
Revista Técnica e Formativa da Escola Nacional de Bombeiros ANO 1 · NÚMEROS 3/4 · TRIMESTRAL · JUL/AGO/SET/OUT/NOV/DEZ · Preço 500\$00







A investigação, com o objectivo de estabelecer índices meteorológicos de risco de fogo florestal muito simples, que apenas utilizem elementos meteorológicos de fácil obtenção, quer fornecidos pelo Instituto de Meteorologia, quer obtidos directamente a partir de aparelhos de preço acessível, iniciou-se em 1985. A simplicidade do cálculo destes índices permite determiná-los em qualquer momento e local, sempre que seja necessário caracterizar rapidamente uma situação de risco.

O Sistema de Informação do Risco de Incêndio Florestal (SIRIF) que apresentamos, representa um avanço significativo sobre aquilo que tem vindo a ser feito em termos de índices de risco de fogo.

Com efeito, o desenvolvimento de uma fórmula, melhorada ao longo de vários anos de investigação, que inclui os elementos meteorológicos com mais significado para a deflagração e propagação dos fogos florestais, isto é, temperatura e humidade relativa do ar, rumo e velocidade do vento e, também, a previsão do estado do tempo para o dia seguinte, permitiu que a tendência do índice de risco de fogo florestal para o dia seguinte assumisse o tão desejado carácter de previsão, o que, do ponto de vista de programação dos meios operacionais e, consequentemente, do combate aos fogos florestais se revelou muito importante. Além destes elementos meteorológicos, essenciais em todo o processo, foi introduzido um factor de correcção que, através da análise estatística relativa aos últimos anos, permite reconstituir a bistória dos fogos, num passado recente, e, deste modo, avaliar indirectamente as características físicas e humanas de um dado concelho, permitindo distinguir unidades territoriais com igual risco meteorológico mas com diferente passado pirileológico, ou seja, com desigual risco histórico-geográfico.

# **OBJECTIVOS DO SISTEMA**

O principal objectivo deste sistema consiste no cálculo da Tendência do Índice de Risco de Fogo Florestal para o Dia Seguinte. Para esse efeito, procuram definir-se e caracterizar-se as distintas situações de risco de fogo, tendo em conta que este evolui ao longo das diferentes épocas do ano e de região para região. Por esse motivo, consideram-se dois aspectos fundamentais e complementares, um dos quais tem a ver com a distribuição espacial do risco de fogo e o outro com a sua distribuição no tempo.

Deste modo, depois de caracterizarmos o risco médio de uma dada região, através da sua representação cartográfica, podemos ver como evolui no tempo, em função das condições meteorológicas reais e das previstas para o dia seguinte.

A elaboração e divulgação do mapa contendo a Tendência do Índice de Risco de Fogo Florestal para o dia seguinte, é calculado através do método proposto por Luciano Lourenço (1995).

Este mapa deve constituir um auxiliar indispensável, a ter em conta não só na definição das estratégias de prevenção directa, mas também na adequação dos meios de combate aos fogos florestais, permitindo identificar, em situações de alto risco, as áreas que oferecem maior ou menor probabilidade dos fogos que, entretanto nelas deflagrarem, rapidamente se transformarem em grandes incêndios florestais.

A eficácia do combate ao fogo florestal depende muito dos conhecimentos que cada florestal e bombeiro, em particular, possui sobre a situação de fogo florestal com que se depara, não só para que os meios e as técnicas de combate utilizadas sejam as mais adequadas, mas também para que o próprio possa conhecer e se prevenir, face à provável evolução do fogo, e, deste modo, estar mais seguro em relação a ele.

