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ABSTRACT Field theories described by Lagrangians depending on space-time coordinates can be modelled using k -cosymplectic
geometry. In particular, theories described by singular Lagrangians are of special interest because of their role in modern physics, in
particular in gauge field theories. Nevertheless, there is a problem of consistency of the corresponding equations of motion
(Euler–Lagrange and Hamilton–de Donder–Weyl), and thus one needs to study the possible constraints arising in the space of
solutions. This problem can be analyzed by means of a constraint algorithm. On the other hand, some field theories are based on
affine Lagrangians, i. e., Lagrangians that are affine with respect to the velocity variables. We apply the constraint algorithm to this
specific case, both in the Lagrangian and the Hamiltonian formalisms.

k -PRECOSYMPLECTIC MANIFOLDS

Definition

LetM be a differentiable manifold of dimension n(k + 1) + k −m (with 1 ≤ m ≤ nk). A k-precosymplectic structure inM is a family
(ηα,Ωα,V), 1 ≤ α ≤ k, where ηα are closed 1-forms inM, Ωα are closed 2-forms inM, and V is an integrable nk-dimensional
integrable distribution inM satisfying that:
(1) η1 ∧ · · · ∧ ηk 6= 0, ηα|V = 0, Ωα|V×V = 0,

(2)
( k⋂
α=1

ker ηα
)
∩
( k⋂
α=1

ker Ωα
)
6= {0} , rank

( k⋂
α=1

ker Ωα
)
> k .

A manifoldM endowed with a k-precosymplectic structure is called a k-precosymplectic manifold.

This definition is a generalization of the definition of k -cosymplectic manifold [1, 2] to model the geometry of singular nonautonomous
field theories. Now we are going to describe a particular kind of local coordinates, that we will call Darboux coordinates.

Theorem (k -precosymplectic Darboux theorem)

LetM be a k-precosymplectic manifold such that rank Ωα = 2rα, with 1 ≤ rα ≤ n and m = kn −
k∑

α=1

rα − d. For every point p ∈M,

there exists a local chart

(Up; xα, y i , yαiα, z
α
jα) (1 ≤ α ≤ k , 1 ≤ i ≤ n , iα ∈ Iα ⊆ {1, . . . ,n} , 1 ≤ j ≤ d),

such that

ηα|Up = dxα , Ωα|Up = dy iα ∧ dyαiα

V|Up =

〈
∂

∂yαiα
,
∂

∂zαjα

〉
,

( k⋂
α=1

ker ηα
)
∩
( k⋂
α=1

ker Ωα
)∣∣∣∣∣∣

Up

=

〈
∂

∂zαjα

〉
.

The proof of this theorem will be found in [3].

Proposition

Given a k-precosymplectic manifold (M, ωα, ηα,V ), there exists a family R1, . . . ,Rk ∈ X(M) of vector fields satisfying{
iRα
ωβ = 0,

iRα
ηβ = δβα.

(1)

Such a family of vector fields is called a family of Reeb vector fields.

k -PRECOSYMPLECTIC HAMILTONIAN SYSTEMS

Definition

A k -precosymplectic Hamiltonian system is a family (M, ωα, ηα,V , γ) where (M, ωα, ηα,V ) is a k-precosymplectic manifold of the
type Rk × P and γ is a closed 1-form on M called the Hamiltonian 1-form.

The solutions of a k -precosymplectic Hamiltonian system are the integral sections of the k -vector fields X = (Xα) ∈ Xk(M) solution of
the system of differential equations {

iXα
ωα = γ − γ(Rα)ηα,

iXα
ηβ = δβα.

(2)

k -PRECOSYMPLECTIC CONSTRAINT ALGORITHM

We want to find a submanifold N ↪→ M such that the previous system of equations has global solutions on N tangent to N. In order to
find this submanifold (if it exists) we construct a constraint algorithm which provides us with a sequence of submanifolds

· · · ↪→ Mj ↪→ · · · ↪→ M2 ↪→ M1 ↪→ M

which in favorable cases will end in a final constraint submanifold.

The following theorem will be the core of our algorithm and will give us a way to compute the constraints at every step of the algorithm.

Theorem

Let (M, ωα, ηα,V , γ) be a k-precosymplectic Hamiltonian system. Consider a submanifold C ↪→ M and a k-vector field
X : C → (T 1

k )CM such that Xp ∈ (T 1
k )pC for every p ∈ C. The following two conditions are equivalent:

(1) There exists a k vector field X = (Xα) : C → (T 1
k )CM tangent to C such that the system of equations{

iXα
ωα = γ − γ(Rα)ηα,

iXα
ηβ = δβα,

holds on C.
(2) For every p ∈ C, there exists Zp = (Zα)p ∈ (T 1

k )pC such that iZαpη
β
p = δβα and

∑
α η

α
p + γ̃p = [(Zp), where γ̃p = γp − γp(Rαp)ηαp and [

is defined as
[ : T 1

k M −→ T ∗M
X = (Xα) 7−→ i(Xα)ωα + (i(Xα)ηα)ηα.

