the way modern economies are structured.

5.2 Future developments

As stated earlier, the interface of the model contains a switch, named without-market?, to study the hypothesis of a sector without NIM. However, we have encounter some technical difficulties in simulating this scenario since, in this condition, the number of operations grows exponentially with time. Given the temporal constraints of this thesis, such hypothesis was left to be studied in the future.

We anticipate several ways in which the Utility Load Model could be improved, to mention a few: turning life-expectancy into a dimension of heterogeneity; refining the heuristic used to compute the prospective gain with a start-up; allowing for fluctuations

\(^{57}\text{Notice that, in part 4, we only explored a set of possible parameters’ combinations. Thus, in theory, there are no reasons why one might not find, by further exploring the model, other factors that connect the cognition of entrepreneurs and the sector’s market structure.}\)
in the price of stocks and bonds; refining firms’ behavior regarding the issuing of securities; including non-linear cost function; adding government to the mix; and so on.

The current results also leave the door opened for interesting studies of experimental as well as econometric nature that investigate empirical regularities which could validate the model as a prediction tool, thus, this should be expected in forthcoming works.

References

Attachments

I. Schedule’s pseudo-code

1. SETUP [DONE ONLY ONCE AT START]

1.1. Sets the layout of the model

1.2. Creates a number of incumbents (firms) and newcomers (entrepreneurs) equals to the chosen values of their respective sliders

1.3. Sets the initial values of the internal variables

2. RUN [DONE CONTINUOUSLY OR ONCE IF THE BUTTON STEP IS USED INSTEAD]

2.1. Creates a number of newcomers (entrepreneurs) equals to the chosen value of the slider

2.2. Checks if any person dies due to exogenous causes, people’s death rate is determined by the respective slider on the interface

2.3. Runs people’s processes one by one at random order

2.3.1. Check if they reached their life expectancy (determined by the respective slider)

2.3.2. Compare the utilities of the start-up and portfolio prospects

2.3.2.1. If the start-up prospect utility is less than or equal to the portfolio prospect utility, add one to the current value of the load attribute. Otherwise subtract one from the current value of the load attribute

2.3.3. Checks if the value of load is greater than their respective thresholds

2.3.3.1. If true and there are no firms to invest in, sets colour to yellow and jumps to step 2.5

2.3.3.2. If true, turns them into investors (red dots) and creates links (white lines) with N firms

2.3.4. Checks if the value of load is less than their respective negative thresholds

2.3.4.1. If true, turns them into new firms (green factories)

2.4. Runs investors’ processes one by one at random order

2.4.1. Check if they reached their life expectancy (determined by the respective slider)

2.4.2. Checks if the firms in their respective portfolios still exist

2.4.2.1. If none exist, hide the investor from the layout

2.5. Runs firms’ processes one by one at random order

2.5.1. Checks if their resources are negative, if so, they die

2.5.2. Checks if they exit the market due to an exogenous cause, which the probability is determined by the respective slider on the interface

2.5.3. Calculates the period revenues
2.5.3.1. Firms calculate the captured portion of the circumference’s segments between them and their immediate neighbours (local demand) as a proportion of their resources relative to their neighbours.

2.5.4. Reports the firms’ results

2.5.4.1. Attributes a risk-type to them «bond» or «share» according to whether they have debt or not

2.5.4.2. Sets the amount of costs of the period as the input percentage in the total-cost slider times their revenues and resources

2.5.4.3. Sets their performance attribute to be the amount of revenue minus the costs and the interest paid over the amount of debt (if any)

2.5.4.4. Updates the resources attribute to be the past value plus the performance

2.5.4.5. Updates the market-shares to the current portions of the total demand captured by each firm

2.5.5. Checks if they had a positive performance (made profit)

2.5.6. Updates the value of the reliability attribute

2.6. Calculates this period’s mortality rate of firms

2.7. Updates the environmental parameter (lambda) value

2.7.1. Checks if less than half of the firms made profit

2.7.1.1. If true, subtracts one from the last value of lambda and sets the background to red

2.7.1.2. Otherwise, adds one to the last value of lambda and sets background to blue

2.7.1.3. Chooses at random one of negative or positive one and adds the chosen value to current value of lambda

2.7.2. Checks if the sum of the exogenously and endogenously determined parts of lambda is greater, less than or equals to zero

2.7.2.1. If greater than, less than or equal to zero sets the segments of the circumference’s perimeter (local demand) to be 600, 400 and 500 respectively (affecting the next period)

2.8. Calculates the HHI of the period

2.9. Updates the plots, global variables and adds one to the time steps (ticks) counter
II. Figures and tables

Figure 1 Utility Load Model Interface: Buttons and View

Figure 2 Utility Load Model Interface: Graphs and Monitors
Table 1: Simulations without cognitive bias

