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Abstract
This poster presents some recent results [2] concerning a constructive proof for complete controllability of

the rolling motion of a 2-dimensional pseudo-hyperbolic space, with index zero, over the affine space associated
with the tangent space at a point. It is assumed that this rolling motion has the constraints of no-twist and no-slip
(pure rolling). We describe a procedure that shows how to move the 2-dimensional pseudo-hyperbolic space up to
any admissible configuration, by rolling without violating the constraints. This is accomplished by generating the
forbidden motions of twist and slip using only pure rolling motions.

1 Establishing the problem

Consider the matrix Jκ = diag(−Iκ, In−κ). The formula 〈u,w〉κ = u>Jκw defines a scalar product
on IRn, making it a pseudo-Riemannian manifold, which we denote by IRnκ.

Associated with Jκ, one also defines the group Oκ(n) =
{
R ∈ GL(n, IR) : R>JκR = Jκ

}
. Each

isometry of IRnκ has a unique expression as x 7→ Rx + s, with R ∈ Oκ(n) and s ∈ IRn. We will
represent the isometries of IRnκ by pairs (R, s).

The pseudo-hyperbolic space in IRn+1
κ+1 is the hyper-quadric, with index κ, dimension n and radius

r, defined by

Hn
κ (r) =

{
p ∈ IRn+1

κ+1 : 〈p, p〉κ+1 = −r2
}
.

The affine tangent space to Hn
κ (r) at a point p0 is T aff

p0 H
n
κ (r) =

{
p0 + v : v ∈ Tp0Hn

κ (r)
}

.
The main result about the rolling motion of Hn

κ (r) over T aff
p0 H

n
κ (r) was proved in [1] and is pre-

sented next. Let p0 be a point in Hn
κ (r) and t ∈ [0, τ ] 7→ u(t) ∈ IRn+1

κ+1 a (piecewise) smooth function
satisfying 〈u(t), p0〉κ+1 = 0. If R(t) and s(t)) form the solution-curve of{

ṡ(t) = r2u(t)

Ṙ(t) = R(t)
(
−u(t)p>0 + p0u

>(t)
)
Jκ+1

, (∗)

satisfying (R(0), s(0)) = (In+1, 0), then t ∈ [0, τ ] 7→ X(t) = (R−1(t), s(t)) is a rolling map of Hn
κ (r)

over T aff
p0 H

n
κ (r), without slipping or twisting.

The kinematic equations (∗) can be seen as a control system, where the controls are played by the
components of the function u, and it was shown in [1] that this system is controllable. However, the
proof of the controllability presented in [1] is not constructive, i.e., does not specify how to reach any
admissible configuration. Thus, it makes sense to present a constructive proof of the controllability
property, which is precisely the purpose of this work in the case where Hn

κ (r) = H2
0(1).

2 Moving H2
0(1) up to any admissible configuration (R̃, s̃)

ConsiderH2
0(1) = {(x, y, z) : x2−y2−z2 = 1, x > 0}, and, without loss of generality, p0 = (1, 0, 0).

The following algorithm is a procedure to moveH2
0(1) up to any given configuration (R̃, s̃), when pure

slips and pure twists are allowed. R̃ belongs to the identity component of O1(3) and s̃ ∈ Tp0H2
0(1).

For ϕ ∈ IR, define

x(ϕ) =

 1 0 0
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) cos(ϕ)

, y(ϕ) =

 cosh(ϕ) 0 sinh(ϕ)
0 1 0

sinh(ϕ) cosh(ϕ)

 and z(ϕ) =

 cosh(ϕ) sinh(ϕ) 0
sinh(ϕ) cosh(ϕ) 0

0 0 1

 .
Suppose that R̃ = x(a1)y(a2)z(a3). Then, the desired motion can be performed as explained next.

