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The Heisenberg pict

In its modern formulation, the Heisenberg picture of Quantum Mechanics presents observables of

quantum systems as elements in a Lie-Jordan algebra (0. There exist two inner operations: a
Lie bracket [A, B], and a Jordan product A ® B.
States of quantum systems are normalised, positive linear functionals on O:

S={pcO*|pI)=1; p(A%) >0,VA € O} Cc O*.

For finite-dimensional systems, the dual space O* presents a natural geometric structure. Observ-
ables are represented on O* by real linear functions fa (&) = £(A). There exist two contravariant
(2,0)-tensor fields A and R, respectively Poisson and symmetric, defined as

A(dfa,dfB)(€) =¢([A, B]) = f1a,B7(8);
R(dfa,dfp)(§) =6(A© B) = facr(§),

Tensor fields A and R define respectively a Poisson bracket and a symmetric product of functions:

{f,9} =A(df,dg), (f,g)=R(df,dg),

Proposition 1. The set Fo(O*) is a Lie-Jordan algebra with products

{fa,fB} = fra.s,  (fa, fB) = faes,

Hamiltonian and gradient vector fields on O* are defined as:

Vf,g € C™(O%).

A, BeO.

Xf — _A(df7')7 Yf — R(dfv)a f < COO(O*>

Unitary evolution of quantum systems is governed by a Hamiltonian vector field:

The set of states

The definition of the set S of states can be rewritten as
S={pcO"| filp) =1; faz(p) 20,YVA € O} C O".

The set of states S is the bounded set of positive
elements inside the hyperplane S of normalised
elements in O*. It is thus a manifold with boundary.
Differential calculus is carried out by considering
the embedding of & into the larger, differentiable
manifold S. Hamiltonian and gradient vector fields on
O* preserve the rank of the elements [3|, but not the
normalization condition.

The set S is a stratified manifold |3, 4|, with the decomposition

S:USM SJﬂSk:(Da J # k.
j=1

with each stratum S; the subset of states whose associated density matrix has rank j. Each

stratum is on its own a differentiable manifold.

The set of states of a 2-level system is called the Bloch ball.
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The algebra of observables, as linear functions, is su(2)
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Geometric descriptic

Theorem 1. [2] Consider an algebra (C*° (M), *) of smooth functions on the manifold M. If
the set & of invariant functions with respect to the Lie group action ¢ : G X M — M 1is a

subalgebra, then the restriction of the composition law x to & defines an algebraic structure
on the set of smooth functions on the orbit set M /G.

Consider the group action on OF = O* — {0} generated by the dilation vector field A = Y7:

6 Ry x Of = Of, dla,€) = at.

The quotient manifold OF/R, can be
embedded as the unit sphere in Of. The
geometric objects cannot be projected
by 7 : Of — Of/R,, as they are not
constant along the integral curves of A:

Il = {féz.gp) > 0}

EAA 7é 07 ‘CAR # 07 *CAfA 7& 0

By relating points in the same orbits of
the group action, it is possible to define
a bijection

w: (Of/Ry)NIl — S

Invariant functions under the group action are expectation value functions of observables:

_ fa(§)
f1(€)

Expectation value functions and their products do not close any algebra with respect to the previ-
ously defined products:

ea(§) VE € O*.

= ea(af) = ea(§), VaeRy,

1 1
{ea,ep} = 7, CIABD (ea,ep) = —I(eA@B — 2eaep).

Theorem 2. The set of expectation value functions on S is a Lie-Jordan algebra with respect
to the products

{ea,epts =As(dea,dep) = €14, 7,
(€a,€B)s :=Rs(dea,dep) + 2€ 463 = €anB.

with ealn = (w o m)*(ea), As = (@ o m).((f1A)n), Rs = (@ o). ((f1R)[n)-

Relevant remarks

e The reduction procedure breaks linearity, in particular in the case of the Jordan structure.
Non-linear behaviours are expected.

Unitary dynamics is again generated by means of a Hamiltonian vector field, obtained by
means of the Poisson tensor field As on the manifold of states.

Tensor fields As and Rg are invariant under unitary dynamics. This is no longer true under
more generic evolutions, which may lead to contractions of the algebra of observables

1,5].

The action of Rs on expectation value function gives the deviation of the Jordan product
from the point-wise product, i.e. of the non-local product with respect to the local product:
A, B e,

Rs(dea,dep)(p) = (€a,€B)s(p) — 2ea(p)en(p), peS.

Furthermore, the tensor field Rs is related with the definitions of variance Var(A) and
covariance Cov(A, B) of observables:

Rs(dea,dea)(p) = 2ea2(p) — 2(ea(p))® = 2Var(A)(p),
Rs(dea,dep)(p) = €ann(p) — 2ea(p)es(p) = 2Cov(A, B)(p),

Rs is the main object reflecting the quantum nature of the system.
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Markovian dynamic

Markovian dynamics of open quantum systems is governed by the Kossakowski-Lindblad equation:

d
_( ) —
dt

Theorem 3. There exists a unique vector field Z; € X(S), whose action on expectation value
functions is

ZL(GA)(IO> — ELﬁ(A)(IO)a P E Sa A€ O)

and whose integral curves are solutions to the Kossakowski-Lindblad equation.

Phase damping of a 2-level system:

—(p — 02p02)

Tensor fields are not preserved by evolution:
Asi=e"7tAs,Rsy = e "7r Rg

The contracted algebra of observables in the
limit ¢ — oo is the Euclidean algebra ¢(2)

{x17x2}oo =0, {5817%3}00 = —I2, {332,333}00 = X1,

(33173:1)00 — (x27332)oo — Oa (5133,333)00 = 1.

Unitary controls in

Consider a controlled Markovian dynamics Z, 4+ w;(t)X;, with control functions u;(¢) and Hamil-
tonian vector fields X;. An accessible control system is almost controllable if it is possible to
reach any neighbourhood of any point S in finite time.

Proposition 2. An accessible open quantum system evolving under Markovian evolution whose
limit manifold is a single pure state p;, is almost controllable by unitary controls.

Proof. For the 2-level system, as seen in the Bloch Ball, all the points in the boundary are reachable
from the limit point p;, by unitary controls. Integral curves of the Kossakowski-Lindblad vector
field with no Hamiltonian term are straight lines |5|. Hence the 2-level system is controllable.

For an n-level system, take any state pg on the boundary of §. It has rank at most n — 1, and
it is either a pure state or a convex combination of a pure state pz and some other state. Pure
states are almost reachable from py, as they are a leaf of the foliation generated by Hamiltonian
vector fields. If pp is not pure, unitary controls allow to almost reach p’s. By induction, if the
(n—1)-level system is almost reachable, then any state pp on the boundary can be almost reached.
Thus, the n-level system is almost controllable. []

Theorem 4. Consider an open quantum system evolving under Markovian evolution and whose
limit manifold s a subset of the boundary of the manifold of states. Then, the system is almost
controllable by unitary controls.

Proof. Let St be the limit manifold, and choose a pure state pr, € Sy. It is possible to design a
Hamiltonian vector field on § such that every other element in Sy, is not stable. Thus, by controlling
the system with this vector field, the problem reduces to the one presented in Proposition 2, with
{pr} as the limit manifold, thus proving almost-controllability. []
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