

The Heisenberg picture of Quantum Mechanics

In its modern formulation, the Heisenberg picture of Quantum Mechanics presents observables of quantum systems as elements in a **Lie-Jordan algebra** \mathcal{O} . There exist two inner operations: a Lie bracket $[A, B]$, and a Jordan product $A \odot B$. States of quantum systems are normalised, positive linear functionals on \mathcal{O} :

$$\mathcal{S} = \{\rho \in \mathcal{O}^* \mid \rho(I) = 1; \rho(A^2) \geq 0, \forall A \in \mathcal{O}\} \subset \mathcal{O}^*.$$

For finite-dimensional systems, the dual space \mathcal{O}^* presents a natural geometric structure. Observables are represented on \mathcal{O}^* by real linear functions $f_A(\xi) = \xi(A)$. There exist two contravariant **(2, 0)-tensor fields** Λ and R , respectively Poisson and symmetric, defined as

$$\begin{aligned} \Lambda(df_A, df_B)(\xi) &= \xi([A, B]) = f_{[A, B]}(\xi), \\ R(df_A, df_B)(\xi) &= \xi(A \odot B) = f_{A \odot B}(\xi), \end{aligned}$$

Tensor fields Λ and R define respectively a Poisson bracket and a symmetric product of functions:

$$\{f, g\} = \Lambda(df, dg), \quad (f, g) = R(df, dg), \quad \forall f, g \in C^\infty(\mathcal{O}^*).$$

Proposition 1. The set $\mathcal{F}_{\mathcal{O}}(\mathcal{O}^*)$ is a Lie-Jordan algebra with products

$$\{f_A, f_B\} = f_{[A, B]}, \quad (f_A, f_B) = f_{A \odot B}, \quad A, B \in \mathcal{O}.$$

Hamiltonian and gradient vector fields on \mathcal{O}^* are defined as:

$$X_f = -\Lambda(df, \cdot), \quad Y_f = R(df, \cdot), \quad f \in C^\infty(\mathcal{O}^*).$$

Unitary evolution of quantum systems is governed by a Hamiltonian vector field:

$$\frac{d}{dt}\rho(t) = X_{f_H}(\rho(t)).$$

The set of states

The definition of the set \mathcal{S} of states can be rewritten as

$$\mathcal{S} = \{\rho \in \mathcal{O}^* \mid f_I(\rho) = 1; f_{A^2}(\rho) \geq 0, \forall A \in \mathcal{O}\} \subset \mathcal{O}^*.$$

The set of states \mathcal{S} is the **bounded** set of **positive** elements inside the hyperplane \widehat{S} of **normalised** elements in \mathcal{O}^* . It is thus a manifold with boundary. Differential calculus is carried out by considering the **embedding** of \mathcal{S} into the larger, differentiable manifold \widehat{S} . Hamiltonian and gradient vector fields on \mathcal{O}^* preserve the rank of the elements [3], but not the normalization condition.

The set \mathcal{S} is a stratified manifold [3, 4], with the decomposition

$$\mathcal{S} = \bigcup_{j=1}^n \mathcal{S}_j, \quad \mathcal{S}_j \cap \mathcal{S}_k = \emptyset, \quad j \neq k.$$

