UNIVERSIDADE DE COIMBRA

UNIVERSITY OF COIMBRA

ENERGIA para a **SUSTENTABILIDADE**

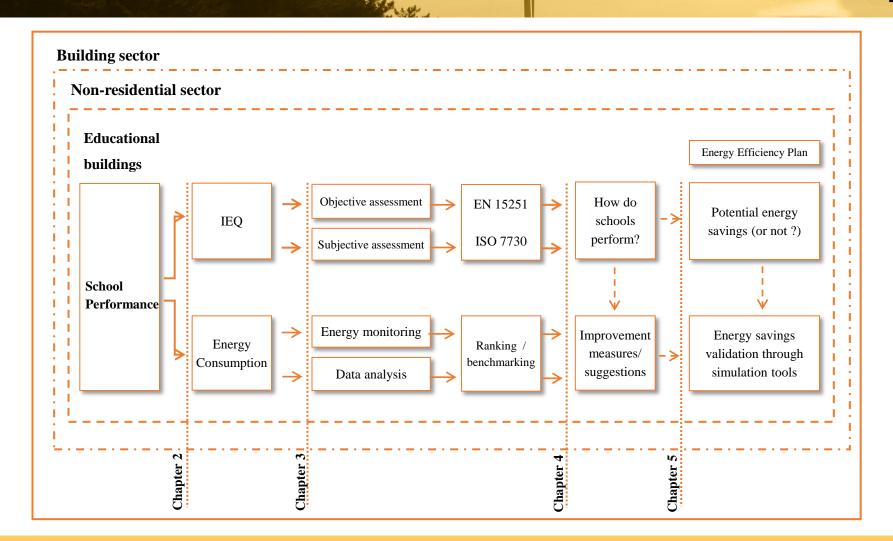
ENERGY for SUSTAINABILITY • EfS | UC

Luísa Maria Dias Pereira

Modernised Portuguese Schools: From IAQ and Thermal Comfort, towards Energy Efficiency Plans

PhD Thesis in Sustainable Energy Systems supervised by Professor Manuel Carlos Gameiro da Silva

www.uc.pt/efs 13 / 01 / 2017

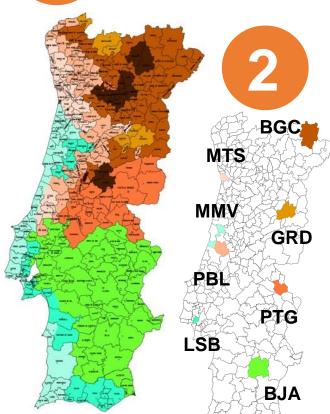


->PARQUescolar

- O MV buildings guarantee better IEQ than NV?
- How are the modernised schools in PT responding in terms of IEQ legislation?
- Does energy consumption increase reflect students' comfort & satisfaction?
- How can monitoring help improving IEQ in retrofitted schools?
- Is it possible to reduce on energy costs? Or is it possible to improve IEQ?

case studies presentation

An assessment of the Modernisation of Public Secondary Schools Programme (focused on energy consumption) performed in the framework of an R&D project (3Es) involving UC's R&D units (ADAI, INESC-C & GEMF) & TDGI


Modernised Portuguese Schools - From IAQ and Thermal Comfort towards Energy Efficiency Plans

www.uc.pt/efs

3. CASE STUDIES

1

A single Climatic Map of Portugal (combining winter and summer climatic zones), propped on RCCTE (2006) was established Schools w/ refurbishment works completed until **2011** were considered

Having verified the absence of refurbished schools in some municipalities (& corresponding climatic zones), some other schools were selected (although only completed in 2012)

