COIMBRA, PONTE E CHARNEIRA ENTRE TERRITÓRIOS DESIGUAIS COM PROBLEMAS COMUNS

Análise de desequilíbrios ecológicos provocados por incêndios florestais em matas e Bosques de Países Temperados. Casos de estudo em Portugal e no Chile

Luciano Lourenço*
Victor Quintanilla**

INTRODUÇÃO

Os incêndios florestais são, desde tempos remotos, uma constante em quase todas as florestas temperadas do planeta. Por esse motivo, tanto em Portugal como no Chile está bem patente e, até, é tema de actualização anual, a problemática dos incêndios florestais que afectam não só as matas, ou seja, florestas plantadas e/ou trabalhadas pelo homem, usualmente destinadas à exploração, mas também os bosques, constituídos por formações autóctones, pouco intervenção acionada pelo ser humano, destinados preferencialmente à protecção e conservação.

Dada a posição geográfica de ambos os países, situados em hemisférios distintos, tanto as variáveis ecológicas, como as dendroclimatológicas que são comandadas pelo clima actuam, de certo modo, de forma inversa em cada um dos territórios, pelo que não será de admirar que as semelhanças que, porventura, se venham a encontrar, ocorreram nos dois países em meses diferentes.

Com efeito, Portugal localiza-se em plena zona temperada, aproximadamente entre 37º e 42º Norte, enquanto que o Chile, pela sua larga extensão latitudinal, se distribui por diferentes tipos de clima, com a sua zona temperada a desenvolver-se longitudinalmente, ocupando uma extensão de cerca de 1000 Kms, na direcção norte-sul, entre 32º e 42º de latitude Sul (Fig. 1).

Fig. 1a – Esboço de localização da área em estudo em Portugal Continental: 1 - capitais de distrito; 2 - outras cidades; 3 - rede hidrográfica; 4 - Fronteira; 5 - altitudes de 0 a 200 m; 6 - de 200 a 400 m; 7 - de 400 a 600 m; 8 - de 600 a 800; 9 - de 800 a 1000; 10 - superior a 1000 m

** Departamento de Engenharia Geográfica. Universidade de Santiago do Chile.
A história de destruição do bosque chileno, apesar de certamente conter muitos aspectos semelhantes àquela que outrora dizimou o bosque mediterrâneo português, é nossa contemporânea e, por isso, está viva, fresca, pois é uma tragédia actual, com as suas marcas bem assinaladas na paisagem.

Talvez por esse motivo, mas também por ser menos conhecida no território português, onde decorre este colóquio, daremos maior desenvolvimento à abordagem da situação chilena.

1. ANTECEDENTES ECOLÓGICOS DOS BOSQUES PORTUGUÊS E CHILENO

1.1. Enquadramento climático

Em contraponto com a diversidade climática portuguesa, as regiões temperadas do Chile apresentam maior regularidade, dado que neste país a diferenciação se faz sobretudo a nível latitudinal, pois as características do relevo mantém-se praticamente constantes ao longo do território chileno.

Deste modo, na área em estudo no Chile, podem distinguir-se duas províncias climáticas: uma, de carácter mediterrâneo, que se estende sensivelmente entre 32° e 37° Sul, e outra, de tipo temperado pluvioso, que se desenvolve entre 37° e 42° Sul, latitude correspondente à de Portugal, onde se podem considerar diversas regiões climáticas.

Atendendo à localização em hemisférios distintos, as características climáticas globais, em particular da temperatura e da pluviosidade, distribuem-se de maneira inversa em ambos os países. Com efeito, no Chile, as precipitações aumentam de Norte para Sul, ao inverso das temperaturas que aumentam de Sul para Norte, quando, em Portugal, sucede precisamente o contrário.

No país ibérico, a precipitação média anual varia sensivelmente entre 3000 mm, no Norte, 1000 mm, no Centro e cerca de 500 mm no Sul. Por sua vez, no Chile mediterrâneo, a pluviosidade média flutua entre 400 e 800 mm, desde o extremo Norte ao limite Sul da província mediterrânea (32° a 37° S). No extremo meridional da província temperada, atingem-se a volta de 2500-3000 mm, ou seja, os valores limite da precipitação são semelhantes tanto nos extremos do Norte e Sul de Portugal como nos das regiões temperadas do Chile, embora em sentido inverso, face à já mencionada localização em hemisférios distintos e apesar da amplitude latitudinal ser bem diferente.

Por outro lado, o período biologicamente seco diminui de Norte a Sul, no Chile, com cerca de 7 meses à latitude de 32° Sul e de 3 meses a 38° Sul, ao contrário do que
também sucede em Portugal, com 2 a 4 meses secos no Norte (42° N) e 5 a 7 meses secos no Sul (37° N).

Deve ter-se ainda em linha de conta que em ambos países as manifestações climáticas são muito irregulares ao longo do ano. Tal facto deve-se a vários factores, de entre os quais destacamos o vigor e os contrastes do relevo, especialmente na metade setentrional de Portugal, onde, durante o inverno, as perturbações ciclónicas originadas no Atlântico Norte se desenvolvem com maior severidade, ficando o Sul relativamente livre delas e, por conseguinte, regista muito menos pluviosidade. Durante o verão, as depressões, cada vez mais raras, correm pelo golfo da Biscaia, afectando fundamentalmente a costa setentrional da península ibérica, predominando então, em todo o país, um tempo quente e seco, de típicas características mediterrâneas, muito propício ao desenvolvimento de grandes incêndios florestais.

Em contrapartida, a zona central do Chile, apresenta relevos com um extenso desenvolvimento longitudinal, caracterizado pela existência de duas cadeias de cordilheiras que se estendem paralelamente ao Pacífico, deixando entre si um vasto vale longitudinal. A cordilheira que se desenvolve junto ao oceano é designada por costa, com os cimos situados pelos 2200 m de altitude, e no interior, a cordilheira dos Andes, com altitudes variáveis que, nesta parte do país, chegam a atingir 5800 metros.

