loading...

UC.PT

Theoretical & Computational Chemistry

Research highlights

Potential energy surfaces

n3_2v_n
Ab Initio Based Double-Sheeted DMBE Potential Energy Surface for N3(2A″) and Exploratory Dynamics Calculations

Galvão; B. R. L.; Varandas, A. J. C. 

J. Phys. Chem. A 114, 12390  (2011).

DOI: 10.1021/jp2073396



s2h
Accurate Double Many-Body Expansion Potential Energy Surface for Ground-State HS2 Based on ab Initio Data Extrapolated to the Complete Basis Set Limit

Song, Y. Z.; Varandas, A. J. C. 

J. Phys. Chem. A 115, 5274 (2011).

DOI: 10.1021/jp201980m



nh3
Ab-Initio-Based Global Double Many-Body Expansion Potential Energy Surface for the Electronic Ground State of the Ammonia Molecule

Li, Y. Q.; Varandas, A. J. C. 

J. Phys. Chem. A 114, 6669 (2010).

DOI: 10.1021/jp1019685

Reaction dynamics

ch2dyn
Quasiclassical Trajectory Study of the C(1D) + H2 Reaction and Isotopomeric Variants: Kinetic Isotope Effect and CD/CH Branching Ratio

Joseph, S.;Caridade, P. J. S. B. ; Varandas,  A. J. C.

J. Phys. Chem. A 115, 7882 (2011).

DOI: 10.1021/jp2032912



n_nh_qd
Adiabatic quantum dynamics calculations of the rate constant for the N + NH → N2 + H reaction

Yang H.;Varandas,  A. J. C.

Chem. Phys. Lett. 497, 159 (2011).

DOI: j.cplett.2010.08.005



n3_rotvib_distn3_rate_exc
Quasiclassical Trajectory Study of Atom-Exchange and Vibrational Relaxation Processes in Collisions of Atomic and Molecular Nitrogen

Caridade, P. J. S. B. ; Galvão, B. R. L.; Varandas,  A. J. C.

J. Phys. Chem. A 114, 6063 (2010).

DOI: 10.1021/jp101681m

Spectroscopy

nh2_spec
Refining to near spectroscopic accuracy the double many-body expansion potential energy surface for ground-state NH2

Rodrigues, S. P. J.; Fontes, A. C. G.; Li, Y. Q.; Varandas A. J. C.; Chem. Phys. Lett. 516, 17 (2011).

DOI: 10.1016/j.cplett.2011.09.050

Electronic structure calculations

n2h3
Ab Initio Study of Hydrazinyl Radical: Toward a DMBE Potential Energy Surface

Poveda, L. A.; Varandas, A. J. C. 

J. Phys. Chem. A 114, 11663 (2010).

DOI: 10.1021/jp102841f



c2h2
Accurate MRCI and CC Study of the Most Relevant Stationary Points and Other Topographical Attributes for the Ground-State C2H2 Potential Energy Surface

Joseph, S; Varandas, A. J. C. 

J. Phys. Chem. A 114, 13277 (2010).

DOI: 10.1021/jp109830s

cbs_cpl
Accurate global ab initio potentials at low-cost by correlation scaling and extrapolation to the one-electron basis set limit

Varandas, A. J. C. 

Chem. Phys. Lett. 11, 11663 (2010).

DOI: 10.1021/jp102841f



Jahn-Teller systems

jp2073396
The Jahn-Teller effect in the triply degenerate electronic state of methane radical cation 

Mondal T.; Varandas, A. J.C.; J. Chem. Chem. 2011, 135,  174304 (2011).

DOI: 10.1021/jp2073396



jtdyn_3state_ga
Generalized Born–Oppenheimer treatment of Jahn–Teller systems in Hilbert spaces of arbitrary dimension: theory and application to a three-state model potential

Varandas, A. J.C.; Sarkar B.; Phys. Chem. Chem. Phys.  2011, 13, 8131 (2011).

DOI: 10.1039/C0CP02598D



twofold
Geometrical phase effect in Jahn–Teller systems: Twofold electronic degeneracies and beyond

Varandas, A. J.C.; Chem. Phys. Lett.  2010, 487, 139 (2011).

DOI: 10.1016/j.cplett.2010.01.032

Atmospheric chemistry

ho2o3_cs
The HO2+O3 reaction: Current status and prospective work

Varandas, A. J. C.; Viegas, L. P.;  

Comp. Theo. Chem. 965, 291 (2011).

DOI: 10.1016/j.comptc.2010.09.010



ho2o3h2o
Can water be a catalyst on the HO2 + H2O + O3 reactive cluster?

Viegas, L. P.; Varandas, A. J. C.; Chem. Phys. (in press)

DOI: 10.1016/j.chemphys.2011.04.022



 
dft_func
How Well Can Kohn−Sham DFT Describe the HO2 + O3 Reaction?

Viegas, L. P.; Branco. A.; Varandas, A. J. C. ; J. Chem. Theory Comput. 6, 2751 (2010).

DOI: 10.1021/ct100364x



ho2o3
HO2 + O3 Reaction: Ab Initio Study and Implications in Atmospheric Chemistry

Viegas, L. P.; Varandas, A. J. C.; 

J. Chem. Theory Comput. 6, 412 (2010).

DOI: 10.1021/ct900370q