Geographical diversity & representativeness of the sample was achieved

W3S3

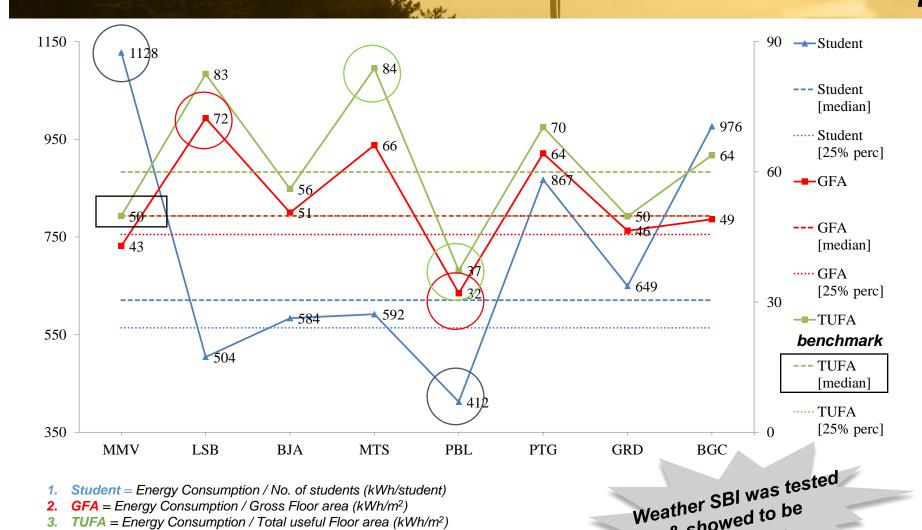

Final selection of **8** schools based on calculated energy use indicators

Figure 1 –Map of Portugal with climatic zones for the heating and cooling seasons; Map highlighting the 8 schools' selection

Modernised Portuguese Schools - From IAQ and Thermal Comfort towards Energy Efficiency Plans

www.uc.pt/efs

3. CASE STUDIES

- **Student** = Energy Consumption / No. of students (kWh/student)
- **GFA** = Energy Consumption / Gross Floor area (kWh/m²)
- 3. TUFA = Energy Consumption / Total useful Floor area (kWh/m²)

& showed to be misleading Modernised Portuguese Schools - From IAQ and Thermal Comfort towards Energy Efficiency

www.uc.pt/efs

3. CASE STUDIES | Figure 2 – Three SBI for the 8 schools

indoor environmental quality

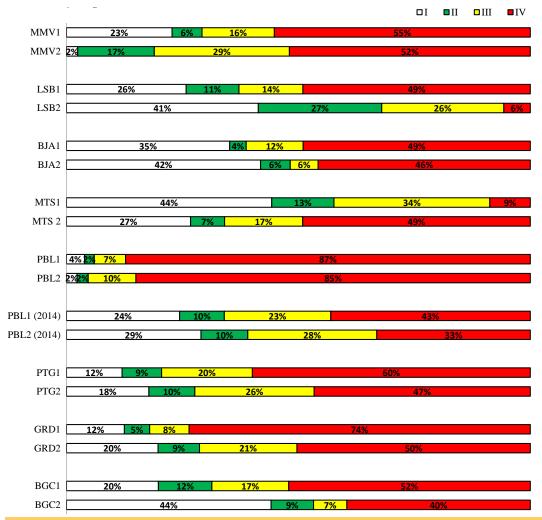
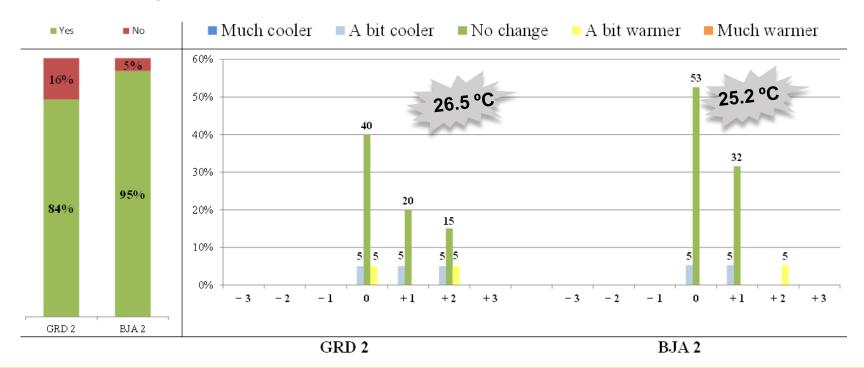


Figure 3 – Concentration evaluation expressed in percentage of time during occupancy periods in IAQ categories, according to the values of Table B4 in EN15251, expressed in concentration above outdoor concentration (considered 380 ppm)

schools should
fit cat. II
(new buildings & major renovations)


2 classrooms / school monitored

Modernised Portuguese Schools - From IAQ and Thermal Comfort towards Energy Efficiency Plans

www.uc.pt/efs

4. INDOOR ENVIRONMENTAL QUALITY

- Thermal Acceptability (TA) :
 - ✓ Do you consider the thermal environment condition acceptable?
- Thermal comfort (TC) :
 - √ How do you feel at this moment?
 - ✓ How would you like to feel?