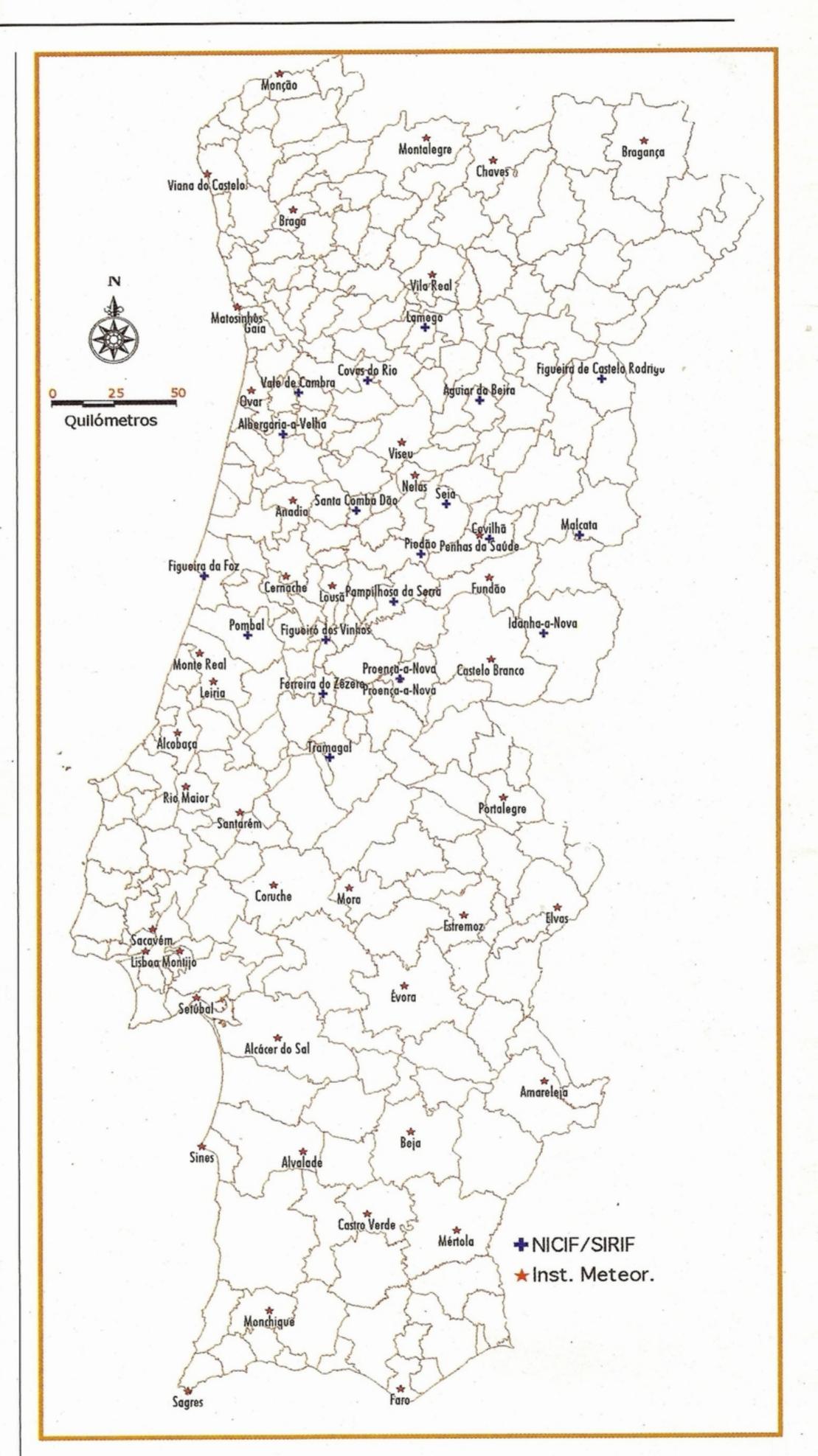



Fig. 1 - Rede de estações meteorológicas usadas no SIRIF

18 ENB

Este sistema permite, pois, uma fácil visualização, por intermédio da representação cartográfica, que, desde logo, facilite a apreensão das situações de maior e menor gravidade representadas através de cinco classes de risco de fogo florestal.

# **METODOLOGIA**

O cálculo da tendência do índice de risco baseia-se essencialmente em informações meteorológicas, pois são elas que condicionam o estado de secura dos combustíveis. Logo, é necessário dispor de uma rede de estações que forneça os elementos meteorológicos. Essa rede inclui 44 estações do Instituto de Meteorologia e 20 estações do NICIF, sediadas em Centros de Meios Aéreos e Postos de Vigia de Fogos Florestais (fig.1).

A primeira acção levada a cabo no início de cada época consiste na divulgação pelas várias entidades de um "mini guia", ebalorado no NICIF, sobre o significado de cada grau de risco de fogo florestal, de modo a que a interpretação do mapa com a tendência do índice de risco de fogo florestal para o dia seguinte tenha uma interpretação equivalente quando lida por indivíduos com diferente formação.

Durante a época estival, procede-se diariamente a recolha e tratamento da informação meteorológica dessa rede de estações, a que se junta a previsão para o dia seguinte, de modo a obter o mapa que se divulga para as entidades.

