

Seminário Internacional Desafios da Regulação do Setor Elétrico

Mesa V: Dinâmica tecnológica e inovações regulatórias

Oportunidades e desafios da implementação da "Smart Grid" no Brasil: lições da experiência internacional

Prof. Dr. João Felippe Cury Marinho Mathias GESEL/ Instituto de Economia (UFRJ)

Objeto e contexto do estudo

- O estudo busca lições da experiência internacional que subsidiem a adoção de políticas de inovações tecnológicas direcionadas ao setor elétrico no Brasil.
- O estudo tem como foco o estudo de smart grids, geração distribuída e microgeração.
- Como fazer a transição de um enorme potencial à formação dos mercados? É possível aprender com a experiência internacional, em particular com a Europa?

Hipótese

- Uma hipótese de trabalho, oriunda da literatura internacional, é o reconhecimento de que a legitimidade de novas tecnologias e seus respectivos atores, bem como o acesso e a formação de mercados é fortemente relacionada ao arcabouço institucional.
- A política governamental é o maior mecanismo indutor na formação de mercados de tecnologias emergentes, ao contemplar subsídios, programas de demonstração, mudanças e criação de leis. Não é diferente quando se refere às smart grids ou redes elétricas inteligentes (SG).

Estrutura da apresentação

- 1. Arcabouço conceitual e analítico.
- 2. Arcabouço regulatório.
- 3. Arcabouço empírico.
- 4. Lições para o Brasil.

Parte 1

Referencias-chave:

Carlsson, B.; R. Stankiewicz. On the nature, function, and composition of technological systems. Journal of Evolutionary Economics, 1, 1991, pp. 93-118.

Jacobsson, S.; Bergek, A. Transforming the Energy Sector: The Evolution of Technological Systems in Renewable Technology. Industrial and Corporate Change, volume 13, number 5, 2004, pp. 815-849.

Wustenhagen, R.; Wolsnik, M.; Burer, M. J. Social Acceptance of Renewable Energy Innovation: An Introduction to the Concept. Energy Policy, 35, 2007, p. 2683-2691.

ARCABOUÇO CONCEITUAL E ANALÍTICO: INOVAÇÕES E ENERGIA

Problemas-chave associados a sistemas tecnológicos

- Os problemas reais não são associados ao potencial técnico das novas tecnologias associadas ao setor de energia, mas como esse potencial é efetivamente aproveitado/ materializado e efetivamente contribua para a transformação do setor de energia;
- Mercados não são facilmente formados. As novas tecnologias frequentemente são custosas quando comparadas às já estabelecidas, podendo não oferecer benefícios diretos para os compradores e investidores individuais.
- As decisões dos policy makers devem ser conduzidas numa perspectiva de longuíssimo prazo ("highly political business").

Arcabouço analítico: elementos gerais

 As firmas estão incorporadas em <u>sistemas de</u> <u>inovação</u> que guiam, auxiliam e restringem os atores individuais que a eles pertençam. Dessa perspectiva conclui-se que a mudança tecnológica é endógena ao sistema econômico.

Sistema tecnológico

- É definido como uma rede de agentes interagindo numa área tecnológica específica sob um arcabouço institucional particular cujo propósito seja a geração, difusão e utilização de uma tecnologia (Carlsson e Stankiewicz, 1991).
- A revisão bibliográfica, particularmente a referente aos países da UE, sugere que a SG na concepção de um sistema tecnológico (Crispim et al. 2014)

Sistema tecnológico: elementos

- Atores: firmas, usuários, fornecedores, investidores, outras organizações. Os atores podem influenciar fortemente o desenvolvimento e o processo de difusão das tecnologias;
- Redes: canais de transferência de conhecimento, identificando problemas e oferecendo soluções;
- Instituições: estipulam as normas e regras que regulam as interações entre os atores.

As inovações e a formação de mercados

- Levando em conta que as inovações raramente encontram mercados prontos, estes devem ser estimulados ou mesmo criados;
- Esse processo é afetado por decisões governamentais (executivo e legislativo) e por outras instituições, que buscam medidas para legitimar a nova tecnologia.

Da formação à expansão de mercados

Características básicas:

- Formação de mercados;
- Entrada de firmas e outras organizações;
- Mudança institucional;
- Formação de coalizões.