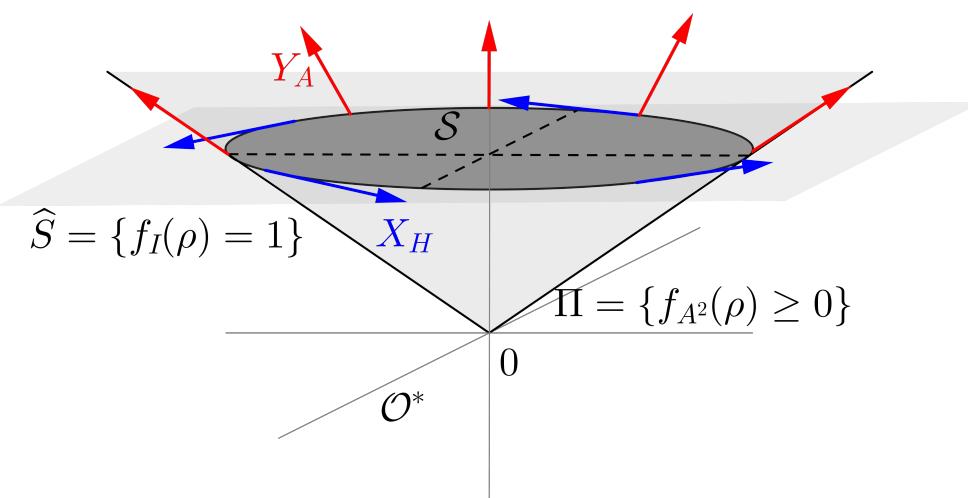
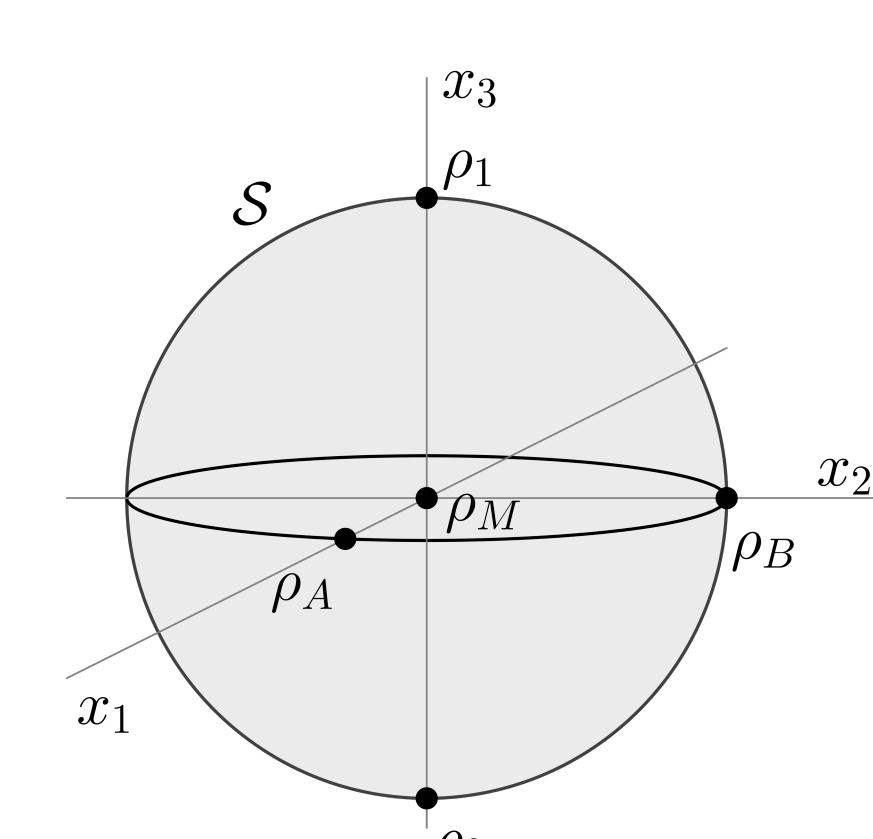
with each stratum \mathcal{S}_j the subset of states whose associated density matrix has rank j . Each stratum is on its own a differentiable manifold.

The set of states of a 2-level system is called the Bloch ball.

$$\begin{aligned} \rho &= \frac{1}{2} \begin{pmatrix} 1+x_3 & x_1-ix_2 \\ x_1+ix_2 & 1-x_3 \end{pmatrix}, \quad x_1^2 + x_2^2 + x_3^2 \leq 1 \\ \rho_0 &= |0\rangle\langle 0|, \quad \rho_1 = |1\rangle\langle 1|, \quad \rho_M = \frac{1}{2}\rho_0 + \frac{1}{2}\rho_1 \end{aligned}$$

The algebra of observables, as linear functions, is $\mathfrak{su}(2)$

$$\begin{aligned} \{x_j, x_k\} &= \sum_{l=1}^3 \epsilon_{jkl} x_l \quad j, k = 1, 2, 3 \\ (x_j, x_k) &= \delta_{jk} \end{aligned}$$



Geometric description of the space of quantum states

Theorem 1. [2] Consider an algebra $(C^\infty(M), *)$ of smooth functions on the manifold M . If the set \mathfrak{G} of **invariant functions** with respect to the Lie group action $\phi : G \times M \rightarrow M$ is a **subalgebra**, then the restriction of the composition law $*$ to \mathfrak{G} defines an **algebraic structure** on the set of smooth functions on the orbit set M/G .