No que diz respeito ao conjunto de programas que tornam possível a construção dos mapas com a tendência do risco de fogo florestal para o dia seguinte, é composto pelo seguinte software, para ambiente Macintosh:

Claris Works (da Claris Corporation)
- É um programa que permite criar um documento a partir da combinação de vários objectos, importados de outros programas.

*Microsoft Excel* (da Microsoft Corporation) - É uma folha de cál-

culo que permite realizar cálculo financeiro e científico, ou seja, organizar informação numérica.

FileMaker Pro (da Claris Corporation) - É uma base de dados que permite analisar, manejar e organizar uma grande quantidade de informação, podendo esta ser apresentada sob diversas formas (numérica, gráfica, texto).

Atlas Pro 1.09 (da Strategic Mapping Inc.) — É um programa que inclui tudo o que é necessário para produzir mapas de alta qualidade e possibilita a criação de mapas a partir de dados importados de outros programas, tais como, o Microsoft Excel e o FileMaker Pro. FirstClass (da SoftArc Inc.) — É um sistema avançado de conferência, correio electrónico, boletim informativo e sistema de comunicações interactivas, combinando capacidades de comunicação com um ambiente de utilização gráfico.

Cada um deles contribui para a obtenção do mapa de risco. De uma forma sintética, podemos dizer que o *Claris Works* é o programa que serve de ambiente para todos os outros, possibilitando a construção da versão final do mapa.

O *Microsoft Excel* é o programa através do qual se faz o registo de toda a informação recebida diariamente que, após o devido tratamento, é convertida na tendência do índice de risco de incêndio florestal (T.I.R.I.F.), sendo calculada para cada um dos concelhos abrangidos pelo S.I.R.I.F..

No *FileMaker Pro* é armazenada a T.I.R.I.F., obtendo-se um registo actualizado e de fácil acesso. Além disto, os dados armazenados nesta base de dados, servem de valores numéricos para a construção dos mapas que são desenvolvidos no programa *Atlas Pro* 1.09

Por último, utiliza-se o programa FirstClass como meio de divulgação do mapa, isto é, o serviço de correio electrónico via modem possibilita a consulta directa do mapa com a tendência de risco, obtendo-se assim maior precisão e qualidade da informação disponível.

O equipamento de telecomunicações é uma peça fundamental nos processos de aquisição de dados e de divulgação dos mapas com a tendência do risco, sendo constituído por telefones, telecopiadores e *modems* ligados à rede Telecom.

Quanto aos telefones, estes são utilizados, fundamentalmente, na fase de aquisição de dados meteorológicos, pois é através deles que os operadores das estações Weather Monitor II comunicam as leituras diárias, para o Centro de Cálculo da Lousã.

No que diz respeito aos telecopiadores, estes têm aplicação quer na aquisição de dados meteorológicos do Instituto de Meteorologia (informação meteorológica diária e previsões para o dia seguinte), quer na divulgação dos mapas com a tendência do índice de risco de fogo florestal para o dia seguinte.

É de referir, que as imagens recebidas pelas diversas entidades por meio de telecopiador sofrem uma certa degradação, tornando-se cada vez mais difícil retirar informações dos mapas, à medida que estes vão sendo enviados para outras unidades hierarquicamente inferiores, pelo que a sua divulgação passou a efectuar-se também por *modem*, os quais permitem a ligação entre computadores via telefone. Este sistema é utilizado na divulgação dos mapas com a tendência do risco, por correio electrónico, em que as entidades interessadas consultam directamente os mapas, que se encontram num ficheiro próprio do computador, instalado no Centro de Cálculo da Lousã. Este sistema tem a grande vantagem de manter inalterada a informação contida nos mapas, o que se traduz por uma excelente definição de imagem a que os utilizadores têm acesso.

Outra situação em que se recorre aos *modems*, é para comunicar com as estações meteorológicas da rede própria. Com efeito, a ligação entre as estações *Weather Monitor II* e computador, permite a transferência directa dos dados recolhidos pelas estações pirometeorológica para o computador do Centro de Cálculo da Lousã.

No entanto, existem ainda algumas dificuldades a nível local, nomeadamente com a instalação telefónica constituída por cabos antigos, sem tomadas RITA e com linhas a apresentarem muito ruído quando se estabelece as ligações, o que impede a comunicação por *modem*.