Formação de mercados e entrada de novas firmas

- Essa fase geralmente envolve a exploração de nichos de mercado onde a nova tecnologia se mostre superior em alguma dimensão. A exploração desses mercados geralmente envolve subsídios governamentais ("nursing markets");
- A fase da proteção aos mercados melhora a performance da nova tecnologia, direcionando as buscas por atores e provendo incentivos para a entrada de firmas nas várias partes da cadeia de valor;
- A entrada de novas firmas é importante no processo de legitimação da nova tecnologia.

Mudança institucional

- O processo de legitimação de uma nova tecnologia e seus atores, o acesso a recursos e a formação de mercados são fortemente relacionados ao <u>arcabouço institucional</u>. Se este não se coaduna com a nova tecnologia vários elementos poderão atuar como barreiras ao desenvolvimento da mesma.
- A <u>mudança institucional</u> é o coração do processo no qual as novas tecnologias frutificam.
- É um processo multifacetado: regulações de mercado, políticas tarifárias, etc.

A formação de coalizões

- A literatura reconhece que para uma nova tecnologia ganhar espaço coalizões tecnológicas específicas devem ser formadas para o engajamento em debates políticos mais amplos, com o objetivo de influenciar o processo de mudança institucional.
- É importante influenciar a agenda política. Há uma necessidade de "convencimento" de que a nova tecnologia merece um olhar mais atento junto aos *policy makers*.
- As coalizões podem incluir muitos tipos de organizações e atores, tais como universidades, associações privadas e sem fins de lucro, mídia, políticos e vários níveis da burocracia estatal.

A duração da formação dos mercados

- O tempo que envolve a fase de formação de mercados pode ser muito longo. Os investimentos podem ser substanciais (e arriscados) e aparentemente sem sucesso.
- Para que haja a "mudança de marcha" os sistemas tecnológicos emergentes devem aproveitar as eventuais "ondas" de oportunidades tecnológicas e de mercado (UE 20-20-20).

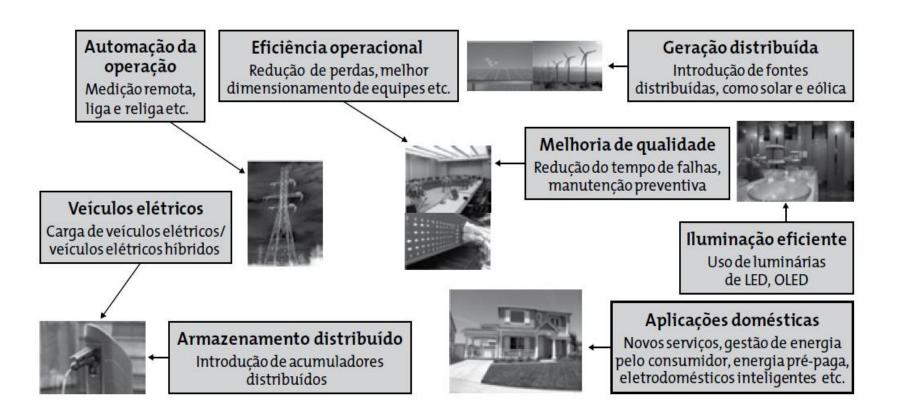
Barreiras à adoção de novas tecnologias

- As instituições e o arcabouço regulatório criado podem falhar no auxílio ao desenvolvimento de novas tecnologias.
- Os mercados podem não ser formados devido aos custos crescentes da adoção de novas tecnologias, uma vez que as já estabelecidas já são direta ou indiretamente subsidiadas.
- Novas firmas podem não entrar por falta de mercados e novas oportunidades.
- As redes podem falhar devido à falta de coordenação entre os atores.

Parte 2

Crispim, J. et al. Smart Grids in the EU with smart regulation: Experiences from the UK, Italy and Portugal. Utilities Policy 31, 2014, p. 85-93.

European Commission's Joint Research Centre. Smart Grid projects in Europe: lessons learned and current developments. In: Giordano V, Gangale F, Fulli G, Jiménez M, editors. Luxembourg: Publications office of the European Union; 2011.


