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Slow-fast systems, also known as singularly perturbed ordinary differential equations, are
often used to model phenomena in two or more time scales. Examples of such phenomena
include: robots with flexible joints, power networks, neuronal dynamics, population dynamics,
biochemical reactions, among many others. A convenient property that slow-fast systems
may have comes from the fact that, under certain conditions concerning the stability of
equilibrium points of the fast dynamics, the whole system can be decomposed into reduced
subsystems which together provide a good approximation of the slow-fast dynamics. Taking
advantage of the aforementioned decomposition, a classical way to control slow-fast systems
is the composite control technique, which consists on the design of sub-controllers for the
slow and for the fast subsystems independently. Then, provided that some technicalities are
met, the sum of such sub-controllers provides a controller for the slow-fast system.

Although the composite control method is powerful and has had many applications, it fails
at non-hyperbolic points of the fast dynamics, which we call singularities. Near singularities,
a clear time scale separation is not possible, and usually the trajectories of the slow-fast
system exhibit jumps. In this talk we first briefly review the classical composite control
method, and then show some examples where such method fails. Next, we present a novel
controller that allows the stabilization of singularities of a class of slow-fast control systems.
The main ingredient for the design of the controller is the use of geometric desingularization
via the blow-up method. Finally, we digress on possible extensions and potential applicability
of the theory.

Result

A slow-fast control system (SFCS) is a singularly perturbed ordinary differential equation of
the form
T = f(x,z,u,¢)

. (1)
€2 = g(:):,z,u,e),
where z € R™ (slow variable), z € R"f (fast variable), v € R™ is a control input, f and g
are sufficiently smooth functions, and the independent variable is the slow time ¢. One can
also define a new time parameter 7 = g called the fast time, and then (1) is rewritten as

v =cef(z,2,u,¢)
o (2)

= g(x7 2, U, 5))
where the prime ’ denotes derivative with respect to 7. Note that (1) and (2) are equivalent
as long as € > 0.

Definition 1 (Normal hyperbolicity). A point s € S is called hyperbolic if it is a hyperbolic
equilibrium point of the reduced vector field 2’ = g(x, z,0) of the Layer equation. The manifold
S is called normally hyperbolic (NH) if every point s € S is hyperbolic. A point that fails to
be hyperbolic is called non-hyperbolic.
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Our main result is as follows (full details, the proof, and a couple of examples appear on
[1]):
Theorem 1. Consider the SFCS
T = f(x,z2,¢)+ B(x, z,¢)u(z, 2,¢)
. k-1 ‘ (3)
ez =— |2+ Z:cizlfl + H(z,z,¢),
i=1

where B is invertible near the origin and H(x, z,€) denotes higher order terms. Let us denote
the i-th component of the vector Bu as (Bu);. Suppose the controller u is designed such as

k—1

—1 —k .
(Bu); = —A1 + 21 (1 4+ cpc1)z +€2+-1 Z ciziz !
i=2
_ 8Gk k=1
+e 1 (82 — g2k-1 (CO+CI)) Gy, (4)
—k
(Bu)j = —A; — cieTay,
—k
(Bu)j = —A]’ — cjek-1x;,
where all constants co, c1, ¢, ¢j are positive with ¢; < c1 fori=0,2,.... k=1, j=Fk,..., ng.

Then the origin (z,z) = (0,0) € R™ x R is rendered locally asymptotically stable for ¢ > 0
sufficiently small.

Remark: note that the origin is a non-hyperbolic point of (3). In fact, at the origin we
have g(0) = 22(0) = --- = 2.24(0) = 0 and 2£(0) # 0.
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