Desta forma verifica-se que certas áreas do nosso país estão ainda muito distantes das "Auto-estradas da informação".

# 1. APERFEIÇOAMENTO DA FÓRMULA DE CÁLCULO

O Índice de Risco de Fogo Florestal, surgiu após o estudo detalhado da variação dos valores diários da temperatura e da humidade relativa do ar, durante os meses de Junho a Outubro, dos anos de 1982 a 1989, registados no Instituto Geofísico da Universidade de Coimbra e do seu relacionamento com o número de fogos florestais detectados na área envolvente, abrangida pelo Centro de Prevenção e Detecção de Incêndios Florestais da Lousã.

Porque a investigação desenvolvida sobre este assunto se encontra dispersa em várias publicações, procurámos reuni-la e sintetizá-la por forma a torná-la mais acessível aos eventuais utilizadores, em particular aos Corpos de Bombeiros.

1.1. Índice de deflagração

A investigação que desenvolvemos partiu do pressuposto de que, embora as causas de deflagração dos fogos florestais sejam múltiplas e variadas (L. Lourenço, 1994c), só alguns destes têm condições para se desenvolverem e progredirem, transformando-se rapidamente em grandes fogos florestais.

Sabendo-se que apenas alguns tipos de tempo são mais favoráveis à



ocorrência de incêndios florestais (F. Rebelo, 1980), verificou-se que é a conjugação de condições muito particulares de temperatura e de humidade relativa do ar que possibilita a eclosão de grande número de fogos florestais (L. Lourenço, 1991).

A investigação entretanto desenvolvida permitiu-nos comprovar a existência de uma relação muito estreita entre as variações da temperatura e da humidade relativa do ar, com o número de fogos florestais (L. Lourenço, 1991). Exprimindo esta relação através de uma fórmula matemática obtivemos o índice de deflagração:

$$IRIFLL = \frac{T}{U}$$

IRIFLL- Índice de risco de deflagração de fogo florestal, proposto por L. Lourenço

T - Temperatura do ar, em °C;U - Humidade relativa do ar, em %.

A investigação de situações mais graves, associadas a grandes incêndios

florestais registados nos verões de 1986 (L. Lourenço, 1988) e de 1989 (L. Lourenço et al., 1990), permitiu verificar que foram as situações extremas de temperatura máxima e de humidade relativa miníma que favoreceram o desenvolvimento dos grandes incêndios florestais, situações que também podem ser identificadas, matematicamente, através do cálculo da fórmula do índice de máximo risco de fogo florestal.

$$IRIF_{Máx.LL} = \frac{TMáx}{Umín}$$

IRIFmáxII - Índice de máximo risco de deflagração de fogo florestal diária; TMáx - Temperatura máxima diária do

ar, em <sup>o</sup>C; *U min* - Humidade relativa mínima diária do ar, em %.

1.2. Índice de progressão

Como é sabido, o vento é um elemento imprescíndivel para a rápida progressão do fogo. No entanto a sua quantificação não é tarefa fácil, pelo que, de ínicio, o vento não foi intro-



duzido na fórmula de cálculo do índice de risco (L. Lourenço, 1988 e 1991).

Em Portugal Continental, são os ventos que apresentam um trajecto continental, por conseguinte, transportando ar quente e seco, proveniente do interior da Península Íbérica e, por vezes, do Norte de África, que podem soprar nos quadrantes situados entre os  $0^{\circ}$  (N) e  $180^{\circ}$  (S), e os ventos conhecidos por "nortada", uma brisa importante sobre todo o litoral ocidental, que geralmente sopra com rumos situados entre 350° (NNW) e 360° (N), aqueles que se apresentam particularmente perigosos, favoráveis a uma rápida progressão do fogo. Os provenientes de outros rumos são oceânicos, transportam ar húmido e, por norma, não causam grande problemas, pelo que não se consideram tão favoráveis à propagação do fogo.

Após alguns ensaios, foi possível definir com precisão o comportamento do vento (V), cuja velocidade em Km/h, passou a ser incluída na fórmula do índice de risco de progressão de

fogo florestal, mas apenas quando o seu rumo (**D**) está compreendido entre os valores 350° D 360° v 0° D 180°.

$$IRPIFLL = \frac{T}{U} + \frac{V}{100}$$

IRPIFLL - Índice de risco de progressão de fogo florestal;

**T** - Temperatura do ar, em °C;

U - Humidade relativa do ar, em %;

V - Velocidade do vento em Km/h, quando o seu rumo (D) se situa entre os quadrantes 350 a 360° e 0 a 180°, mais precisamente, quando 350° D 360° v 0° D 180°.