Macedo, M. N. Q. et al. Typification of load curves for DSM in Brazil for a smart grid environment. Electrical Power and Energy Systems 67, 2015, p. 216–221.

ARCABOUÇO REGULATÓRIO PARA O DESENVOLVIMENTO DE SMART GRIDS: ALGUMAS LIÇÕES DA EXPERIÊNCIA DA UE

Smart grids: uma visão geral

 A smart grid é baseado no uso integrado de tecnologia da informação, automatização, de telecomunicações e de controle da rede, o que envolve os medidores inteligentes, sensores e rede digital, dispositivos de gestão que são bi-direcionais e permitem implementação de estratégias para controlar e otimizar o elétrico rede com processamento de dados em tempo real.

SG: elementos e funcionalidades

Smart grids e DSM

- A rede de energia pode ser controlada com maior autonomia para as unidades de consumo, e a gestão de energia pode ser implementada de um modo mais descentralizada, que requer o desenvolvimento de novos métodos de controle e otimização para o funcionamento do sistema elétrico;
- Os novos dispositivos podem apresentar várias características, como o sistema de tarifação diferenciada, precificação dinâmica e controle direto de carga, permitindo o uso de técnicas para a gerenciamento da demanda (DSM) para otimizar o planejamento e gestão da sistema elétrico.

Geração distribuída (GD)

- Segundo a literatura, um atributo valioso da smart grid é que ela permite a geração distribuída.
- Uma das consequências é o uso das casas dos consumidores para a geração de energia em pequena escala com a instalação de painéis solares e microgeradores eólicos.
- Cada consumidor se transforma, assim, em uma miniusina de energia, que recebem pelo excedente gerado.

UE, energias renováveis e smart grids

- O compromisso da União Europeia para reduzir substancialmente a CO₂ emissões antes de 2020 implica, entre outras coisas, que mais eletricidade deve ser gerada a partir de fontes de energia renováveis, como a eólica, hidráulica e energia solar.
- Com base nos desafios de renovar a rede elétrica, aumentar a capacidade de geração, garantir liquidez, controlar a volatilidade de preços e implementar a interoperabilidade e a integração de fontes renováveis, o parlamento europeu fixou como meta a implantação de 80% de medidores inteligentes até 2020

Europa: destaques

- Itália: a principal distribuidora italiana, a Enel, em 1999 implantou um projeto-piloto com solução e medidores desenvolvidos internamente. Em cinco anos, concluiu o projeto de mais de € 2 bilhões; em 2010, cerca de 85% dos lares italianos dispunham de medidores inteligentes.
- **Suécia**: 100% dos lares já dispõem de medidores inteligentes instalados.
- França: por decreto, 95% dos lares de distribuidoras com mais de cem mil clientes deverão tê-los instalados até 2016.

Recursos e investimentos

- Estudos apontam que bilhões de Euros estão atualmente sendo investidos no desenvolvimento do Smart Grid, estimados em atingir EUR 56,5 bilhões na Europa durante o período 2010-2020.
- Foco importante: consumidores residenciais e medidores inteligentes.

Outras experiências: EUA

- Nos Estados Unidos, o pacote de incentivos à economia de 2009 somou forças à preocupação com a segurança energética do país, quando foram destinados US\$ 4 bilhões em fundos para o desenvolvimento das SGs;
- Como a regulação da distribuição é descentralizada, o estágio de evolução das SGs varia de acordo com os estados. Na Califórnia, até meados 2013 cerca de 97% dos medidores haviam sido trocados.

Motivadores para a implantação de redes elétricas: experiência internacional

EUA

- Agenda tecnológica para recuperação econômica
- Infraestrutura obsoleta
- Geração distribuída de energia
- Confiabilidade, segurança e eficiência do sistema
- Uso de veículos elétricos e híbridos

Europa

- Integração de diversas fontes de energia renováveis
- Infraestrutura envelhecida
- Uso de veículos elétricos

Japão

- Diversificação energética (acidentes nucleares)
- Uso de veículos elétricos
- Implantação de cidades inteligentes

China

- Implantação de cidades inteligentes e protagonismo mundial em IoT
- Eficiência energética
- Diversificação energética (renováveis)

O papel dos reguladores

 São atores-chave no setor elétrico, com a crucial tarefa de criar incentivos para a adoção de soluções menos custosas e que tragam benefício a sociedade. Nas redes de transmissão e distribuição o desafio é criar os incentivos apropriados para o desenvolvimento efetivo do sistema.