A orientação e altitude destas cadeias montanhosas desempenham um papel importante no bloqueio e contenção dos centros depressoríos que se originam no Pacífico meridional. As frentes originárias do "mau tempo", que ocorrem durante o outono e inverno, penetram no território através da grande quantidade de bacias hidrográficas que disseccam as cadeias montanhosas, as quais, além disso, decrescem de altitude para o Sul do país. Dada a pouca largura do território (195 Kms, em média), é frequente observar estas frentes de "mau tempo" atravessarem as vertentes da cordilheira andina, indo depois atingir as paisagens argentinas.

Deste modo, a zona mediterrânea típica do Chile caracteriza-se por chuvas muito concentradas no Outono e Inverno e, depois, por um longo período seco de Verão, situação aliás semelhante à verificada em Portugal. As temperaturas médias variam entre 2° e 27° C, sendo inferiores às portuguesas, devido sobretudo à influência da altitude. A Sul da latitude de 37° Sul, as chuvas estendem-se até à Primavera e, por vezes, ocorrem mesmo durante o Verão, o que não impede que em plena zona húmida (40° a 42° S) se registem vários dias consecutivos com temperaturas moderadamente altas nesta mesma estação do ano.

1.2. Os espaços florestais portugueses

Actualmente em Portugal, ao contrário do que ainda sucede com frequência no Chile, quase já não existem formações vegetais espontâneas em estado puro, posto que sobrepastoreio e repovoamentos florestais foram alterando os ecossistemas naturais, diminuindo inclusivamente os endemismos dos maticios montanhosos, pelo que os bosques naturais são muito escassos e de reduzidas dimensões.

O bosque português, desde há muito intervencionado pelo homem (Fot. 1), foi-se transformando gradualmente nuquilo que se passou a designar por floresta autóctone, ou seja, edaño-climaticamente adaptada às características das diferentes regiões do território onde se desenvolve, pois conserva algumas espécies da floresta inicial, mas perdeu as características de bosque.
Esta floresta foi cartografada pela primeira vez, com caráter sistematico, por Bernardino Barros Gomes (1878), nas suas “cartas elementares de Portugal”, sendo a terceira precisamente a “carta dos arvoredos”, que também designou por “carta xilográfica”.

Este mapa terá inspirado, certamente, Hermann Lautensach (1932) na definição das “províncias climáticas de Portugal” (1998, pp. 363-366) e, alguns anos mais tarde, A. Amorim Girão na proposição do “esboço fito-climático” (1940, mapa no 11) que, em edição posterior, designou por “zonas fito-climáticas de Portugal” (1960, pp. 204-206).

Esta enorme diferenciação num espaço territorial exíguo, fica a dever-se à particularidade de cada região combinar de modo diferente, os efeitos conjugados da latitude e da continentalidade, ou, dito de outro modo, do afastamento do oceano com a influência do relevo, tanto no que respeita à altitude como à sua disposição em relação ao oceano.

Em relação às classificações anteriores, as zonas fito-climáticas de A. Amorim Girão apresentam, quanto a nós, a vantagem de, a cada uma das zonas por ele definidas (Atlântica, Mediterrânea, Subatlântica, Submediterrânea, Ibero-Mediterrânea, Mediterrâneo-Atlântica, Atlântico-Mediterrânea e Ora-Atlântica), associarem não só as características climáticas que lhes são próprias, mas também as espécies florestais dominantes em cada uma delas.

Além das espécies autóctones, mencionadas tanto no esboço como nas zonas fito-climáticas antes referidas, a floresta portuguesa conta com duas outras importantes espécies, exóticas, introduzidas por razões diferentes, mas que tiveram grande expansão, ao ponto de serem das que ocupam maior área florestal na actualidade.

Deste modo, a evolução dos bosques espontâneos, levou a que se conservem muitas das espécies autóctones que, em certas regiões do norte e centro do país, ainda continuam a ser dominantes (Lourenço et al., 1994), destacando-se as de folha caduca, constituídas por carvalhos (Quercus robur, Quercus pyrenaica ou toza, Quercus faginea ou lusitanica), que ocupam cerca de 3,9% da área florestal portuguesa (Fot. 2) e por castanheiros (Castanea sativa), com 1,2% (Fot. 3), enquanto no Sul dominam as espécies de folha persistente, designadamente o sobreiro (Quercus suber), com 21,3%, e a azinheira (Quercus rotundifolia ou ilex), com 13,8% da superfície florestal.

![Fot. 2 - Aspecto de carvalhos em associação com pinheiros bravos](image)

![Fot. 3 - Aspecto de castanheiros, ainda jovens, em terra cultivada](image)

Progressivamente, muitos dos espaços florestais ocupados por estas espécies foram sendo preenchidos com pinheiro bravo ou marítimo (Pinus pinaster) (Fot. 4) que, pela sua resistência e pouca exigência no que respeita a solos, se transformou na espécie dominante, situação que ainda hoje ocupa, com 29,1% da área florestal, apesar de ter sido fortemente afectada pelos incêndios florestais, sobretudo a partir de meados da década de 70. A sul do rio Tejo, onde a ecuva não favorece o desenvolvimento do pinheiro bravo em boas condições, predomina o pinheiro manso (Pinus pinea), embora este também se encontre com alguma frequência a Norte, quer em...
povoamentos puros, quer em dominância nos povoamen-
tos mistos, nos quais pode alcançar elevada densidade. No
total do território ocupa cerca de 2,1% da área arborizada
portuguesa.

Fot. 4 - Pormenor de povoamento florestal de pinheiros bravos

O eucalipto (Eucalyptus globulus), a espécie de maior
expansão nos últimos anos, preenche actualmente vastos
espaços da área florestal, 20,1%, ameaçando tornar-se a
espécie dominante, apesar das medidas restritivas que lhe
são impostas.

