
Geometric description of quantumstates:

Markoviandynamics and control of openquantumsystems

Jorge A. Jover Galtier 1,2,3 (with J. F. Cariñena, J. Clemente Gallardo, G. Marmo)

1 Centro Universitario de la Defensa de Zaragoza, 2 Universidad de Zaragoza, 3 BIFI (Zaragoza, Spain)

The Heisenberg picture of Quantum Mechanics

In its modern formulation, the Heisenberg picture of Quantum Mechanics presents observables of
quantum systems as elements in a Lie-Jordan algebra O. There exist two inner operations: a
Lie bracket JA,BK, and a Jordan product A�B.
States of quantum systems are normalised, positive linear functionals on O:

S = {ρ ∈ O∗ | ρ(I) = 1; ρ(A2) ≥ 0, ∀A ∈ O} ⊂ O∗.

For �nite-dimensional systems, the dual space O∗ presents a natural geometric structure. Observ-
ables are represented on O∗ by real linear functions fA(ξ) = ξ(A). There exist two contravariant
(2, 0)-tensor �elds Λ and R, respectively Poisson and symmetric, de�ned as

Λ(dfA,dfB)(ξ) =ξ(JA,BK) = fJA,BK(ξ),

R(dfA,dfB)(ξ) =ξ(A�B) = fA�B(ξ),

Tensor �elds Λ and R de�ne respectively a Poisson bracket and a symmetric product of functions:

{f, g} = Λ(df, dg), (f, g) = R(df, dg), ∀f, g ∈ C∞(O∗).

Proposition 1. The set FO(O∗) is a Lie-Jordan algebra with products

{fA, fB} = fJA,BK, (fA, fB) = fA�B , A,B ∈ O.

Hamiltonian and gradient vector �elds on O∗ are de�ned as:

Xf = −Λ(df, ·), Yf = R(df, ·), f ∈ C∞(O∗).

Unitary evolution of quantum systems is governed by a Hamiltonian vector �eld:

d

dt
ρ(t) = XfH (ρ(t)).

The set of states

The de�nition of the set S of states can be rewritten as

S = {ρ ∈ O∗ | fI(ρ) = 1; fA2(ρ) ≥ 0, ∀A ∈ O} ⊂ O∗.

The set of states S is the bounded set of positive
elements inside the hyperplane Ŝ of normalised
elements in O∗. It is thus a manifold with boundary.
Di�erential calculus is carried out by considering
the embedding of S into the larger, di�erentiable
manifold Ŝ. Hamiltonian and gradient vector �elds on
O∗ preserve the rank of the elements [3], but not the
normalization condition.

The set S is a strati�ed manifold [3, 4], with the decomposition

S =

n⋃
j=1

Sj , Sj
⋂
Sk = ∅, j 6= k.

with each stratum Sj the subset of states whose associated density matrix has rank j. Each
stratum is on its own a di�erentiable manifold.

The set of states of a 2-level system is called the Bloch ball.

ρ =
1

2

(
1 + x3 x1 − ix2

x1 + ix2 1− x3

)
, x2

1 + x2
2 + x2

3 ≤ 1

ρ0 = |0〉〈0|, ρ1 = |1〉〈1|, ρM =
1

2
ρ0 +

1

2
ρ1

The algebra of observables, as linear functions, is su(2)

{xj , xk} =
3∑

l=1

εjklxl

(xj , xk) = δjk

j, k = 1, 2, 3

Geometric description of the space of quantum states

Theorem 1. [2] Consider an algebra (C∞(M), ∗) of smooth functions on the manifold M . If

the set G of invariant functions with respect to the Lie group action φ : G × M → M is a

subalgebra, then the restriction of the composition law ∗ to G de�nes an algebraic structure
on the set of smooth functions on the orbit set M/G.

Consider the group action on O∗0 = O∗ − {0} generated by the dilation vector �eld ∆ = YI :

φ : R+ ×O∗0 → O∗0 , φ(a, ξ) = aξ.

The quotient manifold O∗0/R+ can be
embedded as the unit sphere inO∗0 . The
geometric objects cannot be projected
by π : O∗0 → O∗0/R+, as they are not
constant along the integral curves of ∆:

L∆Λ 6= 0, L∆R 6= 0, L∆fA 6= 0

By relating points in the same orbits of
the group action, it is possible to de�ne
a bijection

$ : (O∗0/R+) ∩Π→ S

Invariant functions under the group action are expectation value functions of observables:

eA(ξ) =
fA(ξ)

fI(ξ)
⇒ eA(aξ) = eA(ξ), ∀a ∈ R+, ∀ξ ∈ O∗.

Expectation value functions and their products do not close any algebra with respect to the previ-
ously de�ned products:

{eA, eB} =
1

fI
eJA,BK, (eA, eB) =

1

fI
(eA�B − 2eAeB).

Theorem 2. The set of expectation value functions on S is a Lie-Jordan algebra with respect

to the products

{εA, εB}S :=ΛS(dεA,dεB) = εJA,BK,

(εA, εB)S :=RS(dεA,dεB) + 2εAεB = εA�B .

with eA|Π = ($ ◦ π)∗(εA), ΛS = ($ ◦ π)∗((fIΛ)|Π), RS = ($ ◦ π)∗((fIR̂)|Π).