A questão da aceitação social

- As desconfianças dos consumidores em relação à tecnologia de SG pode dificultar a implementação e o desenvolvimento desta. A literatura aponta que a falta de confiança do consumidor nos novos sistemas pode resultar no fracasso em aproveitar todos os benefícios potenciais de medidores inteligentes e da SG.
- Assim, a fim de desenvolver adequadamente e divulgar esta importante forma eficaz novas tecnologias e para atingir as metas estabelecidas em relação a SG, pesquisas são necessárias para alcançar uma melhor compreensão do que faz o consumidor aceitar ou rejeitar a tecnologia da SG.
- Alguns modelos são populares. Nas ultimas décadas o mais publicado é *Technology Acceptance Model (TAM)*.

Parte 3:

Dias, L. et al. Multi-criteria Environmental Performance Assessment with an Additive Model.

Montibeller, G.; Franco, A. Multi-Criteria Decision Analysis for Strategic Decision Making. Handbook of Multi-criteria Analysis. Disponível em: http://www.springer.com/978-3-540-92827-0

Omann, E. V. I. Multi-criteria Decision Aid as an Approach for Sustainable Development Analysis and Implementation. Graz, Universitat Graz, Dissertation, January 2004.

ARCABOUÇO EMPÍRICO

A tomada de decisões e o multicritério

- Cada tomada de decisão é na verdade um problema multicritério (com mais de um objetivo). Se temos apenas um objetivo a perseguir, não se tem um problema de decisão.
- O problema é que há decisões de ordem complexa. Para essas, há possibilidades de modelos para auxílio na tomada de decisões (Decision aid, decision support, decision analysis, evaluation, etc).

Os modelos de avaliação de multicritério

- Os modelos de multi-critérios foram desenvolvidos basicamente em duas escolas. A escola européia, Multi-criteria Decision Aid (MCDA) e a escola americana Multi-criteria Decision Making (MCDM).
- Os modelo europeu (MCDA) procura oferecer <u>recomendações</u>, enquanto escola americana (MCDM) tenta se aproximar de uma solução ideal, derivada um conjunto de axiomas.

MCDA

- Um estudo MCDA geralmente engloba três etapas. A primeira fase é a <u>estruturação do</u> <u>problema</u>. Este é a etapa mais importante, porque é a base para todas as análises posteriores;
- A segunda fase busca avaliar (quantitativa ou qualitativamente) o desempenho de cada alternativa em cada critério de avaliação;
- A terceira fase consiste em derivar uma recomendação com base nos resultados dos estágios anteriores.

Critérios tradicionais utilizados em uma análise multicritério

Dimensão	Critérios
Ambiental	 Emissões de CO₂
	Uso da terra
Técnica	 Eficiência
	Maturidade
Econômica	 Custos do investimento
	 Custos de operação e manutenção
	 Custos elétricos
Social	Aceitação social
	 Criação de emprego
	 Benefícios sociais
Financeira	
Institucional	

Parte 4

Pica, Cesare Quinteiro, Daniella Vieira, and Gabriel Dettogni. An overview of smart grids in Brazil: opportunities, needs and pilot initiatives. ENERGY 2011, The First International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies. 2011.

Revista Exame. O Brasil na onda dos smart grids. http://exame.abril.com.br/revista-exame/edicoes/1040/noticias/o-brasil-na-onda-das-smart-grids

Rivera, Ricardo; Esposito, Alexandre Siciliano; Teixeira, Ingrid. Redes elétricas inteligentes (smart grid): oportunidade para adensamento produtivo e tecnológico local. Revista do BNDES, Rio de Janeiro, n. 40, p. 43-83, dez. 2013

ESTADO DA ARTE E LIÇÕES PARA O BRASIL

Potencialidades do SG no Brasil

- O mercado brasileiro de smart grids é visto como um mercado potencial para muitos países. Além disso, mesmo com muitas barreiras financeiras e regulatórias, vários empresas já estão trabalhando em projetospiloto para aumentar a capacidade e energia do país e definir modelos para o futuro implantação do Smart Grid no Brasil.
- Geração distribuída. PV. Agroenergia. Biomassa residual. Aproveitamento de biogás para microgeração.
- Locais isolados fora do escopo do SIN.
- Solução de problemas de eficiência/ furto, etc.