Algorithm 2.1. (to produce a motion up to the configuration (R̃, s̃))
Step 1 Execute the rolling motion determined by the control u(t) = (0,−a3, 0). The pseudo-

hyperbolic space rolls along this vector, to the configuration (z(a3), (0,−a3, 0)).
Step 2 Execute the rolling motion determined by the control u(t) = (0, 0,−a2). The pseudo-

hyperbolic space rolls along this vector, to the configuration (y(a2)z(a3), (0,−a3,−a2)).
Step 3 Execute the pure twist correspondent to the rotation of angle a1 around the x-axis. This moves

the pseudo-hyperbolic space to the configuration (x(a1)y(a2)z(a3), (0,−a3,−a2)).
Step 4 Execute a pure slip over the vector (0, a3, a2)). This moves the pseudo-hyperbolic space to

the configuration (R̃, 0).
Step 5 Execute a pure slip over the vector s̃. This moves the pseudo-hyperbolic space up to the

desired final configuration (R̃, s̃).

Figure 1: Moving the pseudo-hyperbolic space to the configuration (x(a1)y(a2)z(a3), s̃).

We notice that in general R̃ =

m∏
i=1

x(a1
i)y(a2

i)z(a3
i), where ai1, a

i
2, a

i
3 ∈ IR and m ∈ IN . But,

when m > 1, the desired motion is achieved with successive iterations of the first four previous steps,
before the final step 5 is performed.

3 Answers to two the essential questions
The previous algorithm reduces the constructive proof of controllability to showing how it is possible
to replace the forbidden pure twists and pure slips by pure rolling motions, to obtain the same effect.
Therefore, the key issues of this work can be formulated as follows:

•How to generate a pure twist or a sliding twist associated with any given angle θ?

•How to generate a pure slip associated with any given displacement s ∈ Tp0H2
0(1)?

3.1 Generating a sliding twist
Next we present a rolling motion that generates a sliding twist of H2

0(1) over T aff
p0 H

2
0(1), correspond-

ing to a rotation θ around the x-axis. For that, we start by choosing any non-zero auxiliary value ϕ,
having opposite sign to the given angle θ.

Algorithm 3.1. (to generate a sliding twist)
Step 1 Perform the rolling motion given by u(t) = (0, ϕ, 0). The pseudo-hyperbolic space rolls over

a line segment parallel to the y-axis, with length |ϕ|.
Step 2 Perform the rolling motion given by u(t) = (0, 0, θ/ sinh(ϕ)). The pseudo-hyperbolic space

rolls over a line segment parallel to the z-axis, with length −θ/ sinh(ϕ).
Step 3 Perform the rolling motion given by u(t) = (0,−ϕ, 0). The pseudo-hyperbolic space rolls

back over a line segment parallel to the y-axis, with length |ϕ|.
Step 4 Perform the rolling motion over the circunference centred at (0, coth(ϕ), θ

sinh(ϕ)
), describing

the angle θ, up to the final configuration:
(
x(θ), (0, coth(ϕ)(1− cos(θ)),− coth(ϕ) sin(θ) + θ

sinh(ϕ)
)
)
.

Figure 2: Generating a sliding twist with angle θ.

3.2 Generating a pure slip
We now present a rolling motion that generates a pure slip of H2

0(1) over T aff
p0 H

2
0(1), corresponding

to a given displacement s ∈ Tp0H2
0(1). Set ϕ ∈ IR− and denote by Tϕ(θ) the translation operated on

H2
0(1) when a sliding twist, with rotation angle θ and auxiliar value ϕ, is generated.

Algorithm 3.2. (to generate a pure slip)
Step 1 Perform the rolling motion along the vector u = −Tϕ(π) +

1

2
s.

Step 2 Perform the rolling that generates the sliding twist of angle θ = π, using the auxiliary value
ϕ. (At the end the “midpoint” of the vector s is reached.)
Step 3 Repeat the first step, that is, roll the pseudo-hyperbolic space again along the vector u, ap-

plied at the midpoint of s.
Step 4 Repeat the second step, to generate another sliding twist of angle π, up to the final configu-

ration: (I3, s).

Figure 3: Generating a pure slip with displacement s.

Conclusions
•A constructive proof for complete controllability of the rolling system corresponds to show how

pure twists or sliding twists and pure slips can be replaced by rolling without twisting or slipping.

• Sliding twists and pure slips can be generated by means of rolling motions on straight lines and
circumferences, with the 4-step sequences described in algorithms 3.1 and 3.2.
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