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Introduction

A nonholonomic constraint on a mechanical system is a noninte-
grable distribution D on @ and it is locally given by

pi(q)d' =0, 1< a< k.

Nonholonomic dynamics is given by the Lagrange-d'Alembert equa-
tions for L : TQ — R, whose local expression is

d (0L oL

1i(q)g' =0, (2)

for some Lagrange multipliers \,, to be determined. Under suitable

regularity conditions, the solutions are integral curves of a well-
defined second-order vector field I, € X(D).

Lagrangian discrete mechanics

Let Ly : @ X Q — R be thediscrete lagrangian function and the
discrete path space be

Co(Q) = {90 = {ak}h—o lax € Q},
with gg and gy fixed. The discrete action map is defined to be the
map Sy : Cy(Q) — R,

= z_: La(qk, Gr+1)- (3)

he discrete Hamilton's principle implies the discrete Euler-
Lagrange equations (see [4])

DoLg(qk—1, qc) + DiLa(qk, gkv1) =0, forall k=1,... . N —1. (4)

By choosing the exact discrete lagrangian tfor a Lagrangian L

%(0, g1, h) — / L(qoa(£), coa(t)) dt. (5)

where qo1(t) is the solution of standard Euler-Lagrange equations
with go1(0) = qo and qo1(h) = q1, the solution of (4) for LS be-
comes exact in the sense that the discrete path is the exact sequence
{qo1(kh), k =0,1,2,...}. Moreover, the converse holds.

Nonholonomic exponential map

Let L be a kinetic lagrangian L with nonholonomic flow @5”” D —
D. The nonholonomic exponential map

exp,rv””:Z/lgD%QxQ

I
Vago = (q07 T O Yy h(VqO))
can be proven to be a smooth local embedding and therefore a

local diffeomorphism into its image, denoted by /\/lZ. lts inverse is
denoted by Rf : M" — D.

EDLA equations

ake the exact discrete Lagrangian defined by (5), but now

qo1(t; 9o, q1) = 7 0 ©;"(RE (qo, q1)) is a solution of (1) and (2). If
(90, q1), (q1, q2) € M are the points qx = qo.1(kh) then

DILZ(qla q2) T Dsz(qu ql) + fdl(qO? ql) + fc?(qla q2) — 07 (6)
is satisfled by the exact solution, where

h
- 9,
() va) = [ Ol S ) i) e (7

(9%1(

Here, t; o, q1) * Vg, = %\s:oqog(t; qo, q1(s)) with vg = q;(0)
and a S|m||ar notation for the other expression. Note that we take

(90, q1(s)) € M which restricts v, to lie in a particular subspace
of T,, Q. However, in [3] the authors argue that (6) is not a suitable
integrator: it does not define a unique g, from (qo, g1).
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Mechanics on general algebroids

A skew-symmetric algebroid is a a vector bundle 7p : D — (@ together with a vector bundle
map p : D — TQ called the anchor map, for which there is a bracket operation [ X, Y]
defined on sections of D, i.e., X, Y € (D). This structure generalizes several geomet-
ric constructions such as tangent bundles, Lie algebras, Atitah bundles or nonholonomic
mechanical systems.

It we write

-0

X, Xglp = CEX. p(X,) = ple
[Xa, Xblp = CopXe  p(X3) Pagg

on local coordinates (g') on @ and coordinates (q', y?) on D adapted to the submersion
Tp and associated to a local basis of sections {X,} then

dqi I a
g’t —é‘lzay 04 O/ Y
dt (5’yb> ayc pba i 07 (9)

(9) are the Euler-Lagrange equations on the algebroid D for a lagrangian ¢ : D — R,
whereas (8) is the admissibility condition for the solution curve. In the particular case,
where the algebroid is a tangent bundle or a Lie algebra, equations (9) are the standard
Euler-Lagrange or Euler-Poincaré equations, respectively.

We have a "variational-type” principle to obtain (9) from the functional

Jo(y) = / (((2)) dt, (10)

on admissible pathsin D, i.e., poy = %(TDO’}/). Given a curve v in D, take the complete

lift of a section X of D over Y:=7Tpov,ie, Tpo X = 7, locally defined by

XE(8) = X(O0(0) |+ [X7() + Gua( O (OX (1)) (11)
dq +(t) Jy ()

Then (see [5]) an admissible curve 7 is a solution of (9) if and only if for every section X
of D over v and vanishing at the end-points we have

(ddp(7), X7) = 0.

An exact integrator

Given a projector P : TQ — D (e.g., an orthogonal projector associated to the Riemannian
metric defining the kinetic Lagrangian). Denote by i : D <— TQ the inclusion map.
The maps

p(X) = i(X), [X,Y]po = P([p(X), p(Y)]). (12)
where X, Y € (D) and the bracket on the right-hand side is the Lie bracket of vector
fields, deflne an algebroid structure on D (cf. [2]).

Define the exact discrete lagrangian L3 : /\/lh — R, by

L5(do, 1) — / {(os(£), doa(t)) dt — / ((r0a(1)) dt.

where Y01 := (qo0.1(t), go.1(t)) € D is the unique nonholonomic solution with go1(0) = qo

and qO,l(h) — (1.
Define the discrete operators BLS : M" — D* and FL¢ : M — D* called the backward

and forward discrete transforms, respectively, defined by

(BLp(q0, q1); Xgo) = (dIp(70.1), X5 ,) (13)
<FL6(% Q1)7 qu> — <d~ (70 1) Y%J (14)
where in (13) X, € Dy, and X7 is the complete lift of any section X of D over v

satisfying X(0) = X,, and X(h) = 0. Analogously, in (14), Y, € D,, and we pick any Y
over vy satisfying Y(0) = 0 and Y(h) = Y.

Then, under suitable regularity conditions, the equation
IFL/G;(qO) ql) + BLZ(QL q2) = 0. (15)

is an exact integrator for nonholonomic mechanics. However, (15) is not given by a discrete
"variational-type” princple (such as in the standard case). Our goal is:

construct a discrete variational principle for nonholonomic mechanics for which we can
find an exact discrete lagrangian with properties similar to those of (5). We hope to do
it in a framework similar to that in [1], by relaxing the condition of Lie groupoid, taking
into account the particular structure of nonholonomic mechanics.

compare with other integrators and formulate a "variational” error analysis.
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