Por último, será de referir uma outra espécie, exótica
infestante, a mimosa (Acacia dealbata), porque tem prolifereado muito nos últimos anos, sobretudo na áreas que
foram queimadas, ocupando nelas extensas vertentes que,
antes dos incêndios, estavam povoadas com outras
espécies.

No sub-bosque dos espaços florestais portugueses pre-
domina uma formação vegetal genericamente desigada
por “mato”, cuja constituição varia também em função
das características edafo-climáticas da região. No Norte e
Centro de Portugal, é essencialmente constituída por
espécies pertencentes a duas famílias, a das ericáceas,
representadas por diversas urzes (Eríca spp., Calluna Vul-
garius) e madronheiros (Arbutus unedo), e a das legumi-
nosas, representadas por carquejas (Chamaespartium tri-
 dentatum), tojós (Ulex spp.) e giéstas (Cytisus spp.) que,
por vezes, se apresentam estreitas, sendo nestes casos
denominadas, respectivamente, por “urzais ou urgeais”,
“madronhais”, “carquejais”, “tojais” e “giéstais”.

Nas regiões mais meridionais e, também, nas áreas
calcárias litorais e nas do interior do Centro Sul, o “mato”
apresenta características diferentes, pois predomina em
comunidades baixas, de folha perene, que resultaram de
uma constante interrupção no desenvolvimento natural da
flora mediterrânea, através de três grandes responsáveis:
“o machado, o fogo e os dentes”, isto é, o abate, os incêndios
e a pastorícia.

Estas comunidades evoluíram para duas formações arbustivas mediterrâneas que, apesar de possuírem muitas
espécies comuns, apresentam algumas características
diferentes: o maquis, entendido como um manto vegetal
de dois ou mais metros de altura, denso e de elevada
riqueza florística (Quercus spp., Laurus nobilis, Arbutus
unedo), e a garrigue, considerada como uma formação
arbustiva baixa, de densidade variável, desprovida de
árvores e rica em plantas aromáticas, normalmente com-
postas por faúcastes (Quercus spp.), cistáceas (Cytisus spp.
 e Halimium spp.) e labiadas (Lavandula spp.).

Em função das condições locais, a garrigue pode
adquirir diversas formas que, consoante a espécie domi-
nante, se designam por: “carrascais”, quando se destaca o
carrasco (Quercus coccaifera), “estevais”, quando se evi-
dencia a esteva (Cistus ladanifer), “rosminhalhais”, quando
é muito frequente o rosmâninho (Lavandula pedunculata),
“tomilhais”, quando predomina o tomilho (Thymus spp.)
 e “sargaçais”, onde abundam sargaços
(Halimium alyssoides) e que são formações pioneiras em
solos muito degradados.

Para completar a riqueza florística da Portugal devem
mencionar-se ainda, como representativas de outros ecosi-
sistemas com algum significado, as associações de alti-
tude, representadas, sobretudo na serra da Estrela, por
“piornais”, formados à base do piornho-dos-tintureiros
(Genista florida), “zimbrais”, constituídos por zimbro
(Juniperus communis), “cerrunhelais”, à base de Galio-Nar-
detum, quando secos, e onde dominam os musgos do
género Sphagnum, quando húmidos, e, ainda, algumas
pequenas comunidades de ruípícolas que se desenvolvem
nos interstícios da rocha.

Por último, porque menos sujeitas a incêndios flores-
tais, referem-se as ruípícolas que margam os rios, onde
dominam amieiros (Alnus glutinosus) e salgueiros (Salix,
spp.), e aquelas comunidades que crescem nas dunas lito-
ras, tanto de herbáceas, designadamente o sapinho-da-
praia (Honkenya peploides), outra espécie pioneira, o
feno-das-areias (Elymus farcicus) e o estorno (Anmophila
arenaria), como arbustivas, de que algumas das mais
frequentes são a camariminha (Corema album), o tojo-
manso (Staurocантthus genistoides), o sangoño-mouro
(Cistus salviifolius) e a sabina-das-praias (Juniperus phoe-
nicea).

1.3. Os bosques temperados chilenos

Desde há cerca de 3000 anos que os bosques tempera-
dos cobrem o extremo sul da América do Sul. Durante
todo este período os ecossistemas foram-se organizando e estruturando, adaptando-se aos efeitos de alguns pequenos avanços e recuos de glaciares, ao vulcanismo e à tectônica de alta frequência que caracterizam a dinâmica geomorfológica destas paragens. Em perfeita harmonia com este ambiente conviveram, também durante esse tempo, os povos indígenas desta parte do mundo.

Os bosques chilenos aqui existentes possuem um grande valor desde vários pontos de vista. Em primeiro lugar, no contexto mundial, este tipo de condição, com uma alta influência marítima, são muito escassas e, dentro das existentes, as do Chile correspondem, em termos de superfície, a uma das mais importantes, juntamente com as do Canadá e dos Estados Unidos.

Além disso, do ponto de vista geológico e evolutivo, possuem uma ligação particularmente importante com os bosques da Austrália e da Nova Zelândia e, pela sua condição de tipo insular, são abundantes em endemismos e em particularidades adaptativas das suas espécies. A estes enormes valores científico-culturais acresce o valor econômico das espécies que compõem o bosque chileno, muitas delas com madeiras muito nobres e de rápido crescimento.

Devido ao facto de se encontrarem fora das regiões tropicais e de estarem sujeitos a baixas temperaturas durante o inverno, muitas vezes limitadoras do crescimento das árvores, os bosques naturais do Chile constituem-se como bosques temperados, estendendo-se desde os 35º Sul, até à Terra do Fogo, situada pelos 55º Sul.

Normalmente identificam-se dois grandes ecossistemas florestais nestes bosques temperados sul-americanos. Ambos possuem características especiais e uma certa condição de únicos no conjunto dos bosques do mundo.