Taking into account the previous theorem, we define the j-ary constraint submanifold as

Mj =
{

p ∈ Mj−1 | ∃Z = (Zα) ∈ (T 1
k )Mj−1 such that [(Z) = γ̃ +

∑
α

ηα and iZα
ηβ = δβα

}
,

where M0 = M.

Definition

Let C ↪→ M be a submanifold of a k-precosymplectic manifold M. The k-precosymplectic orthogonal complement of C is

TC⊥ =

(
[
(

(T 1
k )C ∩ DC

))0

where DC is the set of all k-vectors Zp = (Zα)p on C such that iZαpη
β
p = δβα.

Using this definition we can characterize the j-ary constraint submanifold as

Mj =
{

p ∈ Mj−1 | γ̃ +
∑
α

ηα ∈ ((TC)⊥)0
}
.

Although this allows us to effectively compute the constraints at every step of the algorithm, an alternative and equivalent way to
compute the constraint submanifolds of the k -precosymplectic constraint algorithm, which is much more operational, is the
following:
(1) Obtain a local basis {Z1, . . . ,Zr} of (TM)⊥.
(2) Use the theorem to obtain a set of independent constraint functions fµ = i(Zµ)(γ̃ +

∑
α η

α) defining the submanifold M1 ↪→ M.
(3) Compute solutions X = (Xα) of the field equations on M.
(4) Impose the tangency condition of X1, . . . ,Xk on M1.
(5) Iterate item (4) until no new constraints appear.

If this iterative procedure ends in a non-empty submanifold M`, then we can assure the existence of global solutions to the field
equations on this submanifold M`.

Remark Let L be a singular nonautonomous Lagrangian on Rk × T 1
k Q. It can be modelled as the k -precosymplectic Hamiltonian

system (Rk × T 1
k Q, ωαL, dxα, dEL). Therefore, we can apply the k -precosymplectic constraint algorithm to it.

AFFINE LAGRANGIANS

Some field theories of interest in theoretical physics are modelled on affine Lagrangians; this is the case, for instance, of
Einstein–Palatini gravity or Dirac fermion fields. We are going to apply the constraint algorithm to such theories, both in the
Lagrangian and Hamiltonian formalisms [4].
Consider πRk : Rk ×Q → Rk as the configuration bundle of a field theory and its associated phase space bundle of k -velocities
τ̄1 : Rk × T 1

k Q → Rk , with coordinates (xα,q i , v i
α). In this phase space we consider an affine Lagrangian, that is, a Lagrangian

function L ∈ C∞(Rk × T 1
k Q) affine in the fibre coordinates v i

α:

L(xα,q i , v i
α) = f µj (xα,q i)v j

µ + g(xα,q i) . (3)
Obviously such a Lagrangian is singular.

Remark An affine Lagrangian can be alternatively defined from a 2-semibasic k -form ζ on Rk ×Q. From it a Lagrangian
Lζ ∈ C∞(Rk × T 1

k Q) is determined by the equality
Lζ(x , j10φx)ωx := [φ∗ζ] (x) ,

where φ is any section of Rk ×Q → Rk and ω = dkx is the volume form of Rk . This function is well defined and its local expression is
that of an affine Lagrangian.

LAGRANGIAN FORMALISM

Now let us reproduce the calculations for an affine Lagrangian. We have

EL = ∆(L)− L = −g(xα,q i) ∈ C∞(Rk × T 1
k Q) ,

ωαL = −
(
∂f αk
∂xµ

dxµ +
∂f αk
∂q j dq j

)
∧ dqk ∈ Ω2(Rk × T 1

k Q) ,

and we have a k -precosymplectic structure (ωαL , dxα,V) in Rk × T 1
k Q where (xα) are the coordinates of Rk , V =

〈
∂

∂v i
µ

〉
and where the

Reeb vector fields, defined in (1), are Rα =
∂

∂xα
. Then

dEL +
∂L
∂xµ

dxµ = − ∂g
∂xµ

dxµ − ∂g
∂q j dq j +

(
∂f νl
∂xµ

v l
ν +

∂g
∂xµ

)
dxµ = − ∂g

∂q j dq j +
∂f νl
∂xµ

v l
ν dxµ ,

and, for a k -vector field X = (X1, . . . ,Xk) ∈ Xk(Rk × T 1
k Q) satisfying the second group of equations (2), we have that