Consider the group action on $\mathcal{O}_0^* = \mathcal{O}^* - \{0\}$ generated by the dilation vector field $\Delta = Y_I$:

$$\phi : \mathbb{R}_+ \times \mathcal{O}_0^* \rightarrow \mathcal{O}_0^*, \quad \phi(a, \xi) = a\xi.$$

The quotient manifold $\mathcal{O}_0^*/\mathbb{R}_+$ can be embedded as the unit sphere in \mathcal{O}_0^* . The geometric objects cannot be projected by $\pi : \mathcal{O}_0^* \rightarrow \mathcal{O}_0^*/\mathbb{R}_+$, as they are not constant along the integral curves of Δ :

$$\mathcal{L}_\Delta \Lambda \neq 0, \quad \mathcal{L}_\Delta R \neq 0, \quad \mathcal{L}_\Delta f_A \neq 0$$

By relating points in the same orbits of the group action, it is possible to define a bijection

$$\varpi : (\mathcal{O}_0^*/\mathbb{R}_+) \cap \Pi \rightarrow \mathcal{S}$$

Invariant functions under the group action are expectation value functions of observables:

$$e_A(\xi) = \frac{f_A(\xi)}{f_I(\xi)} \Rightarrow e_A(a\xi) = e_A(\xi), \quad \forall a \in \mathbb{R}_+, \quad \forall \xi \in \mathcal{O}^*.$$

Expectation value functions and their products do not close any algebra with respect to the previously defined products:

$$\{e_A, e_B\} = \frac{1}{f_I} e_{[A, B]}, \quad (e_A, e_B) = \frac{1}{f_I} (e_{A \odot B} - 2e_A e_B).$$

Theorem 2. The set of expectation value functions on \mathcal{S} is a Lie-Jordan algebra with respect to the products

$$\begin{aligned} \{\epsilon_A, \epsilon_B\}_{\mathcal{S}} &:= \Lambda_{\mathcal{S}}(d\epsilon_A, d\epsilon_B) = \epsilon_{[A, B]}, \\ (\epsilon_A, \epsilon_B)_{\mathcal{S}} &:= R_{\mathcal{S}}(d\epsilon_A, d\epsilon_B) + 2\epsilon_A \epsilon_B = \epsilon_{A \odot B}. \end{aligned}$$

with $e_A|_{\Pi} = (\varpi \circ \pi)^*(\epsilon_A)$, $\Lambda_{\mathcal{S}} = (\varpi \circ \pi)_*((f_I \Lambda)|_{\Pi})$, $R_{\mathcal{S}} = (\varpi \circ \pi)_*((f_I \widehat{R})|_{\Pi})$.

Relevant remarks

- The reduction procedure **breaks linearity**, in particular in the case of the Jordan structure. Non-linear behaviours are expected.
- Unitary dynamics** is again generated by means of a Hamiltonian vector field, obtained by means of the Poisson tensor field $\Lambda_{\mathcal{S}}$ on the manifold of states.
- Tensor fields $\Lambda_{\mathcal{S}}$ and $R_{\mathcal{S}}$ are invariant under unitary dynamics. This is no longer true under more generic evolutions, which may lead to **contractions of the algebra of observables** [1, 5].
- The action of $R_{\mathcal{S}}$ on expectation value function gives the deviation of the **Jordan product** from the **point-wise product**, i.e. of the non-local product with respect to the local product:

$$R_{\mathcal{S}}(d\epsilon_A, d\epsilon_B)(\rho) = (\epsilon_A, \epsilon_B)_{\mathcal{S}}(\rho) - 2\epsilon_A(\rho)\epsilon_B(\rho), \quad A, B \in \mathcal{O}, \quad \rho \in \mathcal{S}.$$

Furthermore, the tensor field $R_{\mathcal{S}}$ is related with the definitions of **variance** $\text{Var}(A)$ and **covariance** $\text{Cov}(A, B)$ of observables:

$$\begin{aligned} R_{\mathcal{S}}(d\epsilon_A, d\epsilon_A)(\rho) &= 2\epsilon_{A^2}(\rho) - 2(\epsilon_A(\rho))^2 = 2\text{Var}(A)(\rho), \\ R_{\mathcal{S}}(d\epsilon_A, d\epsilon_B)(\rho) &= \epsilon_{A \odot B}(\rho) - 2\epsilon_A(\rho)\epsilon_B(\rho) = 2\text{Cov}(A, B)(\rho), \end{aligned}$$

$R_{\mathcal{S}}$ is the main object reflecting the **quantum nature** of the system.