Sensivelmente entre os paralelos 30º e 40º Sul encontram-se os chamados bosques esclerófilos, devido a que, nestas latitudes, o factor limitativo do crescimento arbóreo geralmente não é a temperatura, mas sim a longa secura estival.

Com efeito, a região de clima mediterrâneo do Chile, uma das cinco que existem no mundo, corresponde justamente à zona de transição entre a cálida seca do deserto e a chuva abundante e persistente do sul (PAPIÓ e TRAUBAUS, 1998). A secura penetra para sul, como uma cunha profunda, atenuando-se gradualmente até desaparecer.

Quase à mesma latitude em que Portugal se encontra no hemisfério Norte, no Chile localizam-se os bosques temperados húmidos. Considerando a distribuição latitudinal das chuvas, as formações vegetais nas duas zonas temperadas do Chile são bastante contrastadas. Na zona tipicamente mediterrânea predomina o bosque esclerófilo e a formação de espinhosas (Acacia caven) conhecida por “Espinal”.

No que diz respeito à zona húmida predominam os bosques de Nothofagus e o bosque higrófilo lauriforme, cuja máxima expressão de densidade e riqueza florística é dada pela denominada “Selva Valdiviana” na qual se destacam as formações puras de coníferas com Fitzroya cupressoides.

Assim, nas planuras um tanto antropizadas e no sopé das montanhas costeiras domina o “espinal” da Acacia caven. Por sua vez, uma variadíssima flora arbórea e arbustiva, com numerosas adaptações a longos períodos sem água e a fortes contrastes de temperatura, constitui o bosque tipicamente mediterrâneo, onde dominam as árvores esclerófilas, tais como: Quillaja saponaria, Lithrea caustica, Pemium boldus, Cryptocarya alba, Beilschmiedia insignis.

Para sul, bem como para os cordões de cordilheiras, as chuvas aumentam, os períodos secos tornam-se mais curtos e as temperaturas mais moderadas. Misturando-se com as espécies de folhas duras e com muitas espécies endémicas da região, aparecem Nothofagus, colonizando cimos, ladeiras e quebradas, adaptando-se e modificando-se, formando raças e espécies, retrocedendo e deixando, nalguns pontos, pequenas relíquias setentrionais (DONOSO, 1998).

Deste modo, nas cordilheiras mediterrâneas estabelecem-se câlidos bosques de faísas (Nothofagus glaucus, N. obliqua e N. procera), de “coigües” (Nothofagus dombeysi), acompanhados de “canelos” (Drimys winteri), “lingues” (Persea lingua), “olivillos” (Aextoxicon punctatum) e de ciprestes cordilheiranos (Austrocedrus chilensis), distribuídos em manchas dispersas até à última linha arbórea dos címos. Este mesmo tipo de ciprestes também aparecem mais a sul, nas vertentes orientais dos Andes, onde formam bosques formosos, para depois entrarem em contacto, a Este, com a ceste argentina.

A sul dos 38º S a chuva torna-se dona do território e passa-se ao domínio dos bosques temperados pluviais, onde predominam faísas austrais (Nothofagus spp.). São as grandes árvores que, de valor longitudinal e das lobas da pré-cordilheira, se desenvolvem até aos arquipélagos e fiordes austrais. Nesta vasta área também se desenvolve um bosque sempre verde, de laurisilva, composto, entre outras, por Laurelia philippiana, Eucryphia cordifolia, Persea lingua, Aextoxicon punctatum, Geaquina avellana, acompanhado por um rico e diversificado cortejo florístico de que se destacam grandes fétos e uma trepadeira tipo bambú (Chusquea valdiviensis), que é muito abundante.

Na base das montanhas começa a predominar um grande Nothofagus sempervirens (Nothofagus dombeysi), ainda em associação com o “rauli” (Nothofagus punicea), para depois, nas altitudes intermédias, aparecer em bos-
ques puros e, finalmente, em associação com o Nothofagus pumilio e Nothofagus antarctica, pouco antes do limite altitudinal arbóreo.

Nos acentuados declives das vertentes que se desenvolvem na cordilheira dos Andes os “coiogues” e “raulies” vão povoando as áreas desnudadas criadas pelos movimentos tectônicos e vulcânicos da cordilheira. As planuras e as áreas de pradaria são invadidas por um arbusto europeu (Ulex europaeus), bem adaptado às condições edafoclimáticas do país, que constitui um matagal secundário nos soles vermelhos, argilosos, e que se desenvolve com vigor a sul dos 40° S, após ser queimado pelos agricultores, constituindo verdadeiros “ijoais”.

Nas alturas do centro sul do país, tanto da cordilheira andina como das montanhas costeiras, particularmente na denominada cordilheira de Nahuelbuta, no meio de lagos e vulcões ou nos cumes rochosos, como espectaculares relíquias de selvas mais extensas no passado, restam os bosques de Araucaria araucana (Fot. 5), o tesouro dos indígenas mapuches, uma conífera notavelmente adaptada para suportar o enorme calor das lavas ardentes e o frio intenso das neves eternas.

Para sul dos 40° S, a chuva torna-se constante e inicia-se o domínio absoluto dos bosques sempre verdes chuvosos, onde, com frequência, se associam mais de vinte espécies arbóreas, em bosques densos e complexos. Os Nothofagus de folhas caducas cedem lugar às espécies perenifólias e o bosque, muito variado, passa a ser constituído por Eucryphia cordifolia, Weinmannia trichosperma, Drimys winteri, Laurelia philippiana, Myrciaria sp., Tepualia stipularis, Persia lingue, Nothofagus procrea e muitas outras espécies. Fitos e musgos cobrem um solo espesso e húmido. Trepadeiras e epífitas dependem-se nos ramos e troncos. Bambuáceas e arbustos competem com as árvores para ocupar claras de luz que, ocasionalmente, se produzem no bosque. Num processo dinâmico permanente, o bosque está constantemente a mudar em cada lugar, mas, ao mesmo tempo, mantém-se sempre igual.

