

Rolling Grassmannians – Constructive Proof of Controllability

13th Young Researchers Workshop on Geometry, Mechanics and Control, December 6-8 2018, Coimbra, Portugal

Motivation Research Areas for Study the Problem and Goals (F. Pina, F. Silva Leite '18, A. Srivastava, P. Turaga '16, R. Vemulapalli, R. Chellappa '16)

- ▶ Robotics and Computer vision
- ▶ Engineering problems that deals with:
 - Set of images
 - Face recognition
 - Reconstruction of planar scenes from multiples views
- ▶ Medical Engineering applications
- ▶ The Grassmann manifolds (Grassmannians) can be widely used to represent images
- ▶ Describe a pure rolling of Grassmannians over their affine tangent space at a particular point
- ▶ Show how the forbidden motions of twist and slip can be accomplished by rolling without them

Some Background

- ▶ Matrix representation of Grassmannians

$$G_{k,n} := \{P \in \mathfrak{s}_n : P^2 = P, \text{rank}(P) = k\}$$

- ▶ Tangent space at a point $P \in G_{k,n}$

$$\begin{aligned} T_P G_{k,n} &= \{S \in \mathfrak{s}_n : PS + SP = S\} \\ &= \{[\Omega, P] : \Omega \in \mathfrak{so}_n, P\Omega + \Omega P = \Omega\} \end{aligned}$$

$G_{k,n}$ is an isospectral manifold and for $P_0 = \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix}$

$$T_{P_0} G_{k,n} = \left\{ \begin{bmatrix} 0 & Z \\ Z^\top & 0 \end{bmatrix}, \quad Z \in \mathbb{R}^{k \times (n-k)} \right\}$$

Rolling Grassmann over the affine tangent space at P_0

- ▶ $\overline{M} = \mathfrak{s}_n$; $\overline{G} = \text{SO}_n \ltimes \mathfrak{s}_n$
(\overline{M} embedding manifold; \overline{G} isometry group of \overline{M})
- ▶ The action of \overline{G} on \overline{M} is defined by
 $((\Theta, X), S) \mapsto \Theta S \Theta^\top + X$
- ▶ $M_1 = G_{k,n}$; $M_0 = T_{P_0}^{\text{aff}} G_{k,n} := P_0 + T_{P_0} G_{k,n}$
(M_1 rolling manifold; M_0 static manifold)

Theorem (Jurdjevic and Sussmann, 1972)

A left-invariant control system without drift and unrestricted controls, evolving on a connected Lie group G , is controllable if and only if the control vector fields generate $\mathcal{L}(G)$, the Lie algebra of G , i.e., satisfy the bracket generating property.

Kinematic equations of rolling $G_{k,n}$ over $T_{P_0}^{\text{aff}} G_{k,n}$ (Hüper and Silva Leite, '07, F. Pina, F. Silva Leite '18)

$$\begin{cases} \dot{\Theta}(t) = \Theta(t)A(t) \\ \dot{X}(t) = B(t) \end{cases}, \quad A(t) := \begin{bmatrix} 0 & -U(t) \\ U^\top(t) & 0 \end{bmatrix}, \quad B(t) := \begin{bmatrix} 0 & U(t) \\ U^\top(t) & 0 \end{bmatrix}, \quad (t \mapsto U(t) \in \mathbb{R}^{k \times (n-k)} \text{ is free})$$

- ▶ Can be rewritten as a left-invariant control system without drift, evolving on the connected Lie group $G = \text{SO}_n \times T_{P_0} G_{k,n}$, with Lie algebra $\mathcal{L}(G) = \mathfrak{so}_n \oplus T_{P_0} G_{k,n}$.
- ▶ Left-invariant control vector fields $(A_{i,k+j}, B_{i,k+j})$, $i = 1, \dots, k$, $j = 1, \dots, n-k$, with $A_{i,j} = E_{i,j} - E_{j,i}$ (elementary skew symmetric matrices), $B_{i,j} = E_{i,j} + E_{j,i}$ (elementary symmetric matrices) satisfy the bracket generating property.
- ▶ Whenever $k(n-k) \neq 1$, the control system (kinematic equations) is controllable in $G = \text{SO}_n \times T_{P_0} G_{k,n}$.