Interest {0.05}; no-bias? {on}; exogenous-exit {0.001}; total-cost {0.5}; without-market? {off}; exogenous-death {0.01}

<table>
<thead>
<tr>
<th>incumbents</th>
<th>newcomers</th>
<th>life-expectancy (K)</th>
<th>(\mu(\text{HHI})); t = 600</th>
<th>(\mu(\lambda)); t = 600</th>
<th>(\rho(\text{HHI},\lambda))</th>
<th>mean[(\mu(\text{HHI}))] (sd)</th>
<th>mean[(\mu(\lambda))] (sd)</th>
<th>corr[(\mu(\text{HHI}),\mu(\lambda))]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>36 (20)</td>
<td>4225.7</td>
<td>-198.9</td>
<td>-0.915</td>
<td>3721.2 (3322.8)</td>
<td>-86.5 (115.8)</td>
<td>-0.918</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180 (20)</td>
<td>8713.4</td>
<td>-269.2</td>
<td>-0.803</td>
<td>7486.3 (1576.8)</td>
<td>-170.0 (79.0)</td>
<td>-0.981</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>36 (20)</td>
<td>4251.9</td>
<td>-240.9</td>
<td>-0.861</td>
<td>3685.5 (3077.8)</td>
<td>-107.4 (137.9)</td>
<td>-0.885</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180 (20)</td>
<td>8646.6</td>
<td>-37.0</td>
<td>-0.657</td>
<td>7223.6 (1381.2)</td>
<td>1.9 (158.5)</td>
<td>-0.955</td>
</tr>
</tbody>
</table>

Table 2: Simulations with cognitive bias

Interest {0.05}; no-bias? {off}; exogenous-exit {0.001}; total-cost {0.5}; without-market? {off}; exogenous-death {0.01}

<table>
<thead>
<tr>
<th>incumbents</th>
<th>newcomers</th>
<th>life-expectancy (K)</th>
<th>(\mu(\text{HHI})); t = 600</th>
<th>(\mu(\lambda)); t = 600</th>
<th>(\rho(\text{HHI},\lambda))</th>
<th>mean[(\mu(\text{HHI}))] (sd)</th>
<th>mean[(\mu(\lambda))] (sd)</th>
<th>corr[(\mu(\text{HHI}),\mu(\lambda))]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>36 (20)</td>
<td>78.3</td>
<td>11.4</td>
<td>0.172</td>
<td>519.1 (293.5)</td>
<td>6.8 (16.7)</td>
<td>-0.096</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180 (20)</td>
<td>846.3</td>
<td>47.4</td>
<td>-0.228</td>
<td>1807.8 (532.9)</td>
<td>17.3 (41.9)</td>
<td>-0.260</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>36 (40)</td>
<td>53.2</td>
<td>22.2</td>
<td>-0.454</td>
<td>257.2 (129.1)</td>
<td>12.9 (25.3)</td>
<td>-0.174</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180 (40)</td>
<td>782.3</td>
<td>77.0</td>
<td>0.038</td>
<td>1163.6 (363.9)</td>
<td>37.7 (27.6)</td>
<td>-0.144</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>36 (28)</td>
<td>57.3</td>
<td>29.2</td>
<td>-0.108</td>
<td>154.0 (47.3)</td>
<td>20.4 (21.3)</td>
<td>-0.155</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180 (20)</td>
<td>450.9</td>
<td>44.6</td>
<td>0.218</td>
<td>448.7 (80.9)</td>
<td>23.0 (24.1)</td>
<td>0.189</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>36 (20)</td>
<td>69.4</td>
<td>19.9</td>
<td>-0.294</td>
<td>154.3 (139.2)</td>
<td>10.5 (23.9)</td>
<td>-0.429</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180 (20)</td>
<td>575.5</td>
<td>62.0</td>
<td>0.022</td>
<td>517.8 (260.2)</td>
<td>28.8 (19.0)</td>
<td>-0.430</td>
</tr>
<tr>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>Collecting new pieces to the regional knowledge spillovers puzzle: high-tech versus low-tech industries</td>
<td>Carlos Carreira & Luís Lopes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>Impact of European Integration Process on Value Added Creation in Chosen Member Countries</td>
<td>Jozef Kubala</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>A remuneração dos administradores nas sociedades cotadas: determinantes e encadramento jurídico</td>
<td>Daniela Machado, Maria Elisabete Ramos & Pedro Godinho</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>Applying Thirlwall’s Law to the Portuguese economy: a sectoral analysis</td>
<td>Jeanete Dias & Micaela Antunes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>Industry based equity premium forecasts</td>
<td>Nuno Silva</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>Pacts for Employment and Competitiveness as a Role Model? Their Effects on Firm Performance</td>
<td>John T. Addison, Paulino Teixeira, Katalin Evers, Lutz Bellmann</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>The Determinants of Entrepreneurship at the Country Level: A Panel Data Approach</td>
<td>Gonçalo Brás & Elias Soukiazis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>Budget, Expenditures Composition and Political Manipulation: Evidence from Portugal</td>
<td>Vítor Castro & Rodrigo Martins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>The Occupational Feminization of Wages</td>
<td>John T. Addison, Orgul D. Ozturk & Si Wang</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>Economies to Scale and the Importance of Human Capital in the Moulds Industry in Portugal: A Micro Panel Data Approach</td>
<td>Fátima Diniz & Elias Soukiazis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>The Impact of the Chinese Exchange Policy on Foreign Trade with the European Union</td>
<td>Ana Cardoso & António Portugal Duarte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The links between the Companies’ Market Price Quality and that of its Management and Business Quality: A system panel data approach
- Dinis Santos & Elias Soukiazis