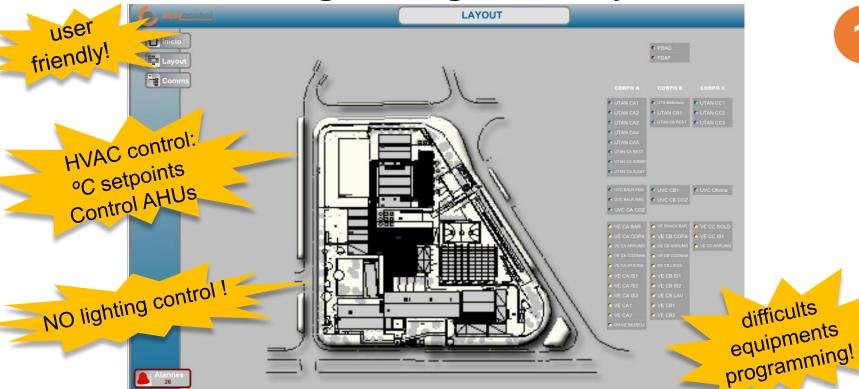
energy efficiency plans for schools

This chapter aims at optimizing schools' Indoor Environmental conditions & improving HVAC systems operations »» optimizing energy use & costs

Method: focus on BMS: design / operation, users' behaviour & the EE-TC-IAQ dilemma (energy demand significantly lies on ventilation and temperature indoors)

Modernised Portuguese Schools - From IAQ and Thermal Comfort towards Energy Efficiency Plans

www.uc.pt/efs


5. ENERGY EFFICIENCY PLANS FOR SCHOOLS

Building Management System

Case study

HVAC systems organized according to spatial distribution **BUT** when selecting one equipment, the plan & correspondent rooms signaled are NOT correct **»» conflict** between **project phase naming & current name** of the classrooms

Modernised Portuguese Schools - From IAQ and Thermal Comfort towards Energy Efficiency Plans

www.uc.pt/efs

5. ENERGY EFFICIENCY PLANS FOR SCHOOLS

The equipment **operation time does not** always **take into account occupancy**, therefore adjustments can be made...

Table 2 – Energy consumption of the AHUs serving classrooms (thermal heating energy)

AHU ID	BMS suggested schedule	Annual operation time (h/yr)		Energy consumption (kWh)			Energy Ratio (%)	
		_	Suggested schedule	Existing schedule	Suggested schedule	Suggested sched + Proposed Q	Between sched (Suggest sched/ Existing sched)	(Suggest sched + Proposed Q) / Existing sched
AHU A2	07:00 - 18:00	2250	1626	28053	18913	14387	67.4	51.3
AHU A3	07:00-23:00	2250	2352	26471	24845	20029	93.9	75.7
AHU A4	07:00 - 18:00	2250	1626	35965	24248	19398	67.4	53.9
AHU A5	07:00-23:00	2250	2352	35965	33757	27006	93.9	75.1
AHU B1	07:30-18:00	2068	1535	15605	10856	8656	69.6	55.5
AHU C2	07:30-18:00	1689	1535	23676	18925	15551	79.9	65.7
AHU C3	07:30-18:00	1689	1535	18170	14524	12764	79.9	70.2

Note: for the present calculation pumps' electrical energy consumption was not considered. In CAV systems their contribution is very small when compared with the fan component.