Estes índices têm sido analisados comparativamente com outros (Rego et al., 1993), têm apresentado resultados satisfatórios, ao ponto de num estudo comparativo de índices meteorológicos, com vista à sua aplicação numa região de Trás-os-Montes, concretamente no Perímetro Florestal da Serra do Marão, Meia Via e Ordem, o índice de risco proposto por Luciano Lourenço, quer em situação de inclusão de vento, quer sem vento, foi considerado o que melhor se adaptou às condições do perímetro. Com efeito "o índice meteorológico eleito, por ser o mais bem ajustado ao Perímetro, é a fórmula simples proposta por Luciano Lourenço. Se se considerar apenas a época de fogos, deve utilizar-se a fórmula completa (com vento); para todo o ano, a fórmula sem factor vento, é a que se adapta melhor" (P. Mateus, 1994, p. 79).

Em face destes resultados, pensámos dar maior divulgação a estes índices para que também possam vir a ser eventualmente aplicados a outros locais no sentido de alertar para aquelas situações críticas em que não se pode facilitar nem a detecção, nem o combate aos fogos florestais.

# 1.3. Classes de risco de fogo florestal

As fórmulas que apresentámos permitem obter, segundo a variação dos elementos meteorológicos considerados, diferentes valores para o risco de fogo normalmente compreendidos entre 0,1 e 4, os quais podem ajudar a

definir graus de risco de fogo florestal.

Embora em trabalhos anteriores tenhamos usado uma nomenclatura diferente, entendemos dever passar a usar uma outra, pois parece-nos necessário proceder à sistematização dessa terminologia, por quanto falar de um grau de risco alto é diferente de referir uma situação de alto risco.

Por isso, entendemos dever distinguir as situações de risco (baixo, médio e alto) dos graus de risco que preferimos adjectivar de reduzido, moderado e elevado. Este, por sua vez, à medida que o risco se agrava considera-se, ainda, muito elevado e máximo.

Parece-nos que estas designações estão melhor adaptadas à realidade nacional e, por isso, propomos que, de futuro, passem a ser normalmente utilizadas (Tabela I), em substituição das anteriores.

Para cada uma destas situações, os responsáveis pela detecção e combate devem fazer corresponder normas de execução muito concretas, para que os meios humanos envolvidos saibam exactamente como actuar em função de cada grau de risco.

A título de exemplo, indicamos algumas das características, adaptadas de Macedo e Sardinha (1987, 2º Vol., p. 45), que ajudam a identificar cada grau de risco e propomos algumas medidas, de carácter geral, que deverão ser tomadas.

#### Risco Reduzido:

Podem surgir pequenos focos de ignição que normalmente não provocam incêndios. No entanto, focos intensos, como uma faísca, podem incendiar certos detritos. Os fogos que deflagrarem em campos abertos de herbáceas podem propagar-se poucas horas após uma chuvada, mas a sua propagação é lenta. Os fogos não apresentam gravidade e são facilmente controláveis, pelo que se pode proceder à diminuição do estado de alerta do pessoal.

Os meios humanos disponíveis

Tabela I: Graus de risco de fogo florestal e seus respectivos valores.

| SITUAÇÃO<br>DE RISCO | NÍVEL | GRAU<br>DE RISCO | INTERVALO<br>DE CLASSE | COR DE IDENTIFICAÇÃO |
|----------------------|-------|------------------|------------------------|----------------------|
| Baixo Risco          | 1     | Reduzido         | 0,00 - 0,49            | Verde                |
| Médio Risco          | 2     | Moderado         | 0,50 - 0,99            | Amarelo              |
|                      | 3     | Elevado          | 1,00 - 1,49            | Vermelho claro       |
| Alto Risco           | 4     | Muito elevado    | 1,50 - 1,99            | Vermelho             |
|                      | 5     | Máximo           | 2,00                   | Vermelho escuro      |

devem ser aproveitados para efectuar operações de manutenção de equipamentos ou executar tarefas de prevenção de fogos florestais.

#### Risco Moderado:

Os fogos desencadeados em campos abertos de herbáceas secas ardem intensamente e propagam--se rapidamente com vento. Em maciços florestais os fogos progridem lentamente, pelo que a sua extinção é relativamente fácil. É a situação considerada normal, devendo assegurar-se todos os serviços de rotina.

