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Introduction

A nonholonomic constraint on a mechanical system is a noninte-
grable distribution D on Q and it is locally given by

µai (q)q̇i = 0, 1 6 a 6 k.

Nonholonomic dynamics is given by the Lagrange-d’Alembert equa-
tions for L : TQ → R, whose local expression is

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= λaµ

a
i (q) (1)

µai (q)q̇i = 0, (2)

for some Lagrange multipliers λa, to be determined. Under suitable
regularity conditions, the solutions are integral curves of a well-
defined second-order vector field Γnh ∈ X(D).

Lagrangian discrete mechanics

Let Ld : Q × Q → R be thediscrete lagrangian function and the
discrete path space be

Cd(Q) = {qd = {qk}Nk=0 |qk ∈ Q},
with q0 and qN fixed. The discrete action map is defined to be the
map Sd : Cd(Q)→ R,

Sd(qd) =
N−1∑
k=0

Ld(qk, qk+1). (3)

The discrete Hamilton’s principle implies the discrete Euler-
Lagrange equations (see [4])

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) = 0, for all k = 1, ...,N − 1. (4)

By choosing the exact discrete lagrangian for a Lagrangian L

Led(q0, q1, h) =

∫ h

0

L(q0,1(t), q̇0,1(t)) dt, (5)

where q0,1(t) is the solution of standard Euler-Lagrange equations
with q0,1(0) = q0 and q0,1(h) = q1, the solution of (4) for Led be-
comes exact in the sense that the discrete path is the exact sequence
{q0,1(kh), k = 0, 1, 2, ...}. Moreover, the converse holds.

Nonholonomic exponential map

Let L be a kinetic lagrangian L with nonholonomic flow ϕΓnh
t : D →

D. The nonholonomic exponential map

expΓnh

h : U ⊆ D → Q × Q

vq0
7→ (q0, τ ◦ ϕΓnh

h (vq0
))

can be proven to be a smooth local embedding and therefore a
local diffeomorphism into its image, denoted by Mh

d . Its inverse is
denoted by Re−

h :Mh
d −→ D.

EDLA equations

Take the exact discrete Lagrangian defined by (5), but now
q0,1(t; q0, q1) = τ ◦ϕΓnh

h (Re−

h (q0, q1)) is a solution of (1) and (2). If
(q0, q1), (q1, q2) ∈Mh

d are the points qk = q0,1(kh) then

D1L
e
h(q1, q2) + D2L

e
h(q0, q1) + f 1

d (q0, q1) + f 0
d (q1, q2) = 0, (6)

is satisfied by the exact solution, where

〈f id (q0, q1), vqi〉 =

∫ h

0

〈λa(t)µa,
∂q0,1

∂qi
(t; q0, q1) · vqi〉 dt. (7)

Here,
∂q0,1

∂q1
(t; q0, q1) · vq1

:= d
ds |s=0q0,1(t; q0, q1(s)) with vq1

= q′1(0)
and a similar notation for the other expression. Note that we take
(q0, q1(s)) ∈ Mh

d which restricts vq1
to lie in a particular subspace

of Tq1
Q. However, in [3] the authors argue that (6) is not a suitable

integrator: it does not define a unique q2 from (q0, q1).

Mechanics on general algebroids

A skew-symmetric algebroid is a a vector bundle τD : D → Q together with a vector bundle
map ρ : D → TQ called the anchor map, for which there is a bracket operation [X ,Y ]
defined on sections of D, i.e., X ,Y ∈ Γ(D). This structure generalizes several geomet-
ric constructions such as tangent bundles, Lie algebras, Atitah bundles or nonholonomic
mechanical systems.
If we write

[Xa,Xb]D = C c
abXc ρ(Xa) = ρia

∂

∂qi

on local coordinates (qi) on Q and coordinates (qi , y a) on D adapted to the submersion
τD and associated to a local basis of sections {Xa} then

dqi

dt
= ρiay

a (8)

d

dt

(
∂`

∂y b

)
− ∂`

∂y c
y aC c

ab − ρib
∂`

∂qi
= 0, (9)

(9) are the Euler-Lagrange equations on the algebroid D for a lagrangian ` : D → R,
whereas (8) is the admissibility condition for the solution curve. In the particular case,
where the algebroid is a tangent bundle or a Lie algebra, equations (9) are the standard
Euler-Lagrange or Euler-Poincaré equations, respectively.
We have a ”variational-type” principle to obtain (9) from the functional

JD(γ) =

∫ h

0

`(γ(t)) dt, (10)

on admissible paths in D, i.e., ρ ◦γ = d
dt(τD ◦γ). Given a curve γ in D, take the complete

lift of a section X of D over γ := τD ◦ γ, i.e., τD ◦ X = γ, locally defined by

X c
γ (t) = X a(t)ρia(γ(t))

∂

∂qi

∣∣∣∣
γ(t)

+
[
Ẋ a(t) + C a

bd(γ(t))γb(t)X d(t)
] ∂

∂y a

∣∣∣∣
γ(t)

. (11)

Then (see [5]) an admissible curve γ is a solution of (9) if and only if for every section X
of D over γ and vanishing at the end-points we have

〈dJD(γ),X c
γ 〉 = 0.

An exact integrator

Given a projector P : TQ → D (e.g., an orthogonal projector associated to the Riemannian
metric defining the kinetic Lagrangian). Denote by i : D ↪→ TQ the inclusion map.
The maps

ρ(X ) = i(X ), [X ,Y ]D = P([ρ(X ), ρ(Y )]), (12)

where X ,Y ∈ Γ(D) and the bracket on the right-hand side is the Lie bracket of vector
fields, define an algebroid structure on D (cf. [2]).
Define the exact discrete lagrangian Leh :Mh

d −→ R, by

Leh(q0, q1) =

∫ h

0

`(q0,1(t), q̇0,1(t)) dt =

∫ h

0

`(γ0,1(t)) dt,

where γ0,1 := (q0,1(t), q̇0,1(t)) ∈ D is the unique nonholonomic solution with q0,1(0) = q0

and q0,1(h) = q1.
Define the discrete operators BLeh :Mh

d → D∗ and FLeh :Mh
d → D∗ called the backward

and forward discrete transforms, respectively, defined by

〈BLeh(q0, q1),Xq0
〉 = 〈dJD(γ0,1),X c

γ0,1
〉 (13)

〈FLeh(q0, q1),Yq1
〉 = 〈dJD(γ0,1),Y c

γ0,1
〉 (14)

where in (13) Xq0
∈ Dq0

, and X c
γ0,1

is the complete lift of any section X of D over γ
satisfying X (0) = Xq0

and X (h) = 0. Analogously, in (14), Yq1
∈ Dq1

and we pick any Y
over γ satisfying Y (0) = 0 and Y (h) = Yq1

.
Then, under suitable regularity conditions, the equation

FLeh(q0, q1) + BLeh(q1, q2) = 0. (15)

is an exact integrator for nonholonomic mechanics. However, (15) is not given by a discrete
”variational-type” princple (such as in the standard case). Our goal is:

I construct a discrete variational principle for nonholonomic mechanics for which we can
find an exact discrete lagrangian with properties similar to those of (5). We hope to do
it in a framework similar to that in [1], by relaxing the condition of Lie groupoid, taking
into account the particular structure of nonholonomic mechanics.

I compare with other integrators and formulate a ”variational” error analysis.
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