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ABSTRACT: We seek minimal surfaces among the family of ruled surfaces in the Euclidean space [1]. Such surfaces are generated by a straight line, called generatrix,
that moves along a curve, the directrix. We approach this problem using the techniques from control theory. In the literature the minimal revolution surface is often
obtained as the solution to an optimal control problem. Nothing similar has been published for other families of minimal surfaces because partial differential equations
cannot be avoided. This is why we use the k–symplectic formalism to recover the plane and the helicoid as extremals of an optimal control problem.

1 Introduction

Definition 1 A ruled surface is generated by
straight lines and it can be described parame-
trically as

σ : D ⊆ R2 −→ R3

(u, v) 7−→ σ(u, v) = γ(u) + v w(u)

where γ(u), w(u) are curves in R3.

Example 1 The helicoid σ(u, v) = (0, 0, bu) +

v(a cosu, a sinu, 0), a, b ∈ R, D = R× [0, 1].
For b = 0, it becomes the plane.
In cylindrical coordinates, σ(r, θ) = (r, θ, cθ),
where c ∈ R, D = [0, 1]× R.

Definition 2 A minimal surface in R3 is a surface with zero mean curvature.

Meusnier (1776): The helicoid and the plane are the only minimal ruled surfaces.

A surface is minimal if and only if it is a critical point of the area functional (Lagrange,
1760). The area of an explicit surface S = {(x, y, z(x, y) | (x , y) ∈ Dom(z))} is

A =

∫∫
Dom(z)

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dxdy . (1)

2 Background in k–symplectic formalism

The partial derivatives in (1) make impossible to use classical optimal control theory, except for the
minimal revolution surface (the catenoid).

A crash course on k–symplectic formalism [2]:
The k-tangent bundle of Q, T 1

kQ, is the Whitney sum:

T 1
kQ = TQ⊕ k· · · ⊕TQ.

The elements of T 1
kQ are k-tuples (v1q, . . . , vkq) of vectors in TqQ, q ∈ Q.

The canonical projection τkQ : T1
kQ→ Q: τkQ(v1q, . . . , vkq) = q.

Local coordinates for T 1
kQ: (qi, viA), A = 1, . . . , k, i = 1, . . . , dim Q.

A k-vector field on Q is a section X : Q→ T 1
kQ of τkQ.

The canonical projection τ
k;A
Q (v1q

, . . . ,vkq
) = vAq

associates X with

a family of vector fields on Q : XA = τ
k;A
Q ◦X A = 1, . . . , k.

An integral section of X is a map σ : Rk → Q, t→ σ(t) s.t.

T1
kσ =

(
∂σ

∂t1
, . . . ,

∂σ

∂tk

)
σ(t)

= X ◦ σ where t = (t1, . . . , tk).

k-symplectic optimal control problem

T 1
kQ

τ kQ
��

I = I1 × · · · × Ik ⊆ Rk φ
//

(T1
k)(π1 ◦ φ)

22

Q× U

X
;;

π1 //Q

Let L : Q× U → R be the cost function and u : I ⊂ Rl → U are the control functions.

Find a map φ = (σ, u) : I→ Q× U passing through q0 and qf in Q s. t.

1. it is an integral section of X = (X1, . . . , Xk), i.e.

T1
k(π1 ◦ φ) = X ◦ φ, i.e.

∂σi

∂tA
(t) = Xi

A(φ(t)) = Xi
A(σ(t), u(t)),

2. it minimizes the functional
∫
I1×···×Ik L(φ̃(t))dt

1 ∧ · · · ∧ dtk

among all the integral sections φ̃ of X on Q× U passing through q0 and qf .

2.1 Hamilton-De Donder-Weyl equation

Let us denote by T ∗Q the cotangent bundle of Q, and (T 1
k )
∗Q the k–cotangent bundle of Q.