Xα =
∂

∂xα
+ F l

α

∂

∂q l + Gl
αν

∂

∂v l
ν

∈ X(Rk × T 1
k Q) , (4)

thus

iXα
ωαL = F l

α

∂f αl
∂xµ

dxµ −
∂f αj
∂xα

dq j + F l
α

(
∂f αl
∂q j −

∂f αj
∂q l

)
dq j ,

and the first group of equations (2) leads to

(v l
ν − F l

ν)
∂f νl
∂xµ

= 0 , (5)

∂g
∂q j −

∂f αj
∂xα

= −F l
α

(
∂f αl
∂q j −

∂f αj
∂q l

)
. (6)

This is a system of (linear) equations for the component functions F l
α, which allows us to determine (partially) these functions and,

eventually, gives raise to constraints functions (depending on the rank of the matrices involved). If this last situation happens, then the
constraint algorithm follows by demanding the tangency condition for the vector fields Xα. Observe also that, in any case, in these
vector fields, the coefficients Gi

αν are undetermined.
If we look for semi-holonomic k -vector fields X , it implies that F k

ν = vk
ν in (4). Then, equations (5) hold identically, meanwhile

equations (6) read
∂g
∂q j −

∂f αj
∂xα

+ v l
α

(
∂f αl
∂q j −

∂f αj
∂q l

)
= 0

which are constraints. Then the tangency condition for the vector fields

Xν =
∂

∂xν
+ v l

ν

∂

∂q l + Gl
να

∂

∂v l
α

,

leads to
∂g
∂q j −

∂f αj
∂xα

+ Gl
να

(
∂f αl
∂q j −

∂f αj
∂q l

)
= 0

which allows us to determine (partially) the functions Gk
να and, eventually, gives raise to constraints functions, depending on the rank

of the matrix

(
∂f αl
∂q j −

∂f αj
∂q l

)
. In this last case, the constraint algorithm continues by demanding again the tangency condition.

HAMILTONIAN FORMALISM

Let π̄1 : Rk × (T 1
k )∗Q → Rk be the phase space bundle of k -momenta. The Legendre map FL : Rk × T 1

k Q → Rk × (T 1
k )∗Q associated

to the Lagrangian L is

xµ ◦ FL = xµ , q i ◦ FL = q i , pµi ◦ FL =
∂L
∂v i

µ

= f µi (xα,q j) .

Observe that P = FL(Rk × T 1
k Q) is defined by the constraints pµi = f µi (xα,q j); hence it is the image of a section

ξ : Rk ×Q → Rk × (T 1
k )∗Q of the projection (πQ)(1,0) : Rk × (T 1

k )∗Q → Rk ×Q, and then it can be identified in a natural way with Rk ×Q.
Therefore, as ξ ◦ τ1 is a surjective submersion with connected fibres, then so is FL0 : Rk × T 1

k Q → P (the restriction of FL onto its
image P), since FL0 = ξ ◦ τ1. In conclusion, affine Lagrangians are almost regular Lagrangians and thus P is an embedded
submanifold of Rk × (T 1

k )∗Q, which is diffeomorphic to Rk ×Q.
Therefore we can introduce

h = −g(xα,q i) ∈ C∞(P) ,

ωα = −
(
∂f αk
∂xµ

dxµ +
∂f αk
∂q j dq j

)
∧ dqk ∈ Ω2(P) ,

such that FL∗0EL = h and FL∗0ω
α
L = ωα. As above, ηα = dxα and the Reeb vector fields are Rα =

∂

∂xα
. Then

dh −Rα(dh) dxµ = dh − ∂h
∂xµ

dxµ = − ∂g
∂xµ

dxµ − ∂g
∂q j dq j +

∂g
∂xµ

dxµ = − ∂g
∂q j dq j ∈ Ω1(P) ,

and, for a k -vector field X = (X1, . . . ,Xk) ∈ Xk(P) satisfying the second group of equations (2), we have that

Xα =
∂

∂xα
+ F l

α

∂

∂q l ∈ X(P) ,

thus

iXα
ωα = F l

α

∂f αl
∂xµ

dxµ −
∂f αj
∂xα

dq j ,

and the first group of equations (2) leads to

F l
ν

∂f νl
∂xµ

= 0 ,
∂g
∂q j −

∂f αj
∂xα

= −F l
α

(
∂f αl
∂q j −

∂f αj
∂q l

)
.

As in the Lagrangian formalism, this system of (linear) equations allows us to determine (partially) the component functions F l
α and,

eventually, could give constraints functions (depending on the rank of the matrices involved). If this last situation happens, then the
constraint algorithm follows by demanding the tangency condition for the vector fields Xα.
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