#### Risco Elevado:

Os combustíveis miúdos mortos inflamam-se rapidamente. Os fogos propagam-se velozmente havendo produção de faúlhas de pequeno alcance. O fogo atinge grande intensidade em encostas e em concentrações de combustíveis miúdos. Os incêndios podem

atingir gravidade e tornar-se dificilmente controláveis, se não forem combatidos a tempo, pelo que se recomenda o reforço da vigilância e dos meios de primeira intervenção. Justifica-se a detecção de fogos por meios aéreos.

#### Risco Muito Elevado:

Os fogos consolidam-se imediatamente após a ignição e propagam--se com rápido aumento de intensidade. A produção de faúlhas é abundante, provocando focos de ignição salteados.

Aconselha-se a colocação de brigadas de intervenção em locais estratégicos, próximos de áreas particularmente sensíveis, onde se fará a vigilância de pessoas e viaturas. Recomenda-se também a suspensão de actividades na floresta que envolvam risco de fogo.

## Risco Máximo:

Fácil ignição e propagação imediata, com grande velocidade e intensidade. Os incêndios que atingem povoamentos florestais, especialmente de resinosas, podem tornar-se incontroláveis, sendo o combate possível apenas sobre os flancos, até que a alteração das condições ambientais ou o esgotamento dos combustíveis permitam um ataque frontal.

Trata-se de uma situação excepcional, de máxima gravidade, que deve envolver todos os meios disponíveis, incluindo o estado de alerta do pessoal de reforço. É recomendável o patrulhamento aéreo nas horas de maior risco, com aerotanques preparados para intervenção (vigilância "armada"), bem como o reforço da detecção por meios aéreos.

# 2.TENDÊNDIA PARA O DIA SEGUINTE

A facilidade de cálculo dos índices anteriormente descritos permite determiná-los em qualquer momento e lugar. Contudo, são geralmente utiliza-



Tabela II: Índice de risco histórico-Geográfico

| Grau de Risco | Factor de Correcção<br>na fórmula TIRIFLL |  |
|---------------|-------------------------------------------|--|
| Reduzido      | 8/10                                      |  |
| Moderado      | 9/10                                      |  |
| Elevado       | 10/10                                     |  |
| Muito elevado | 11/10                                     |  |
| Máximo        | 12/10                                     |  |

dos para indicar condições de risco passadas. Para a detecção e sobretudo para o combate aos fogos florestais interessa conhecer antecipadamente as condições de risco para o dia seguinte, razão que nos levou a desenvolver um índice mais complexo, com carácter de previsão.

### 2.1.Cálculo

É do conhecimento geral de que às várias entidades interessa conhecer com antecedência as condições de risco para o dia seguinte, a fim de que, atempadamente, possam tomar as medidas adequadas e, se necessário, recorrer a meios exteriores às suas áreas de intervenção.

Também sabemos que o risco de fogo florestal não comporta só variáveis meteorológicas. Além destas, importa considerar outros parâmetros, não só de natureza física, tais como os relacionados com o relevo (exposição das vertentes, declives,...), ou com as características dos combustíveis (tipo e estado da vegetação), mas também os aspectos humanos (densidade da população, taxa de envelhecimento, percentagem de população agrícola, ...) e, ainda, aspectos operacionais (rede viária, distância ao quartel de bombeiros, efectivos de bombeiros por km2, ...), etc.

Uma maneira prática de avaliar todas estas componentes que intervêm na deflagração e propagação do fogo florestal, é fazê-lo de forma indirecta, considerando a história passada, através da análise estatística, dos fogos florestais. Assim, ao relacionarmos estes dados

com a densidade de fogos ocorridos numa área (nº de fogos por Km2) e a percentagem de área ardida nessa mesma superfície, obtemos uma média de risco de fogo florestal para a área considerada. Este método, aplicado aos concelhos do território continental, permitiu-nos calcular um índice de risco histórico-geográfico, para cada concelho, que desenvolveremos no próximo número, o qual funciona como um factor de correcção do índice meteorológico.

O factor de correcção é baseado na história pirileológica do passado recente, após 1980, de cada concelho. O valor do factor de correcção varia em função do grau de risco históricogeográfico:

Ora, se à fórmula do índice de risco de progressão de fogo florestal antes descrita adicionarmos a tendência meteorológica do estado do tempo para o dia seguinte, resultante da variação ou não da temperatura, da hu-

midade relativa do ar e da velocidade do vento, e se multiplicarmos o resultado pelo factor de correcção, obteremos a tendência de risco de fogo florestal para o dia seguinte.