Forbidden motion - Slip

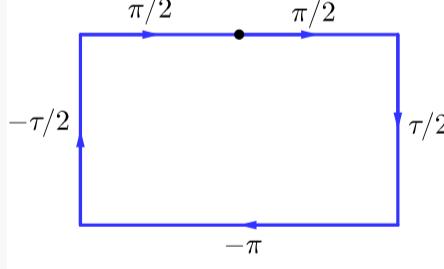
Any motion of $G_{k,n}$ that results from the action of elements in \overline{G} of the form (I_n, X) , where $X \in T_{P_0} G_{k,n}$.

(A pure translation by a vector X)

How to generate the forbidden motions of slip and twist, without twisting and without slipping?

Generating Twists (F. Pina, F. Silva Leite '18, M. Kleinsteuber, K. Hüper, F. Silva Leite '06)

Crucial Result



If A, B and C are square matrices s.t. $[A, B] = C$, $[A, C] = -B$, then

$$e^{\tau C} = e^{(\pi/2)A} e^{(\tau/2)B} e^{-\pi A} e^{-(\tau/2)B} e^{(\pi/2)A}.$$

Every $\Theta \in K$ can be written as a finite product of elements of the form

$$\begin{bmatrix} e^{\tau_1 A_{i,j}} & 0 \\ 0 & e^{\tau_2 A_{k+l,k+m}} \end{bmatrix}, \quad \begin{matrix} 1 \leq i < j \leq k \\ 1 \leq l < m \leq n-k \end{matrix}.$$

- ▶ $e^{\tau_1 A_{i,j}}$ and $e^{\tau_2 A_{k+l,k+m}}$ can be decomposed into products of Givens rotations generated by elements of the form $A_{r,k+s}$, $r = 1, \dots, k$, $s = 1, \dots, n-k$, so that the sum of all angles of rotation adds up to zero:

$$\begin{aligned} e^{\tau_1 A_{i,j}} &= e^{(\pi/2)A_{j,k+l}} e^{(\tau_1/2)A_{i,k+l}} e^{-\pi A_{j,k+l}} e^{-(\tau_1/2)A_{i,k+l}} e^{(\pi/2)A_{j,k+l}} \\ e^{\tau_2 A_{k+l,k+m}} &= e^{(\pi/2)A_{i,k+m}} e^{(\tau_2/2)A_{i,k+l}} e^{-\pi A_{i,k+m}} e^{-(\tau_2/2)A_{i,k+l}} e^{(\pi/2)A_{i,k+m}}. \end{aligned}$$

References

- K. Hüper, F. Silva Leite (2007). On the geometry of rolling and interpolation curves on S^n , SO_n and Grassmann manifolds. *Journal of Dynamical and Control Systems* 13, no. 4, 467–502.
- M. Kleinsteuber, K. Hüper, F. Silva Leite (2006). Complete controllability of the N -sphere - a constructive proof. *Proc. 3rd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control (LHMNLC'06)*. Nagoya, Japan (19-21 July).
- F. Pina, F. Silva Leite (2018). Controllability of the kinematic equations describing pure rolling of Grassmannians. *Proc. 13th APAC International Conference on Automatic Control and Soft Computing (CONTROLO 2018)*. Ponta Delgada, Azores, Portugal (4-6 June), 1-6, IEEE Xplore.
- A. Srivastava, P. Turaga (2016). Riemannian computing in computer vision. Springer International Publishing.
- R. Vemulapalli, R. Chellappa (2016). Rolling rotations for recognizing human actions from 3D skeletal data. *Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Las Vegas, USA (26 June - 1 July) 4471–4479.

Fátima Pina & Fátima Silva Leite

fpin@mat.uc.pt, fleite@mat.uc.pt (Authors acknowledge FCT-Portugal and COMPETE 2020 Program for financial support through project UID/EEA/00048/2013.)

University of Coimbra, Institute of Systems and Robotics and Department of Mathematics