Barreiras à implementação da SG no Brasil

- Incerteza do mercado e falta de políticas e regras na estrutura do mercado;
- Baixa conscientização e engajamento do público (processo de aceitação social);
- A falta de garantia de escala;
- Incerteza em relação às receitas devido à falta de regras;
- A rede de energia elétrica no Brasil é muito grande e exige um enorme volume de investimento;
- Mais de 70% da matriz energética do Brasil é hidrelétrica, e por esta razão, um outro tipo de sistema renovável não é facilmente aceito;
- No Brasil existem de áreas remotas;
- ANEEL e ANATEL não possuem um alinhamento em relação aos passos para o desenvolvimento da Smart Grid no Brasil.

SG e o marcado brasileiro

- No Brasil, a perspectiva de substituição de um parque de 64 milhões de medidores – com investimentos em equipamentos e softwares de medição, automação, tecnologia da informação (TI), telecomunicações e dispositivos de geração distribuída, que podem alcançar, segundo estudo da Abradee, de R\$ 46 bilhões a R\$ 91 bilhões até 2030.
- Multinacionais interessadas: IBM, GE, Siemens, Silverspring, Fujitsu e Asea Brown Boveri (ABB).

O início: a implantação de um GT

- O Ministério de Minas e Energia (MME) criou, em 2010, um grupo de trabalho encarregado de estudar e planejar a implantação de uma smart grid no país.
- Os membros do grupo de trabalho originário, além do MME, são representantes da Empresa de Pesquisa Energética (EPE), o Centro de Pesquisas de Energia Elétrica (CEPEL), a ANEEL e o Operador do Sistema Elétrico Nacional (ONS).
- Verbas vinculadas a P&D e desembolsos voluntários. FINEP; CNPQ.

Estado da Arte

- Segundo a Agência Brasileira de Desenvolvimento Industrial (ABDI, 2014), existem mais de 200 projetos pilotos em andamento na área de smart grids no Brasil. As iniciativas envolvem cerca de 450 instituições – entre ministérios, agências reguladoras, universidades e empresas.
- Até meados de 2014, os investimentos na área chegaram a R\$ 1,6 bilhão, com recursos originários especialmente do Programa de Pesquisa e Desenvolvimento da Agência Nacional de Energia Elétrica (Aneel) e do Inova Energia (R\$ 1,2 bilhão), sendo essa última ação parte do Plano Inova Empresa, lançado pelo governo federal, em março de 2013, para estimular a produtividade e a competitividade em vários setores da economia.

Em busca de uma coalizão de interesses

- O momento inicial para a concepção de uma coalizão de interesses em torno da SG foi dado com a criação do GT supracitado;
- Desde então, com a o desenvolvimento de projetospiloto, há o envolvimento crescente de stackeholders no processo;
- O levantamento da ABDI mostra que existem mais de 300 fornecedores nacionais de tecnologia da informação e comunicação, 126 centros de pesquisa e desenvolvimento e inovação e 60 concessionárias em atuação neste segmento no Brasil.
- Alguns projetos-piloto: Eletrobras/ Paritins; EDP/Aparecida; CEMIG/ Sete Lagoas; Eletropaulo/ Barueri.