(canto inferior direito)

2.2. Divulgação

O principal objectivo do Sirif é a divulgação dos resultados por ele obtido.

Assim, todos os dias, ao fim da tarde, durante o período estival, as entidades oficiais recebem um mapa com a distribuição do índice de risco de fogo florestal para o dia seguinte, por cada um dos concelhos do território nacional, calculado a partir desta fórmula matemática.

A visualização objectiva do risco de fogo florestal duma dada região não é, por vezes, uma tarefa simples. Um dos processos mais práticos e directos de leitura do índice de risco é através da sua representação cartográfica, a qual constituiu, por isso, logo o desde início, uma das prioridades da nossa investigação.

Utilizando software específico que temos vindo a aperfeiçoar, produzimos um mapa com a tendência do índice de risco de fogo florestal para o dia seguinte, o qual é divulgado, na véspera, ao fim da tarde. O mapa apresenta uma base cartográfica onde estão assinalados os concelhos, a data a que se refere, o grau e as classes de

TIRIFLL= 
$$\left( \frac{T_{dc}}{U_{dc}} + \frac{V_{dc}}{100} \right) + \frac{2(T_{ds} - T_{dc}) + (U_{dc} - U_{ds}) + (V_{ds} - V_{dc})}{100} \right) R$$

**TIRIFLL** - Tendência do índice de risco de fogo florestal para o dia seguinte, relativa às 12 horas solares

*Tdc* - Temperatura do ar do dia em causa, em °C;

*Udc* - Humidade relativa do ar do dia em causa, em %;

Vdc - Velocidade do vento do dia em causa, em Km/h, quando o seu rumo (D) está situado entre os quadrantes 350° a 360 ° e 0° a 180°, ou seja, 350°≤D≤360° v 0°≤D≤180°;

*Tds* - Temperatura do ar prevista para o dia (ou dias) seguinte(s), em°C;

*Uds* - Humidade relativa do ar prevista para o dia (ou dias) seguinte(s), em %; *Vds* - Velocidade do vento do dia (ou dias) seguinte(s), em Km/h, quando o rumo previsto se situar entre os quadrantes 350° a 360° e 0° a 180°, ou seja, 350°≤D≤360° v 0°≤D≤180°;

R - Factor de correcção regional, baseado na história pirileológica municipal.



Fig. 2 - Exemplo de mapa com a tendência do risco de fogo florestal (elaborado e divulgado no dia 25, com a informação referente a 26 de Julho de 1997).

risco previsto para cada concelho, às quais se fez corresponder uma trama ou cor específica e o número de concelhos do país correspondente a cada grau de risco (fig. 2).

O mapa, acompanhado por uma listagem dos concelhos agrupados por graus de risco, é enviado todos os dias para as seguintes entidades: Inspecção Superior de Bombeiros, Divisão de Protecção da Floresta contra os Incêndios Florestais da Direcção Geral das Florestas, Serviço Nacional de Protecção Civil, Direcções Regionais de Agricultura, Polícia Judiciária e Guarda Nacional Republicana.

# **CONCLUSÕES**

Depois de algumas experiências-piloto, bem sucedidas, realizadas nos anos de 1989 e 1990, sob a égide do projecto de investigação científica da Universidade de Coimbra, coordenado pela Faculdade de Ciências e Tecnologia, o Sistema de Informação de Risco de Incêndio Florestal tornou-se autónomo em 1992 e iniciou-se, a título experimental, em todos os concelhos da Região Centro.

Depois, no ano seguinte de 1993, estendeu-se para Norte até ao rio Douro e para Sul, até ao rio Tejo

Em 1995, alargou-se a toda a região de Lisboa e Vale do Tejo e, também, ao Alto Alentejo. Sob coordenação da UTAD, chegou a Trás-os-Montes.

Em 1996, cobriu todos os concelhos situados a sul do

rio Douro, e sob coordenação da UTAD, em Trás-os-Montes

Finalmente, em 1997, estendeu-se a todo o território continental.

O cálculo da Tendência do Índice de Risco de Incêndio Florestal para o dia seguinte efectua-se na secção do Núcleo de Investigação Científica de Incêndios Florestais da Faculdade de Letras da Universidade de Coimbra, sediado no Aeródromo da Lousã.