Markovian dynamics of open quantum systems

Markovian dynamics of open quantum systems is governed by the Kossakowski-Lindblad equation:

$$\frac{d}{dt}(\rho) = L(\rho) = -i[H, \rho] - \frac{1}{2} \sum_{j=1}^{n^2-1} [V_j^\dagger V_j, \rho]_+ + \sum_{j=1}^{n^2-1} V_j \rho V_j^\dagger,$$

Theorem 3. There exists a unique vector field $Z_L \in \mathfrak{X}(\mathcal{S})$, whose action on expectation value functions is

$$Z_L(\epsilon_A)(\rho) = \epsilon_{L^\sharp(A)}(\rho), \quad \rho \in \mathcal{S}, \quad A \in \mathcal{O},$$

and whose integral curves are solutions to the Kossakowski-Lindblad equation.

Phase damping of a 2-level system:

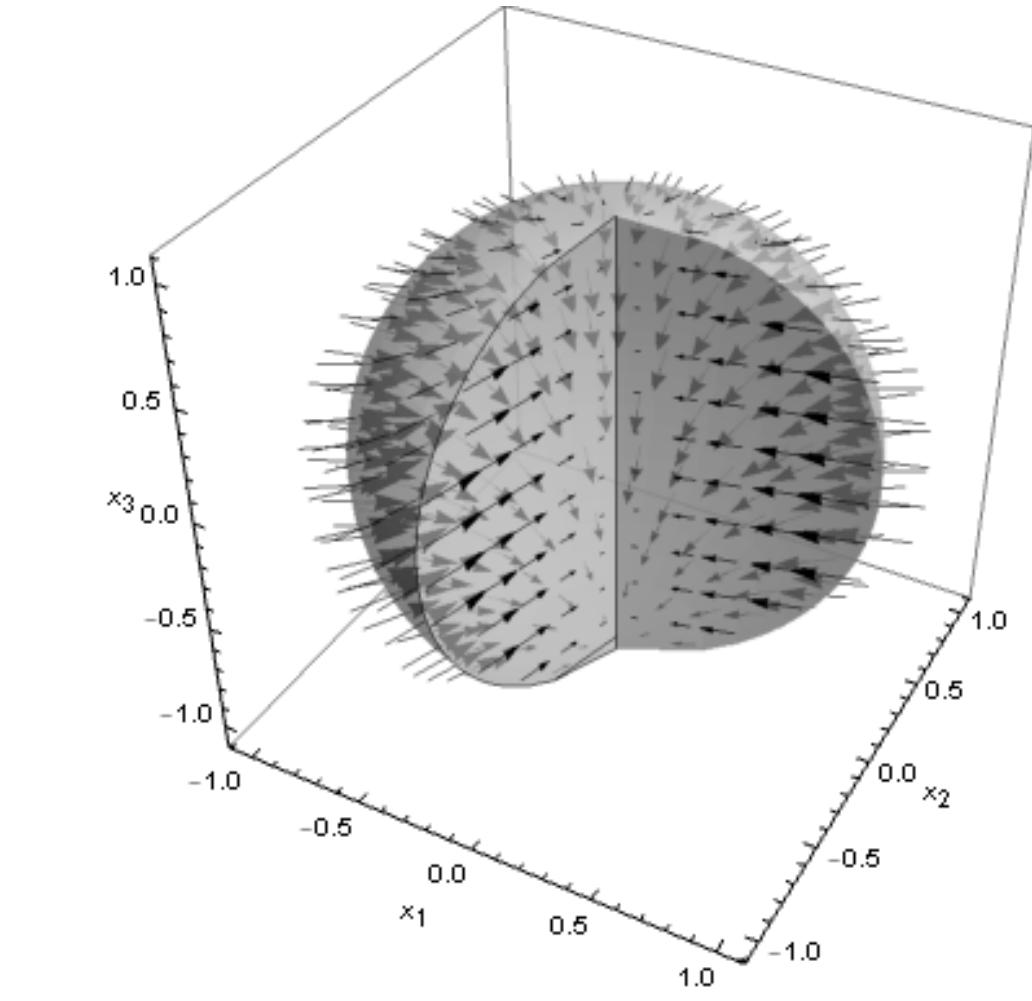
$$L(\rho) = -\gamma(\rho - \sigma_z \rho \sigma_z)$$