Stakeholders

Agente	Responsabilidade/ Atuação
Conselho Nacional de Política Energética (CNPE)	Propor a Política Energética, considerando, dentre outros aspectos, o aproveitamento racional dos recursos energéticos do País; Definir a estratégia e a política de desenvolvimento econômico e tecnológico da indústria de biocombustíveis.
Ministério de Minas e Energia (MME)	Implementar as políticas energéticas definidas pelo CNPE
Agência Nacional de Energia Elétrica (ANEEL)	Regular a geração da energia elétrica a partir do biogás; Estabelecer as regras de injeção dos excedentes de biogás na rede interligada (venda às concessionárias distribuidoras);
Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP)	Regular e autorizar as atividades relacionadas à produção, à importação, à exportação, à armazenagem, à estocagem, ao transporte, à transferência, à distribuição, à revenda e à comercialização de biocombustíveis
Empresa de Pesquisa Energética (EPE)	Prestar serviços na área de estudos e pesquisas destinadas a subsidiar o planejamento do setor energético.
Ministério da Ciência, Tecnologia e Inovação (MCTI)	Responsável pela formulação e pela implementação da Política Nacional de Ciência e Tecnologia, e tem promovido ações integradas e cooperadas para o desenvolvimento da CT&I na área de energia elétrica.
Operador Nacional do Sistema Elétrico (ONS)	É o órgão responsável pela coordenação e controle da operação das instalações de geração e transmissão de energia elétrica no Sistema Interligado Nacional (SIN), sob a fiscalização e regulação da Agência Nacional de Energia Elétrica (Aneel).
Associação Brasileira de Distribuidores de	Reúne 42 concessionárias de distribuição de energia elétrica - estatais e privadas - atuantes
Energia Elétrica (ABRADEE) + ANACE + COGEN	em todas as regiões do país e que juntas são responsáveis pelo atendimento de cerca de 98% dos consumidores brasileiros.
Universidades	Grupos de pesquisa em Energia, Economia, Tecnologias, etc.
Empresas fornecedoras de equipamentos (WEG/ Siemens/ etc.)	Grupo de Estudos do Setor Elétrico Aproveitamento do enorme mercado do país. (IE/UFRJ)

Arcabouço legal e regulatório existente

Lei/ Resolução/ Instrumento	Descrição
Lei 10.438 (PROINFA)	A política do governo brasileiro para promover a expansão da geração de energia distribuída através de fontes renováveis e diversificação das fontes primárias de energia elétrica, melhorando, assim, a longo prazo, fornecendo condições do sistema nacional.
Lei 10.762	Que altera o anterior (10.438), a fim de assegurar recursos para antecipar prazos definidos pela agência reguladora e de restringir a isenção da contribuição financeira a esses novos consumidores com carga de até 50 Kw.
Decreto nº 5.163	Regulamenta a comercialização de energia elétrica, o processo de outorga de concessões e de autorizações de geração de energia elétrica, e dá outras providências.
Resolução Normativa da Aneel, nº 167	Estabelece as condições para a comercialização de energia proveniente de geração distribuída
Resolução Autorizativa, ANEEL nº 1.482	Autoriza Programa de Geração Distribuída com Saneamento Ambiental apresentado pela Companhia Paranaense de Energia - COPEL como projeto piloto de implantação de geração distribuída em baixa tensão.
Resolução Normativa ANEEL nº 390	Estabelece os requisitos necessários à outorga de autorização para exploração e alteração da capacidade instalada de usinas termelétricas e de outras fontes alternativas de energia, os procedimentos para registro de centrais geradoras com capacidade instalada reduzida e dá outras providências.
Resolução Normativa ANEEL nº 482/2012	Regula medidores de rede de consumidores considerando micro geração distribuída e mini-geração (101 ≤ capacidade instalada < 1000 kWp) .
Resolução Normativa ANEEL nº 502/2012	Regerarimplantação de medidores inteligentes. (IE/UFRJ)

Conclusões

- No Brasil e no mundo, as SG encontram-se atualmente em um estágio de evolução embrionário, oferecendo grandes oportunidades para as empresas, concessionárias de energia, fornecedores de tecnologia, governos, consumidores e desenvolvimento de novas capacitações.
- A experiência internacional evidencia que o engajamento do governo e dos órgãos reguladores é crucial para o desenvolvimento de projetos de SG.
- A elaboração de políticas para o inovações tecnológicas para o setor de energia, particularmente as renováveis, é resultado da pesquisa e e processos de decisão acumulados ao longo do tempo.

Uma agenda de longuíssimo prazo

- A literatura aponta que os planos de substituição de medidores inteligentes dos Estados Unidos, da Europa e do Japão apontam para conclusão entre 2022 e 2030, não necessariamente significando a implantação do conceito integral de SG.
- Com efeito, apesar de todas as barreiras potenciais, os resultados esperados são alvissareiros. A dificuldade é, então, conceber políticas públicas, regras e regulação com uma perspectiva de longíssimo prazo.