Education and Software piracy in the European Union
- Nicolas Dias Gomes, Pedro André Cerqueira & Luís Alçada-Almeida

A Monetary Analysis of the Liquidity Trap
- João Braz Pinto & João Sousa Andrade

Efficient Skewness/Semivariance Portfolios
- Rui Pedro Brito, Hélder Sebastião & Pedro Godinho

Size Distribution of Portuguese Firms between 2006 and 2012
- Rui Pascoal, Mário Augusto & Ana M. Monteiro

Optimum Currency Areas, Real and Nominal Convergence in the European Union
- João Sousa Andrade & António Portugal Duarte

Estimating State-Dependent Volatility of Investment Projects: A Simulation Approach
- Pedro Godinho

Is There a Trade-off between Exchange Rate and Interest Rate Volatility? Evidence from an M-GARCH Model
- António Portugal Duarte, João Sousa Andrade & Adelaide Duarte

Portfolio Choice Under Parameter Uncertainty: Bayesian Analysis and Robust Optimization Comparison
- António A. F. Santos, Ana M. Monteiro & Rui Pascoal

Crowding-in and Crowding-out Effects of Public Investments in the Portuguese Economy
- João Sousa Andrade & António Portugal Duarte

Are There Political Cycles Hidden Inside Government Expenditures?
- Vítor Castro & Rodrigo Martins

The Nature of Entrepreneurship and its Determinants: Opportunity or Necessity?
- Gonçalo Brás & Elias Soukiazis

Estado Social, Quantis, Não-Linearidades e Desempenho Económico: Uma Avaliação Empírica
- Adelaide Duarte, Marta Simões & João Sousa Andrade

Assessing the Impact of the Welfare State on Economic Growth: A Survey of Recent Developments
- Marta Simões, Adelaide Duarte & João Sousa Andrade

Business Cycle Synchronization and Volatility Shifts
- Pedro André Cerqueira

The Public Finance and the Economic Growth in the First Portuguese Republic
- Nuno Ferraz Martins & António Portugal Duarte

On the Robustness of Minimum Wage Effects: Geographically-Disparate Trends and Job Growth Equations
- John T. Addison, McKinley L. Blackburn & Chad D. Cotti

Determinants of Subjective Well-Being in Portugal: A Micro-Data Study
- Sara Ramos & Elias Soukiazis

Changes in Bargaining Status and Intra-Plant Wage Dispersion in Germany. A Case of (Almost) Plus Ça Change?
- John T. Addison, Arnd Kölling & Paulino Teixeira

The Renewables Influence on Market Splitting: the Iberian Spot Electricity Market
- Nuno Carvalho Figueiredo, Patrícia Pereira da Silva & Pedro Cerqueira

Drivers for Household Electricity Prices in the EU: A System-GMM Panel Data Approach
- Patrícia Pereira da Silva & Pedro Cerqueira

Effectiveness of Intellectual Property Regimes: 2006-2011
- Noemí Pulido Pavón & Luis Palma Martos