Neste bosque multiespecífico ergue-se uma grande conífera, o larício (Fitzroya cupressoides Mol. John.), uma das espécies mais notáveis do bosque húmido do sul do Chile, não só pelas suas características naturais e pelos bosques que forma, mas também pela grande importância históricocultural no país.

Com efeito, a maior parte das casas, igrejas e outras construções das cidades da região de “Los Lagos” são feitas, desde o século XVII até aos nossos dias, com madeira de larício, o que lhes dá um caráter arquitectónico único e ajuda a explicar não só essa importante herança histórico-cultural, mas também a destruição desses bosques. Apesar dessa importância no passado, na actualidade, grande parte dos chilenos só conhece o larício como produto transformado em “rejeuela”, as peque-enas telhas de madeira com que cobrem e revestem o exte-rior das habitações, em pequenos barcos, etc., uma vez que as poucas árvores que restam se situam em locais praticamente inacessíveis.

Fot. 5 - Aspecto geral de um bosque de Araucaria araucana na Reserva Nacional Relanco

Pertence à família das cupressáceas e alcança grande porte, podendo atingir 5 metros de diâmetro e 50 metros de altura. Possui grande longevidade, podendo viver mais
de 3600 anos (ROIG, 1995). É uma espécie endémica do Chile e da Argentina, crescendo em povosamentos descontínuos entre as latitudes de 39° 50’ e 42° S. Na cordilheira dos Andes desenvolve-se, de forma descontínua, entre os 41° e 43° S, não só no Chile mas também nas áreas adjacentes da Argentina.

O larício ocupa normalmente solos pobres e delgados. Deste modo, evita a competência com espécies menos adaptadas a estas condições. No entanto, às vezes, aparece misturado com outras espécies, que variam em função da altitude. Desenvolve-se em condições climáticas caracterizadas por uma elevada precipitação anual, variável entre 3000 e 4000 mm, com neve abundante nos mesmos de Maio a Setembro, sobretudo nos bosques situados acima de 500 metros de altitude. Em áreas de drenagem deficiente e nas margens das turfeiras cresce juntamente com outra conífera austro, o cipreste das Guaiáicas (Pilgerodendron uviferon).

O crescimento do larício é lento. Estudos efectuados sobre um número abundante de árvores indicaram um crescimento médio do diâmetro variável entre 0,6 e 1,6 mm por ano, dependendo do local onde se encontra (ROIG, 1995). Com este tipo de crescimento, para que uma árvore alcance 60 cm de diâmetro, os bosques naturais requerem uma média de: 1000 anos, quando situados na cordilheira dos Andes, 730 anos, se estiverem localizados na cordilheira da Costa e, apenas, 375 anos, quando se desenvolvem na depressão central (LARA, 1998).

Fruto do abate indiscriminado de que foram alvo e do tempo que levam para se desenvolverem, a preocupação com a conservação do larício levou ao estabelecimento de numerosas medidas de protecção legal, pelo que está protegido, desde 1976, por uma lei que proíbe a exploração de árvores vivas. Se bem que esta protecção legal tenha sido importante para diminuir a pressão e a taxa de destruição da espécie, contudo, a exploração e a queima dos espaços florestais ocupados com larício ainda continua, sobretudo na cordilheira da costa.

2. CONSEQUÊNCIAS DOS INCÊNDIOS FLORESTAIS

Com maior ou menor destaque, todos os anos a comunicação social nos vai dando conta dos efeitos dos incêndios florestais, pelo que as suas consequências são mais ou menos conhecidas.

Contudo e apesar de muitas delas até já terem sido genericamente apresentadas em trabalhos anteriores (LOURENÇO, 1986 e 1992), entendemos dar particular atenção às que interferem directamente com a conservação da natureza, pelo que passarão a ser analisadas nos dois países.

2.1. Efeitos ecológicos dos incêndios na floresta portuguesa

Em Portugal, os efeitos ecológicos que os incêndios florestais normalmente provocam são bem conhecidos (LOURENÇO, 1989), em especial aqueles que se prendem com a erosão dos solos (LOURENÇO, 1990, 1991 e LOURENÇO e DIREITO, 1994), sobretudo quando provocam situações mais catastróficas (LOURENÇO, 1988), pelo que não vamos aqui desenvolvê-los de novo.

No entanto, não podemos deixar de referir que os incêndios florestais continuam a ser “o agente que mais rápida e eficazmente contribui para a alteração radical da paisagem e dos ambientes ecológicos” (PENA e CABRAL, 1992, p. 58), pelo que é fundamental conhecer as consequências para poder prevenir as causas.

A regeneração dos ecossistemas afectados por incêndios florestais depende de vários factores, nomeadamente do tipo de solo, clima, biótopos existentes à altura do incêndio e na área envolvente, bem como do comportamento do fogo, cujas características vão condicionar não só o modo como se vai processar a regeneração mas também como ela irá evoluir ao longo do tempo.

Como, em Portugal, os incêndios florestais têm registado um número crescente de ocorrências (Fig. 2) e consumido áreas de povosamentos florestais, sobretudo pinhal, e mato (Fig. 3), é frequente verificar, algum tempo depois do fogo, variável de acordo com e em função do mês da sua ocorrência, que nas áreas queimadas começam por aparecer gramíneas e fetos (Pteridium aquilinum), sucedendo-se-lhes o início da rebentação de alguns arbustos. No ano seguinte, o coberto vegetal continua dominado pelos fetos, mas já é possível observar o desenvolvimento de um povosamento subarbustivo, pouco denso, constituído pelas espécies existentes antes do fogo: urzes, carqueja, tojo, giesta, etc.. Nos povosamentos queimados de folhosas (carvalhos, sobreiros, castanheiros, eucaliptos,...) é vulgar ver as tochas rebentadas, com as árvores a retomarem lentamente o seu aspecto verde.