O facto do cálculo do índice se risco se calcular nas mesmas dependências onde também se encontram instaladas as entidades que procedem não só à detecção mas também ao combate do fogo florestal tem vindo a mostrar-se, de ano para ano, bastante importante no desenvolvimento de um trabalho conjunto, de modo a dar resposta mais rápida e directa às necessidades sentidas por cada uma das entidades.

Assim, a presença de um elemento do NICIF no local permite esclarecer situações concretas de risco de fogo florestal bem como dos tipos de tempo que lhe estão associados. A sua intervenção tornou-se fundamental, sendo estas "consultas" essenciais para a planificação e previsão das tarefas a serem desenvolvidas diariamente ou nos dias seguintes.

## **AGRADECIMENTOS**

Os autores desejam deixar aqui expresso o seu vivo agradecimento à Comissão Nacional Especializada de Fogos Florestais, que tem financiado o SIRIF, bem como à ex-Junta Nacional de Investigação Científica e Tecnológica que, durante dois anos, possibilitou o avanço da investigação sobre a tendência para o dia seguinte do risco de fogo florestal.

Luciano Lourenço A. Bento Gonçalves e João Loureiro

## **BIBLIOGRAFIA**

Claris Corporation (1991) - ClarisWorks -Handbook, Santa Clara, E.U.A..

Claris Corporation (1995) - FileMaker Pro -User's Guide, Santa Clara, E.U.A.. Davis Instruments Corporation (1994) -Weather Monitor II - Owner's Manual, Hayward, E.U.A..

Davis Instruments Corporation (1994) -Weatherlink Software - User's Guide, Hayward, E.U.A..

Lourenço, L. (1989) - "Representação cartográfica dos fogos florestais ocorridos em Portugal Continental". Biblos, LXV, Coimbra, p. 91-133.

Lourenço, L. (1992) - "Avaliação do risco de incêndio nas matas e florestas de Portugal Continental". Finisterra, XXVII, 53/54, Lisboa, p. 115-140.

Lourenço, L. (1994a) - "Sistemas de informação de risco de incêndio florestal". Actas, II Encontro Pedagógico Sobre Risco de Incêndio Florestal, Coimbra, p. 207-229.

Lourenço, L. (1994b) - "Risco de incêndio florestal em Portugal Continental". Informação Florestal, 4, Lisboa, p. 22-32.

Lourenço, L. (1995) - "Indices meteorológicos de riesgo de incendio forestal sencillos y expeditos; tendencia del riesgo para el dia siguiente". Actas del Taller Internacional, Santiago de Chile, p. 75-81.

Lourenço, L., Bento Gonçalves, A. J. e Soares, H. (1988) - "Distribuição espacial dos fogos florestais no Centro de Portugal, no período de 1983 a 1987. Contribuição para um mapa de risco de fogo florestais". Comunicações, Jornadas Científicas sobre

Fogos Florestais, Coimbra, p. 4.5-1 a 4.5-26.

Macedo, F.W. e Sardinha, A.M. (1987) - Fogos Florestais. Publicações Ciência e Vida, Lda., 2 Vol, Lisboa.

Mateus, P.J.V.R. (1994) - Eleição de um índice de perigo de incêndio para o perímetro da Serra do Marão, Meia Via e Ordem. Relatório final de estágio. Universidade de Trás-os-Montes e Alto Douro, Vila Real, 84 p. + Anexos + (Inédito).

Microsoft Corporation - Microsoft Excel (1994) - User's Guide, Nevada, E.U.A..

Prodem Technology Inc. (1986) - Hidem Modem 2400 - Operation Manual, E.U.A..

Rebelo, Fernando (1980) "Condições de tempo favoráveis à ocorrência de incêndios florestais. Análise de dados referenes a Julho e Agosto de 1975 na área de Coimbra". Biblos, Coimbra, 56, p. 653-673.

Rego, F. C. & Machado, C. A. (1993) - "Comparison of meteorological indices of forest fire using the signal detection theory". Proceedings of the 12th International Conference on Fire and Forest Meteorology, Bethesda, p. 544-551.

Sortarc Inc. (1994) - Client FirstClass para Macintosh, Portugal.

Strategic Mapping Inc. (1989) - Atlas Pro 1.09, San Jose, E.U.A..

Trimble Navigation Ibérica S.L. (1993) - Scout GPS, n.p., Cerdanyola del Vallès, Espanha.

