Affine Lagrangians in the k-cosymplectic formulation of field theories
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ABSTRACT Field theories described by Lagrangians depending on space-time coordinates can be modelled using k-cosymplectic
geometry. In particular, theories described by singular Lagrangians are of special interest because of their role in modern physics, in
particular in gauge field theories. Nevertheless, there is a problem of consistency of the corresponding equations of motion
(Euler—Lagrange and Hamilton—de Donder—Weyl), and thus one needs to study the possible constraints arising in the space of
solutions. This problem can be analyzed by means of a constraint algorithm. On the other hand, some field theories are based on
affine Lagrangians, i. e., Lagrangians that are affine with respect to the velocity variables. We apply the constraint algorithm to this
specific case, both in the Lagrangian and the Hamiltonian formalisms.

k-PRECOSYMPLECTIC MANIFOLDS

Let M be a differentiable manifold of dimension n(k + 1)+ k — m (with1 < m < nk). A k-precosymplectic structure in M is a family
(", Q. V), 1 <a < k, where n* are closed 1-forms in M, Q are closed 2-forms in M, andV is an integrable nk-dimensional
integrable distribution in M satisfying that:

(1) " A~ AR #£0, %y =0, Q% =0,

(2) (ﬁ kerno‘) N (ﬁ kerQO‘) # {0} , rank (ﬁ kerQO‘) > K.
a=1 a=1 a=1

A manifold M endowed with a k-precosymplectic structure is called a k-precosymplectic manifold.

This definition is a generalization of the definition of k-cosymplectic manifold [1, 2] to model the geometry of singular nonautonomous
field theories. Now we are going to describe a particular kind of local coordinates, that we will call Darboux coordinates.

Theorem (k-precosymplectic Darboux theorem)

k
Let M be a k-precosymplectic manifold such that rank Q* = 2r,,, with1 < r, < nand m = kn — Z r., — d. For every point p € M,

a=1

there exists a local chart
(up;x“,y",y,-j,z@) 1<a<k,1<i<n,i,el,C{1,....n}, 1<j<d),

82;;‘

Up

such that
N, = dx® Q% =dy" A dyp

a 8 X o 4 o
V|up = <(9y.0" (92-0‘> : [(Oﬂ kern ) N (Oﬂ ker Q2 )}

The proof of this theorem will be found in [3].

Proposition
Given a k-precosymplectic manifold (M, w®,n“, V), there exists a family R+, ..., Rk € X(M) of vector fields satisfying
iR wﬁ = O,
o 1
{I'Ranﬁ = (5g ( )

Such a family of vector fields is called a family of Reeb vector fields.

K-PRECOSYMPLECTIC HAMILTONIAN SYSTEMS

Definition

A k-precosymplectic Hamiltonian system is a family (M, w®, n“, V.,~) where (M,w®,n“, V) is a k-precosymplectic manifold of the
type RX x P and ~ is a closed 1-form on M called the Hamiltonian 1-form.

The solutions of a k-precosymplectic Hamiltonian system are the integral sections of the k-vector fields X = (X,) € X¥(M) solution of
the system of differential equations

{ixaw“ =7 —7(Ra)n", 2

ixanﬁ = 55.

K-PRECOSYMPLECTIC CONSTRAINT ALGORITHM

We want to find a submanifold N — M such that the previous system of equations has global solutions on N tangent to N. In order to
find this submanifold (if it exists) we construct a constraint algorithm which provides us with a sequence of submanifolds

e m M=o Mo — My — M
which in favorable cases will end in a final constraint submanifold.

The following theorem will be the core of our algorithm and will give us a way to compute the constraints at every step of the algorithm.

Theorem

Let (M, w", n* V,~) be a k-precosymplectic Hamiltonian system. Consider a submanifold C — M and a k-vector field
X: C — (T})cM such that X, € (T]),C for every p € C. The following two conditions are equivalent:

(1) There exists a k vector field X = (X,): C — (T )cM tangent to C such that the system of equations

holds on C.
(2) Forevery p € C, there exists Z, = (Z,)p € (T})pC such that iz, m, = 65 and 3", 0% + Fp = b(Zp), where 7p = 7p — Vp(Rap)13 and b

is defined as
b : T,}M — T*M
X = (X,) — i(Xy)w® + (I(X,)n*)n®.

Taking into account the previous theorem, we define the j-ary constraint submanifold as
M; = {p € Mi_1|32Z = (Z,) € (T{)M_y such thaty(Z2) =5+ > n” and iz,n’ = 55},
where My = M.

Definition

Let C — M be a submanifold of a k-precosymplectic manifold M. The k-precosymplectic orthogonal complement of C is

TCt = (b ((T,})Cm DC))O

where D¢ is the set of all k-vectors Z, = (Z,)p, on C such that izapng = 7.

Using this definition we can characterize the j-ary constraint submanifold as
M={peM 1|7+ n"e(TO))P}.

Although this allows us to effectively compute the constraints at every step of the algorithm, an alternative and equivalent way to
compute the constraint submanifolds of the k-precosymplectic constraint algorithm, which is much more operational, is the
following:

(1) Obtain a local basis {Z;, ..., Z} of (TM)*.

(2) Use the theorem to obtain a set of independent constraint functions f, = i(Z,)(7 + >_ ., n") defining the submanifold My — M.
(3) Compute solutions X = (X,) of the field equations on M.

(4) Impose the tangency condition of Xj, ..., X on M;.

(5) lterate item (4) until no new constraints appear.