Relevant remarks

• The reduction procedure breaks linearity, in particular in the case of the Jordan structure.
Non-linear behaviours are expected.

• Unitary dynamics is again generated by means of a Hamiltonian vector �eld, obtained by
means of the Poisson tensor �eld ΛS on the manifold of states.

• Tensor �elds ΛS and RS are invariant under unitary dynamics. This is no longer true under
more generic evolutions, which may lead to contractions of the algebra of observables
[1, 5].

• The action of RS on expectation value function gives the deviation of the Jordan product
from the point-wise product, i.e. of the non-local product with respect to the local product:

RS(dεA,dεB)(ρ) = (εA, εB)S(ρ)− 2εA(ρ)εB(ρ), A,B ∈ O, ρ ∈ S.

Furthermore, the tensor �eld RS is related with the de�nitions of variance Var(A) and
covariance Cov(A,B) of observables:

RS(dεA,dεA)(ρ) = 2εA2(ρ)− 2(εA(ρ))2 = 2Var(A)(ρ),

RS(dεA,dεB)(ρ) = εA�B(ρ)− 2εA(ρ)εB(ρ) = 2Cov(A,B)(ρ),

RS is the main object re�ecting the quantum nature of the system.

Markovian dynamics of open quantum systems

Markovian dynamics of open quantum systems is governed by the Kossakowski-Lindblad equation:

d

dt
(ρ) = L(ρ) = −i[H, ρ]− 1

2

n2−1∑
j=1

[V †j Vj , ρ]+ +
n2−1∑
j=1

VjρV
†
j ,

Theorem 3. There exists a unique vector �eld ZL ∈ X(S), whose action on expectation value

functions is

ZL(εA)(ρ) = εL](A)(ρ), ρ ∈ S, A ∈ O,

and whose integral curves are solutions to the Kossakowski-Lindblad equation.

Phase damping of a 2-level system:

L(ρ) = −γ(ρ− σzρσz)

Tensor �elds are not preserved by evolution:

ΛS,t = e−tLZL ΛS , RS,t = e−tLZLRS

The contracted algebra of observables in the
limit t→∞ is the Euclidean algebra e(2)

{x1, x2}∞ = 0, {x1, x3}∞ = −x2, {x2, x3}∞ = x1,

(x1, x1)∞ = (x2, x2)∞ = 0, (x3, x3)∞ = 1.

Unitary controls in Markovian dynamics

Consider a controlled Markovian dynamics ZL + uj(t)Xj , with control functions uj(t) and Hamil-
tonian vector �elds Xj . An accessible control system is almost controllable if it is possible to
reach any neighbourhood of any point S in �nite time.

Proposition 2. An accessible open quantum system evolving under Markovian evolution whose

limit manifold is a single pure state ρL is almost controllable by unitary controls.

Proof. For the 2-level system, as seen in the Bloch Ball, all the points in the boundary are reachable
from the limit point ρL by unitary controls. Integral curves of the Kossakowski-Lindblad vector
�eld with no Hamiltonian term are straight lines [5]. Hence the 2-level system is controllable.
For an n-level system, take any state ρB on the boundary of S. It has rank at most n − 1, and
it is either a pure state or a convex combination of a pure state ρ′B and some other state. Pure
states are almost reachable from ρL, as they are a leaf of the foliation generated by Hamiltonian
vector �elds. If ρB is not pure, unitary controls allow to almost reach ρ′B . By induction, if the
(n−1)-level system is almost reachable, then any state ρB on the boundary can be almost reached.
Thus, the n-level system is almost controllable.

Theorem 4. Consider an open quantum system evolving under Markovian evolution and whose

limit manifold is a subset of the boundary of the manifold of states. Then, the system is almost
controllable by unitary controls.

Proof. Let SL be the limit manifold, and choose a pure state ρL ∈ SL. It is possible to design a
Hamiltonian vector �eld on S such that every other element in SL is not stable. Thus, by controlling
the system with this vector �eld, the problem reduces to the one presented in Proposition 2, with
{ρL} as the limit manifold, thus proving almost-controllability.

References

[1] J. F. Cariñena, J. Clemente-Gallardo, J. A. Jover-Galtier, and G. Marmo. Tensorial dynamics on the space of
quantum states. Journal of Physics A: Mathematical and Theoretical, 50(36):365301, 2017.

[2] F. Falceto, L. Ferro, A. Ibort, and G. Marmo. Reduction of Lie-Jordan algebras: Classical. Il Nuovo Cimento

C, 36(3):107�115, 2013.

[3] J. Grabowski, M. Ku±, and G. Marmo. Geometry of quantum systems: density states and entanglement. Journal
of Physics A: Mathematical and General, 38(47):10217�10244, 2005.

[4] J. Grabowski, M. Ku±, and G. Marmo. Symmetries, group actions, and entanglement. Open Systems & Infor-

mation Dynamics, 13:343�362, 2006.

[5] J. A. Jover-Galtier. Sistemas cuánticos abiertos: descripción geométrica, dinámica y control. PhD thesis,
Universidad de Zaragoza, 2017.