Pontryagin’s Hamiltonian function is a map H : (T 1
k )
∗Q× U −→ R given by

H(p, u) =
k∑

A=1

HA(p, u), where HA(p, u) = −L(q, u) +
n∑
j=1

pAj X
j
A(q, u).

Definition 3 A k–vector field X∗ is said to be Hamiltonian if, for every control u, it satisfies Hamilton-De
Donder-Weyl’s equation,

k∑
A=1

i
X
∗{u}
A

ωA = dH. (2)

By expressing the Hamiltonian k–vector field in components,

X∗A = (YA)
i ∂

∂qi
+ (YA)

C
j

∂

∂pCj
,

equation (2) leads to the adjoint equations,
k∑

A=1

(YA)
A
i =

k∑
A=1

(
∂L

∂qi
− pAj

∂X
j
A

∂qi

)
∀ 1 ≤ i ≤ n. (3)

Pontryagin’s maximum principle (PMP), as stated in [3], claims that the solution to the extended k–
symplectic optimal control problem, that is, the optimal integral section, must be the integral section of
a Hamiltonian k–vector field. In addition each Hamiltonian function HA attains its supremum over the
controls along the optimal integral section.

3 Contribution

In cylindrical coordinates the area integral in (1) becomes:

A =

∫∫
Dom(z)

L(r, θ)rdrdθ =

∫∫
Dom(z)

√
r2(1 + u2) + v2drdθ. (4)

We take as controls
u =

∂z

∂r
, v =

∂z

∂θ
,

(r, θ) corresponds with the variables (t1, t2) in 2–symplectic formalism.

Without loss of generality, to minimize the integral (4) is equivalent to minimize the double integral of
the non-autonomous integrand

L(r, u, v) = r2(1 + u2) + v2 ,

which depends explicitly on t1 = r.

Trick: Introduce a new variable z0 = r such that
∂z0
∂r

= 1 and
∂z0
∂θ

= 0

and the Lagrangian is autonomous.

Setting: Q = (0,∞)× R with local coordinates (z0, z). L(z0, z, u, v) = z20(1 + u2) + v2 .

Pontryagin’s Hamiltonian function:
H(z0, z, p

1
0, p

1, p20, p
2, u, v) = −L(z0, z, u, v)+p10 ·1+p

1 ·u+p20 ·0+p
2 ·v = −2z20(1+u

2)−2v2+p10+p
1u+p2v.

Dynamics: X1(z0, z, u, v) = 1
∂

∂z0
+ u

∂

∂z
and X2(z0, z, u, v) = v

∂

∂z
.

A weaker necessary condition, but not sufficient, to optimize Pontryagin’s Hamiltonian over the control
set as required by PMP, is

∂H

∂u
= 0⇔ −4z20u + p1 = 0 and

∂H

∂v
= 0⇔ −4v + p2 = 0 . (5)

For our particular problem, the adjoint equation corresponding to i = 2 is

∂p1

∂r
+
∂p2

∂θ
= 0 . (6)

By imposing tangency conditions to (5), we get
∂

∂r
(−4z20u + p1) = 0

∂

∂θ
(−4v + p2) = 0

⇔

−8z0u− 4z20

∂u

∂r
+
∂p1

∂r
= 0

−4∂v
∂θ

+
∂p2

∂θ
= 0


Adding the right-hand side equations and using (6), we get:

−8z0u− 4z20
∂u

∂r
− 4

∂v

∂θ
= 0.

In order to solve the PDEs we first try with locally constant controls that simplify the above equation to

−8z0u = 0.

The possible solutions are either r = z0 = 0 or u = 0. The first possibility does not define a surface be-
cause one parameter must be identically zero. The second possibility implies that zr = 0. Since v = zθ,
we have z(r, θ) = v (θ− θ0) + z0. Note that if v is different from zero, we obtain the parametrization
of the helicoid. If v is identically zero, we obtain a plane, the degenerate minimal ruled surface.
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