Tensor fields are not preserved by evolution:

$$\Lambda_{\mathcal{S}, t} = e^{-t\mathcal{L}_{Z_L}} \Lambda_{\mathcal{S}}, \quad R_{\mathcal{S}, t} = e^{-t\mathcal{L}_{Z_L}} R_{\mathcal{S}}$$

The contracted algebra of observables in the limit $t \rightarrow \infty$ is the Euclidean algebra $\mathfrak{e}(2)$

$$\begin{aligned} \{x_1, x_2\}_\infty &= 0, \quad \{x_1, x_3\}_\infty = -x_2, \quad \{x_2, x_3\}_\infty = x_1, \\ (x_1, x_1)_\infty &= (x_2, x_2)_\infty = 0, \quad (x_3, x_3)_\infty = 1. \end{aligned}$$



Unitary controls in Markovian dynamics

Consider a controlled Markovian dynamics $Z_L + u_j(t)X_j$, with control functions $u_j(t)$ and Hamiltonian vector fields X_j . An accessible control system is **almost controllable** if it is possible to reach any neighbourhood of any point \mathcal{S} in finite time.

Proposition 2. An accessible open quantum system evolving under Markovian evolution whose limit manifold is a single pure state ρ_L is **almost controllable** by unitary controls.

Proof. For the 2-level system, as seen in the Bloch Ball, all the points in the boundary are reachable from the limit point ρ_L by unitary controls. Integral curves of the Kossakowski-Lindblad vector field with no Hamiltonian term are straight lines [5]. Hence the 2-level system is controllable. For an n -level system, take any state ρ_B on the boundary of \mathcal{S} . It has rank at most $n-1$, and it is either a pure state or a convex combination of a pure state ρ'_B and some other state. Pure states are almost reachable from ρ_L , as they are a leaf of the foliation generated by Hamiltonian vector fields. If ρ_B is not pure, unitary controls allow to almost reach ρ'_B . By induction, if the $(n-1)$ -level system is almost reachable, then any state ρ_B on the boundary can be almost reached. Thus, the n -level system is almost controllable. \square

Theorem 4. Consider an open quantum system evolving under Markovian evolution and whose limit manifold is a subset of the boundary of the manifold of states. Then, the system is **almost controllable** by unitary controls.

Proof. Let \mathcal{S}_L be the limit manifold, and choose a pure state $\rho_L \in \mathcal{S}_L$. It is possible to design a Hamiltonian vector field on \mathcal{S} such that every other element in \mathcal{S}_L is not stable. Thus, by controlling the system with this vector field, the problem reduces to the one presented in Proposition 2, with $\{\rho_L\}$ as the limit manifold, thus proving almost-controllability. \square

References

- [1] J. F. Cariñena, J. Clemente-Gallardo, J. A. Jover-Galtier, and G. Marmo. Tensorial dynamics on the space of quantum states. *Journal of Physics A: Mathematical and Theoretical*, 50(36):365301, 2017.
- [2] F. Falceto, L. Ferro, A. Ibort, and G. Marmo. Reduction of Lie-Jordan algebras: Classical. *Il Nuovo Cimento C*, 36(3):107–115, 2013.
- [3] J. Grabowski, M. Kuś, and G. Marmo. Geometry of quantum systems: density states and entanglement. *Journal of Physics A: Mathematical and General*, 38(47):10217–10244, 2005.
- [4] J. Grabowski, M. Kuś, and G. Marmo. Symmetries, group actions, and entanglement. *Open Systems & Information Dynamics*, 13:343–362, 2006.
- [5] J. A. Jover-Galtier. *Sistemas cuánticos abiertos: descripción geométrica, dinámica y control*. PhD thesis, Universidad de Zaragoza, 2017.