Classroom activity was estimated based on the time-table occupancy (8h15-18h00 & 19h00-22h50 - max occupancy)

Modernised Portuguese Schools - From IAQ and Thermal Comfort towards Energy Efficiency Plans

5. ENERGY EFFICIENCY PLANS FOR SCHOOLS

ventilation requirements adjustment

- # List of Energy Efficiency Measures, based on the 2 case-studies (today only one was shown) & literature review
- The proposal of the S-EPC (School-Energy Performance Certificate) (with energy consumption indicators & energy data consumption from previous school years)
- The figure of the Energy Manager (EM) (responsible for energy analysis, proposing energy saving initiaves, energy awareness campaigns, etc)

3 **e**s Escolas Energeticamente Eficientes

012

2011/12

341181

Desempenho Energético

energético da escola face ao valor de referência. correspondente à mediana nacional

Consumo de referência®

50 (60) kWh/m2

Consumo Anual Energia

66 (84) kWh/m2 5,91 (7,49) €/m²

Custo Anual Energia Consumo Anual por Aluno

592 kWh/aluno

Custo Anual por Aluno

53 €/aluno

* ABC (AU) = Área bruta de construção (Área útil)

Informação Administrativa

TIPOLOGIA: MOP-JCETS INDUSTRIAL E COMERCIAL NOME: ESCOLA SECUNDÁRIA JOÃO GONÇALVES ZARCO LOCALIZAÇÃO: MATOSINHOS Nº TURMAS: XX (60)

1419 (1350)

Nº ALUNOS: (capacidade programada) Uso/Custos Energéticos

Consumo de Gás (kWh):

498501 Consumo de Electricidade (kWh):

55069 Custo* de Electricidade (€): 19977 Custo* de Gás (€): Total de custos* energéticos (€): 75046

* valor sem IVA

Informação Técnica

ANO DE CONSTRUÇÃO: 1969 ANO DE RENOVAÇÃO: 2010 SISTEMA DE AQUÉCIMENTO: Gás (caldeiras e radiadores) SISTEMA DE VENTILAÇÃO: Ar Condicionado (UTAs e UTANs) SISTEMA DE ARREFECIMENTO: ÁREA BRUTA CONSTRUÇÃO -ABC (M2): ÁREA ÚTIL - AU (M2): 10013 Nº DE PCs: 207

Produção Industrial de Refeições (CANTINA): Ginásio com ocupação noturna

NÃO e/ou FdS):

SIM

Consumos anos anteriores

Esta informação permite analisar o perfil evolutivo do desempenho energético da escola

2011/12 839682 2007/08 329964

Modernised Portuguese Schools - From IAQ and Thermal Comfort toward

conclusions & contributions

- # Selection & characterization of case-studies was performed
 - Definition several **SBI | Climate adjustment** showed to be **deceptive** (kWh/m² /yr/HDD)
 - Indicator based on TUFA was generated (kWh/m²): benchmark
 - Typical (median) & good practice (upper quartile) values were defined
- Fig. IEQ analysis (objective & subjective) of 8 schools (22 classrooms in total)
 - Higher temperatures accepted than in the standards 26.6°C (TA=84%)
 - √ TSV expressed No change
 - ✓ trend for Slightly warm environments in the mid-season
 - IAQ (CO₂ levels) limits were being exceeded
 - √ adaptive actions, e.g. window(s) &/or door opening should be promoted to reduce CO₂ indoors

- # EEP strategy developed in 2 schools.
 - Classrooms occupancy schedule crossed with systems operation (mostly BMS)
 - ✓ One major EE consumption issue is the pre-set heating / cooling systems, operated by the BMS which was not considering the energy tariff or occupancy
 - ✓ Potential energy savings through BMS rescheduling & Q adjustment
 Up to 32.6% useful thermal energy consumption reduction »» 14.1 24.7 kW/m² saved
 (others, e.g. lighting & uncontrolled plug loads pointed out & should be explored)
 - √ These measures & other EEMs may be implemented at low or negligible costs
 - Good practice handbook was drafted (accompanied of a list of EEM)
 - √ Headed by a S-EPC
 - √ The Energy Manager figure was suggested
 - ✓ It is hoped that the applicability of such EE plan would spam to the other schools of the project.

Modernised Portuguese Schools From IAQ and Thermal Comfort towards Energy Efficiency Plans

MANY THANKS!

The author acknowledges the support provided by FCT - PhD scholarship SFRH/BD/577105/2011.

The presented work is part of a research project, called *Escolas Energeticamente Eficientes* (3Es), granted by Teixeira Duarte on the framework of the Portuguese Program of R&D Projects associated to Large Public Tenders.

This work was framed under the Initiative Energy for Sustainability of the University of Coimbra.