Em condições normais de crescimento, três a quatro anos depois do fogo, o estrato arbustivo encontra-se plenamente constituído. Se a área queimada era de pinhal adulto, existiam pinheiros com pinhas que, por sua vez, possuíam pinhões (penisco), os quais, depois do fogo, passaram a sementes capazes de germinar e originar novos pinheiros que, embora pequenos, já se podem começar a observar com certa facilidade. Nas áreas ocupadas por folhosas, só aquém e além se observam vestígios do fogo, porque, entretanto, a vegetação encontra-se em perfeita recuperação.

Passados mais alguns anos, entre oito e dez, o estrato arbustivo está completamente recuperado, os pinheiros
Fig. 2 - Número de ocorrências de fogos florestais, em Portugal Continental, entre 1974 e 2000
Fonte: Direção Geral das Florestas

Fig. 3 - Área ardida, em Portugal Continental, entre 1974 e 2000
Fonte: Direção Geral das Florestas
desenvolveram-se e carecem de intervenção. Estes jovens povoamentos necessitam de ser conduzidos — limpos, desbastados, desramados... — para que possam continuar a crescer e a desenvolver-se harmoniosamente. Como habitualmente isso não sucede, passados alguns anos voltam a ser queimados e, porque eram jovens, ainda não têm pinhas, pelo que não se voltam a regenerar e o que antes era pinhal fica, a partir de agora, transformado em mato, se entretanto não houver sementeira ou replantação.

Mas, como o mato não é rentável, os proprietários preferem passar a plantar eucaliptos em vez de pinheiros, não só porque aqueles crescem mais rapidamente, mas também porque rebentam por toitá, ao contrário dos pinheiros, o que, em caso de ocorrer novo incêndio se revela muito prático, porque não se torna necessário voltar a plantar, ao contrário do que sucederia se fossem jovens pinheiros.

Assim, a destruição dos pinhais pelos incêndios leva também à alteração dum ecossistema que, mesmo tendo sido introduzido, era menos nocivo para a biodiversidade (animal e vegetal) do que o recém-expandido eucaliptal.

2.2. Impacte ambiental do fogo nos bosques temperados do Chile

No Chile, todos os anos deflagram centenas de fogo nas regiões ocupadas pelos bosques. Contudo, os incêndios florestais recentes, de carácter mais ou menos sistémático, apenas tiveram o seu início há cerca de cinquenta anos, tendo começado por atacar sobretudo as plantações florestais e, só depois, passaram para os espaços ocupados pela vegetação autóctone (QUINTANILLA, 1998 e 1999) que, entretanto, sofreram um aumento de incêndios que é insustentável (Fig. 4).

O território chileno está dividido, administrativamente, em 12 regiões identificadas por números romanos. de Norte para Sul. A área que compreende os bosques do Chile estende-se da V a XII Região. Até à década de 90, o número mais elevado de incêndios e a maior quantidade de hectares queimados ocorriam nas chamadas V e VIII regiões, por serem aquelas que possuíam e continuam a ter o maior número de repovoamentos florestais de Pinus insigne e Eucalyptus globulus (Fig. 5).

As principais causas destes incêndios ficaram a dever-se à crescente procura tanto de espaços para instalação de novos povoamentos exóticos como à de madeira para comercializar. Uma vez que a queima das árvores serve estes dois objectivos bem específicos, ou seja, a criação de novas áreas para plantação e a comercialização da madeira queimada, são eles que determinam as principais causas de desflagração, embora a produção de lenha e carvão também seja responsável pela existência de alguns fogo de verão, normalmente devidos a negligência.
Outra prática muito generalizada é a das queimadas, que consistem tanto na queima dos restolhos depois das colheitas, como na da própria vegetação, para posterior preparação desses terrenos para plantações florestais. Embora estas práticas se revelem muito prejudiciais não só para a vegetação, mas também para o solo, agricultores e silvicultores pensam que com este método poupam dinheiro e facilitam os trabalhos das próximas sementei- ras, pelo que continuam a praticá-lo. Apesar das queimadas estarem regulamentadas em diplomas legais, continuam a ser muito usadas, principalmente em toda a zona temperada, estimando-se que, anualmente, são destruídos no Chile, por meio do fogo, mais de 1,2 milhões de tone- ladas de resíduos vegetais e que a correspondente área afectada é superior a 500 mil hectares/ano.

Independentemente dos efeitos sobre o solo, a água, a atmosfera e a biomassa vegetal, o uso do fogo é, em si mesmo, uma ferramenta perigosa, pois tem-se vindo a revelar fatal para vários bilhões de hectares de bosque que, ao longo de anos sucessivos, vão sendo incinerados por queimadas que se deixam descontrolar.

O uso indiscriminado do fogo, como ferramenta agrosilvícica, já não tem justificação técnica nem científica. Só os montantes gastos anualmente em prevenção e combate recomendam a adoção de outras medidas. De facto, a CONAF – Corporação Nacional Florestal, uma entidade estatal, gasta anualmente, para esse efeito, 4 milhões de dólares e as empresas florestais chilenas gastam três vezes mais, ou seja, 12 milhões de dólares, valores que devem merecer profunda reflexão.

Como consequência dos incêndios florestais, desencadearam-se, um pouco por toda esta zona, processos de erosão hídrica que, irremediavelmente, todos os anos levam à perda de milhões de toneladas de solo vegetal, um bem extremamente valioso que é arrastado pela água das chuvas até aos rios e que estes transportam para o mar, onde se perde para sempre.

Além disso, os milhares e milhares de toneladas de gases e partículas que se libertam durante as queimadas contribuem decisivamente para a contaminação da atmosfera e para incrementar o efeito de estufa.

Nas áreas montanhosas, especialmente nas partes mais altas, o arrastamento do solo inicia-se, quase sempre, com a fusão da neve. Muitas vezes, quando é brusca, faz com que os processos de erosão se manifestem mais violentamente, através de grandes movimentos em massa, sobretudo deslizamentos, que, por serem de grande dimensão e se repetirem em vastas áreas, poluem as águas, barram pequenos rios e chegam mesmo a afectar o plancton e a fauna aquática.