Dealing with Technological Risk in a Regulatory Context: The Case of Smart Grids
- Paulo Moisés Costa, Nuno Bento & Vítor Marques
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-10</td>
<td>Stochastic Volatility Estimation with GPU Computing</td>
<td>António Alberto Santos & João Andrade</td>
</tr>
<tr>
<td>2014-09</td>
<td>The Impact of Expectations, Match Importance and Results in the Stock Prices of European Football Teams</td>
<td>Pedro Godinho & Pedro Cerqueira</td>
</tr>
<tr>
<td>2014-07</td>
<td>The Role of Gender in Promotion and Pay over a Career</td>
<td>John T. Addison, Orgul D. Ozturk & Si Wang</td>
</tr>
<tr>
<td>2014-06</td>
<td>Output-gaps in the PIIGS Economies: An Ingredient of a Greek Tragedy</td>
<td>João Sousa Andrade & António Portugal Duarte</td>
</tr>
<tr>
<td>2014-04</td>
<td>Agriculture in Portugal: Linkages with Industry and Services</td>
<td>João Gaspar, Gilson Pina & Marta C. N. Simões</td>
</tr>
<tr>
<td>2014-03</td>
<td>Effects of Taxation on Software Piracy Across the European Union</td>
<td>Nicolas Dias Gomes, Pedro André Cerqueira & Luís Alçada Almeida</td>
</tr>
<tr>
<td>2014-02</td>
<td>A Crise Portuguesa é Anterior à Crise Internacional</td>
<td>João Sousa Andrade</td>
</tr>
<tr>
<td>2014-01</td>
<td>Collective Bargaining and Innovation in Germany: Cooperative Industrial Relations?</td>
<td>John T. Addison, Paulino Teixeira, Katalin Evers & Lutz Bellmann</td>
</tr>
<tr>
<td>2013-27</td>
<td>Market Efficiency, Roughness and Long Memory in the PSI20 Index Returns: Wavelet and Entropy Analysis</td>
<td>Rui Pascoal & Ana Margarida Monteiro</td>
</tr>
<tr>
<td>2013-23</td>
<td>Learning, Exporting and Firm Productivity: Evidence from Portuguese Manufacturing and Services Firms</td>
<td>Carlos Carreira</td>
</tr>
<tr>
<td>2013-22</td>
<td>Equity Premia Predictability in the EuroZone</td>
<td>Nuno Silva</td>
</tr>
<tr>
<td>2013-21</td>
<td>Human Capital and Growth in a Services Economy: the Case of Portugal</td>
<td>Marta Simões & Adelaide Duarte</td>
</tr>
<tr>
<td>2013-20</td>
<td>Does Voter Turnout Affect the Votes for the Incumbent Government?</td>
<td>Rodrigo Martins & Francisco José Veiga</td>
</tr>
<tr>
<td>2013-19</td>
<td>Determinants of Worldwide Software Piracy Losses</td>
<td>Nicolas Dias Gomes, Pedro André Cerqueira & Luís Alçada Almeida</td>
</tr>
<tr>
<td>2013-18</td>
<td>Despesa Pública em Educação e Saúde e Crescimento Econômico: Um Contributo para o Debate sobre as Funções Sociais do Estado</td>
<td>João Sousa Andrade, Marta Simões & Adelaide P. S. Duarte</td>
</tr>
<tr>
<td>2013-17</td>
<td>Duration dependence and change-points in the likelihood of credit booms ending</td>
<td>Vitor Castro & Megumi Kubota</td>
</tr>
<tr>
<td>2013-16</td>
<td>Job Promotion in Mid-Career: Gender, Recession and ‘Crowding’</td>
<td>John T. Addison, Orgul D. Ozturk & Si Wang</td>
</tr>
<tr>
<td>2013-14</td>
<td>The Effects of Internal and External Imbalances on Italy’s Economic Growth. A Balance of Payments Approach with Relative Prices No Neutral.</td>
<td>Elias Soukiazis, Pedro André Cerqueira & Micaela Antunes</td>
</tr>
<tr>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>2013-13</td>
<td>A Regional Perspective on Inequality and Growth in Portugal Using Panel Cointegration Analysis</td>
<td>Marta Simões, João Sousa Andrade & Adelaide Duarte</td>
</tr>
<tr>
<td>2013-12</td>
<td>Macroeconomic Determinants of the Credit Risk in the Banking System: The Case of the GIPSI</td>
<td>Vítor Castro</td>
</tr>
<tr>
<td>2013-11</td>
<td>Majority Vote on Educational Standards</td>
<td>Robert Schwager</td>
</tr>
<tr>
<td>2013-08</td>
<td>Minimum Wage Increases in a Recessionary Environment</td>
<td>John T. Addison, McKinley L. Blackburn & Chad D. Cotti</td>
</tr>
<tr>
<td>2013-07</td>
<td>The International Monetary System in Flux: Overview and Prospects</td>