No Chile, o fenómeno da erosão está muito activo e é muito intenso devido também acentuados desníveis e aos fortes declives existentes. Mesmos nas áreas mais aplanadas, é frequente encontrar planícies e vales com declives de 2° a 4°. No entanto, a grande maioria dos bosques que ainda cobrem o território encontra-se em vertentes com declives superiores a 7°. Ora, se forem queimados, a erosão do solo fica extremamente facilitada.

O solo que restar, depois de perder a sua protecção arbórea, de ser queimado e mobilizado superficialmente por processos mecânicos, vai-se desintegrando, perdendo os seus nutrientes e morrendo. A erosão do solo implica também a perda das sementes que retinha, o que origina um atraso significativo na regeneração natural das espé-
cies que sustentava. Contudo, no Chile mediterrâneo existem algumas espécies pioneiras como o “quilo” (Muehlenbeckia hastulata) e o “romerillo” (Baccharis linearis) que tendem a colonizar os lugares erosionados e os espaços abertos criados pelo fogo, sobretudo porque ambas as espécies produzem, depois do incêndio, um grande número de plantulas.

Por outro lado, estudos realizados na vegetação mediterrânea chilena (AVILA et al., 1988; SAIZ e VILLASEÑOR, 1990) mostraram que, durante a primeira estação de crescimento, as plantas recuperaram entre 20 e 80% do volume que possuíam antes de se queimarem e que a recuperação continuou no segundo ano, ainda que com menos vigor.

De entre as espécies dominantes no Chile central é o espinheiro (Acacia caven) aquele que inicia o rebentamento em menor tempo depois do fogo. Nalguns indivíduos observou-se o início do rebentamento uma semana depois do fogo. Outras espécies esclerôfitas, como a Quillaja saponaria ou a Cryptocarya alba, carecem de muito mais tempo para iniciar a rebentação.

Outra resposta observada em arbustos recuperados depois do fogo é a grande quantidade de flores que apresentam na primeira estação de crescimento depois de queimados, o que em parte se poderá atribuir ao aumento da intensidade luminosa a que ficam expostos, como se observou nomeadamente no sub-bosque do bosque temperado chileno.

Com efeito, após o incêndio, no Chile temperado produz-se, graças à morfologia das plantas, uma rápida regeneração da vegetação, através das gemas e das sementes. Deste modo, quando as plantas que constituem o estrato arbustivo desenvolvem rebentos a partir de gomos subterrâneos geram-se extensos campos de renova.

Por outro lado, depois dos incêndios, também ocorre a rápida regeneração de alguns arbustos e ervas. Por exemplo, nos bosques de larício (Fitzroya cupressoides) ocorre uma colonização rápida do solo pelo arbusto Baccharis magellanica. Pelo contrário, nos bosques queimados de Nothofagus, é uma árvore higrófila (Drimys wintleri) que tem a regeneração mais rápida, juntamente com uma trepadeira, o “copilha” (Lapageria rosea), cujas flores, vermelhas ou brancas, constituem a flor nacional do Chile.

Contudo, os efeitos mais graves dos incêndios florestais na zona temperada do Chile devem-se, quiaçá, ao facto de afectarem os ecossistemas onde existe a maior riqueza do país, em termos de biodiversidade.

Sem dúvida notável é, por exemplo, a presença de povoamentos de larício (Fitzroya cupressoides) cujos troncos, uma vez queimados, são totalmente aproveitados pelos madeireiros. No próprio local do abate, são serrados em grossos e pesados barrotes. Depois de transportados, primeiro por bois até locais mais acessíveis (Fot. 6), de onde seguem em camiões para as serrações, são nelas transformados em madeira.

![Fot. 6 - Transporte de barrotes de larício, com juntas de bois, por caminhos de grande declive](image)

A parte exterior do tronco, aquela que ficou calcinada junto à casca, é aproveitada para produzir “tejuelas”, dado que esta madeira, além de ser impermeável, não apodrece, mesmo quando sujeita à intempérie (Fot. 7 a 10).

![Fot. 7 - Aspecto do tamanho dos tocós queimados de larício](image)

Só assim se compreende que, nas regiões onde os larícios já desapareceram há muitos anos mas onde ainda se conservam os cepos calcinados, se continue a proceder, na actualidade, à exploração desses tocós para “tejuela” e lenha (Fot. 11 a 13).
Fot. 8 - Habitação coberta e revestida a “tejuela”

Fot. 11 - Tocos queimados em plena exploração

Fot. 9 - Detalhe de toco queimado de larício, para observação da madeira sã

Fot. 12 - Vista geral do estaleiro duma exploração de cepos de larício

Fot. 10 - Pormenor da Fot.11, mostrando o revestimento das paredes do barracão, a “tejuela”

Fot. 13 - Transporte de “tejuela” por barco, para posterior comercialização
A lenha continua a ser um grave problema para o bosque chileno, na medida que a sua exploração nos bosques naturais, assume proporções de verdadeiro desastre, pois, sendo comum em todo o país, é insustentável, além de ilegal. O problema persiste porque a lenha ainda ocupa o segundo lugar entre as fontes primárias de energia do Chile, representando mais de 25% da energia utilizada no país, não apenas nas áreas rurais, mas até em unidades industriais, serviços públicos, hospitais e hotéis, por ser de fácil obtenção e ser o combustível mais barato.

Com a exploração desenfreada dos bosques naturais, não admira que os larícios situados nas zonas mais acessíveis tenham sido cortados, queimados, destruídos... Os povoamentos que restam destas árvores constituem os chamados “Bosque Catedral do Chile”, qualificação que deriva da qualidade da sua madeira e da sua longevidade, que ultrapassa 3000 anos.