<td>Pedro Bação, António Portugal Duarte & Mariana Simões</td>
</tr>
<tr>
<td>2013-05</td>
<td>The Dutch Disease in the Portuguese Economy</td>
<td>João Sousa Andrade & António Portugal Duarte</td>
</tr>
<tr>
<td>2013-04</td>
<td>Is There Duration Dependence in Portuguese Local Governments' Tenure?</td>
<td>Vítor Castro & Rodrigo Martins</td>
</tr>
<tr>
<td>2013-02</td>
<td>Portugal Before and After the European Union</td>
<td>Fernando Alexandre & Pedro Bação</td>
</tr>
<tr>
<td>2013-01</td>
<td>The International Integration of the Eastern Europe and two Middle East Stock Markets</td>
<td>José Soares da Fonseca</td>
</tr>
<tr>
<td>2012-21</td>
<td>Are Small Firms More Dependent on the Local Environment than Larger Firms? Evidence from Portuguese Manufacturing Firms</td>
<td>Carlos Carreira & Luís Lopes</td>
</tr>
<tr>
<td>2012-19</td>
<td>Can German Unions Still Cut It?</td>
<td>John Addison, Paulino Teixeira, Jens Stephani & Lutz Bellmann</td>
</tr>
<tr>
<td>2012-18</td>
<td>Financial Constraints: Do They Matter to R&D Subsidy Attribution?</td>
<td>Filipa Silva & Carlos Carreira</td>
</tr>
<tr>
<td>2012-17</td>
<td>Worker Productivity and Wages: Evidence from Linked Employer-Employee Data</td>
<td>Ana Sofia Lopes & Paulino Teixeira</td>
</tr>
<tr>
<td>2012-16</td>
<td>Slovak Economic Growth and the Consistency of the Balance-of-Payments Constraint Approach</td>
<td>Elias Soukiazis & Eva Muchova</td>
</tr>
<tr>
<td>2012-15</td>
<td>The Importance of a Good Indicator for Global Excess Demand</td>
<td>João Sousa Andrade & António Portugal Duarte</td>
</tr>
<tr>
<td>2012-14</td>
<td>Measuring Firms’ Financial Constraints: A Rough Guide</td>
<td>Filipa Silva & Carlos Carreira</td>
</tr>
<tr>
<td>2012-12</td>
<td>Where Are the Fragilities? The Relationship Between Firms’ Financial Constraints, Size and Age</td>
<td>Carlos Carreira & Filipa Silva</td>
</tr>
<tr>
<td>2012-11</td>
<td>An European Distribution of Income Perspective on Portugal-EU Convergence</td>
<td>João Sousa Andrade, Adelaide Duarte & Marta Simões</td>
</tr>
<tr>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2012-10</td>
<td>Financial Crisis and Domino Effect</td>
<td>Pedro Bação, João Maia Domingues & António Portugal Duarte</td>
</tr>
<tr>
<td>2012-09</td>
<td>Non-market Recreational Value of a National Forest: Survey Design and Results</td>
<td>Paula Simões, Luís Cruz & Eduardo Barata</td>
</tr>
<tr>
<td>2012-08</td>
<td>Growth rates constrained by internal and external imbalances and the role of relative prices: Empirical evidence from Portugal</td>
<td>Elias Soukiazis, Pedro André Cerqueira & Micaela Antunes</td>
</tr>
<tr>
<td>2012-07</td>
<td>Is the Erosion Thesis Overblown? Evidence from the Orientation of Uncovered Employers</td>
<td>John Addison, Paulino Teixeira, Katalin Evers & Lutz Bellmann</td>
</tr>
<tr>
<td>2012-06</td>
<td>Explaining the interrelations between health, education and standards of living in Portugal. A simultaneous equation approach</td>
<td>Ana Poças & Elias Soukiazis</td>
</tr>
<tr>
<td>2012-05</td>
<td>Turnout and the Modeling of Economic Conditions: Evidence from Portuguese Elections</td>
<td>Rodrigo Martins & Francisco José Veiga</td>
</tr>
<tr>
<td>2012-04</td>
<td>The Relative Contemporaneous Information Response. A New Cointegration-Based Measure of Price Discovery</td>
<td>Ana Poças & Elias Soukiazis</td>
</tr>
<tr>
<td>2012-02</td>
<td>As Ações Portuguesas Seguem um Random Walk? Implicações para a Eficiência de Mercado e para a Definição de Estratégias de Transação</td>
<td>Ana Rita Gonzaga & Helder Sebastião</td>
</tr>
<tr>
<td>2012-01</td>
<td>Consuming durable goods when stock markets jump: a strategic asset allocation approach</td>
<td>João Amaro de Matos & Nuno Silva</td>
</tr>
</tbody>
</table>

A série Estudos do GEMF foi iniciada em 1996.