Embora na actualidade apresentem uma distribuição geográfica reduzida, antigamente, a distribuição natural de Fitzroya cupressoides abarcava as duas cordilheiras, entre 39° e 42° S, bem como a parte meridional do vale central. Hoje, fruto do abate sistématico e dos incêndios florestais, prospera somente em escassos povoamentos descontínuos, situados em locais inacessíveis, quer na cordilheira costa- teira, quer em terrenos altos da cordilheira andina. Se nada for feito para o evitar, dentro de muito poucos anos, será esse o futuro reservado aos bosques naturais do mundo.

CONCLUSÃO

No sul do Chile, nos sectores com 2000 a 6000 mm de precipitação anual e com chuvas distribuídas ao longo de todo o ano, solos, clima, morfologia das vertentes, geologia, altitude e outros factores ambientais conjugaram-se favoravelmente para darem origem a diversos ecossistemas, organizados em diferentes tipos de bosques, geralmente muito complexos e produtivos.

Como sucedeu em Portugal e, infelizmente, ainda continua a acontecer também no Chile, as pressões sobre os ecossistemas naturais têm sido muito grandes e, com os meios cada vez mais sofisticados de que o ser humano dispõe, essas pressões são e continuarão a ser cada vez maiores, sobretudo enquanto os interesses económicos se sobrepuserem a todos os outros.

Apesar de no Chile, por enquanto, ainda ser possível percorrer grandes extensões de bosques naturais, estes estão cada vez mais ameaçados, uma vez que a parte setentrional da zona temperada chilena já muito se assemelha à floresta portuguesa, pois está a ser alvo de uma elevada concentração de grandes plantações florestais de duas espécies exóticas, uma resinosa (Pinus insignis var. imbricata) e uma folhosa de rápido crescimento (Eucalyptus globulus), que, nesta região, já são as espécies dominantes tanto nas cadeias montanhosas costeiras, como na depressão central. Aliás, este processo evolutivo...
se não for travado, conduzirá a uma situação semelhante à verificada em Portugal, onde os bosques de *Quercus* foram sendo progressivamente delapidados e, depois, substituídos por pinheiros bravos que, por sua vez, sobretudo à medida que vão sendo queimados, são trocados por eucaliptos.

Apesar do processo ser semelhante, apenas com a particularidade de, no Chile, a resinoso ser o *Pinus insignis* e não o *Pinus pinaster*, as transformações nesta área do Chile fazem-se com uma velocidade muito maior. Se antes se usava o fogo para abrir ou limpar clareiras para a agricultura ou para pastagens (Fot. 14 a 16), por se considerarem os bosques não só como um recurso renovável e infinito, mas também como um estorvo ao progresso humano, hoje, continua a usar-se o fogo com outros objectivos, nomeadamente para promover a urbanização de áreas florestais!

Apesar de conhecemos as consequências destas inconsciência colectiva, continuamos a queimar o que resta dos bosques naturais, muitas vezes para os transformar em florestas artificiais, que ardemos ainda com bastante mais facilidade, sem olhar ao apelo acutilante que os troncos calcinados, ainda erguidos nos terrenos devastados pelo fogo (Fot. 17), nos parecem lançar, quais sentinelas vigilantes, na sua qualidade de mudas testemunhas da destruição provocada pela aplicação de péssimas técnicas de exploração, usadas ao longo da história. Quando percorremos estas vastas regiões é impossível ficar insensível ao apelo destes milhares de troncos calcinados que, teimosamente, continuam de pé.

Fot. 15 e 16 - Um número impressionante de troncos calcinados, com várias dezenas de anos, recordam-nos uma existência anterior, diferente, com vida. Ao manter-se de pé, como que nos pretendem responsabilizar por essa vida que lhes retirámos.
Se, por razões de sobrevivência, alguns daqueles métodos ainda se podem ter admitido no passado, com o conhecimento científico e os meios técnicos e materiais de que a sociedade dispõe na actualidade, hoje não podem ser minimamente toleráveis e, muito menos, admissíveis, pelo que devem ser veementemente condenados.

REFERÊNCIAS BIBLIOGRÁFICAS

AVILA, G.; MONTENEGRO, G. e ALJARO, M. E. (1988) - “Incêndios na vegetação mediterrânea”. In Ecologia do Paisage en Chile Central. Ed. Universidad Católica de Chile, pp. 81-88;

GIRÃO, A. Amorim (1940) – Atlas de Portugal. Instituto de Estudos Geográficos. Faculdade de Letras. Coimbra;

GOMES, B. Barros (1878) – Cartas Elementares de Portugal para uso das escolas. Lallement Frères Typ. Lisboa;

LOURENÇO, L. (1990) - “Impacte ambiental dos incêndios florestais”. Cadernos de Geografia, Coimbra, 9, pp. 143-150;

LOURENÇO, L. (1991) - “Contribuição dos incêndios florestais para o desequilibrio ecológico do concelho de Souto”. Cadernos de Geografia, Coimbra, 10, pp. 551-560;

LOURENÇO, L. e DIREITO, A. Cunha (1994) - “Arborização das vertentes serranas, uma medida de protecção contra as exauridas. Focos florestais um atitude contra as arborizações e um incentivo ao desenvolvimento de exauridas. Os exemplos do alto vale do rio Zêzere, a montante de Montejunto”. Os Recursos Florestais no Desenvolvimento Rural, Actas 2, III Congresso Florestal Nacional, Figueira da Foz, pp. 1-9;

AGRADECIMENTO

Os autores manifestam o seu vivo agradecimento ao Instituto de Cooperação Científica e Tecnológica Internacional de Portugal e à C.O.N.I.C.V.T. do Chile, pelo financiamento que, ao abrigo do Convénio Internacional Portugal/Chile, permitiu a realização dos trabalhos de campo que serviram de suporte à investigação desenvolvida.

Fot. 17 - Bosques autóctones de larício em lenta regeneração depois do fogo