If this iterative procedure ends in a non-empty submanifold M,, then we can assure the existence of global solutions to the field
equations on this submanifold M.

Remark Let £ be a singular nonautonomous Lagrangian on R x T!Q. It can be modelled as the k-precosymplectic Hamiltonian
system (R¥ x T!Q,w?,dx, dE;). Therefore, we can apply the k-precosymplectic constraint algorithm to it.

AFFINE LAGRANGIANS

Some field theories of interest in theoretical physics are modelled on affine Lagrangians; this is the case, for instance, of
Einstein—Palatini gravity or Dirac fermion fields. We are going to apply the constraint algorithm to such theories, both in the
Lagrangian and Hamiltonian formalisms [4].

Consider mrv: R x Q — RX as the configuration bundle of a field theory and its associated phase space bundle of k-velocities
71: R¥ x T1Q — RX, with coordinates (x, ', v!). In this phase space we consider an affine Lagrangian, that is, a Lagrangian
function L € C*(R* x T!Q) affine in the fibre coordinates v/ :

L(x*,q', V) = f'(x*,q)V, + g(x*,q) . (3)
Obviously such a Lagrangian is singular.

Remark An affine Lagrangian can be alternatively defined from a 2-semibasic k-form ¢ on R¥ x Q. From it a Lagrangian
L, € C*(RX x T} Q) is determined by the equality
Le(x: Jgdx) wx = [67C] (x) ,
where ¢ is any section of R x Q — R* and w = d*x is the volume form of RX. This function is well defined and its local expression is
that of an affine Lagrangian.

L AGRANGIAN FORMALISM
Now let us reproduce the calculations for an affine Lagrangian. We have
E, = A(L)—L=—g(x*,q) € C*(R" x TQ),

a af/((l 8]‘/((1 ' k 2(mk 1
W = _((‘)deX”—I_(‘)—cyldqj) /\dq c (2 (R X TKQ),

. . . 0
and we have a k-precosymplectic structure (w¢, dx®, V) in R x T} Q where (x*) are the coordinates of R¥, V = <8v'> and where the

I

Reeb vector fields, defined in (1), are R, = 9 Then

ox®
oL g og . ;. (o , 09 og . ;i o
- v _ n_ v v _ H
dE; + I dx i dx 9 dq + ( I T e dx r dg’ + VTR dx*
and, for a k-vector field X = (Xi,..., Xk) € X¥(R* x T} Q) satisfying the second group of equations (2), we have that
x,-2 49 g 9 e X(RFx T Q), (4)

oxe  “9q  Tovl
thus

of ofr of 3 -
ool O Y N
ixw) =F, i dx v dg + F, ( g > d¢ ,

and the first group of equations (2) leads to

of/
=N/
(v —F)e =0, (5)
89 o affa _ _Fl af/Oé o a];a (6)
og  0x© “\Nog 0q' |

This is a system of (linear) equations for the component functions F!, which allows us to determine (partially) these functions and,
eventually, gives raise to constraints functions (depending on the rank of the matrices involved). If this last situation happens, then the
constraint algorithm follows by demanding the tangency condition for the vector fields X,. Observe also that, in any case, in these
vector fields, the coefficients G/ , are undetermined.

If we look for semi-holonomic k-vector fields X, it implies that F¥ = vX in (4). Then, equations (5) hold identically, meanwhile
equations (6) read

of a  Of
ag ] 4+ V(i af/ ] —0
o  Ox° og.  0q
which are constraints. Then the tangency condition for the vector fields
0 ; 0 G,
X, axr T Wag T G”O‘ﬁ—v(i :
leads to
(99_86&_1_ / a_fla_a_ca -0
oq  Ox~ “\og  0q'
which allows us to determine (partially) the functions G¥, and, eventually, gives raise to constraints functions, depending on the rank
fo  Of . _ _ _ _ -
of the matrix (gclyf — (‘9cjyl> . In this last case, the constraint algorithm continues by demanding again the tangency condition.

HAMILTONIAN FORMALISM

Let 71: R¥ x (T})*Q — R¥ be the phase space bundle of k-momenta. The Legendre map FL: R x T)Q — R¥ x (T})*Q associated

to the Lagrangian L is
. . oL .
xtoFL=x" . qoFlL=q . ploFL=-"=1(x"q).
7
Observe that P = FL(R* x T!Q) is defined by the constraints p/' = f(x“, ¢); hence it is the image of a section
&R x Q — R¥ x (T]!)*Q of the projection (7g)(1.0): R* x (T})*Q — R¥ x @, and then it can be identified in a natural way with R x Q.
Therefore, as ¢ o 4 is a surjective submersion with connected fibres, then so is FLy: R¥ x T!Q — P (the restriction of FL onto its
image P), since FLy = £ o 1. In conclusion, affine Lagrangians are almost regular Lagrangians and thus P is an embedded
submanifold of R* x (T!)*Q, which is diffeomorphic to R* x Q.
Therefore we can introduce

h = —g(x% q') e C*(P),

a af/? i af/? ' k 2
W = —(axﬂdx —|—a—qjdqj>/\dq EQ(P),

such that FLyE, = hand FLyw)' = w®. As above, n“ = dx“ and the Reeb vector fields are R, = 0 Then

oxe’
oh 0g og ., 0g og . ; ’
_ fo_— _ dxt = — 2 gyt — 22 I qxt = <
dh — R.(dh)dx" = dh i dx i dx g dg’ + I dx F dg € 2'(P),
and, for a k-vector field X = (Xi, ..., Xk) € X*(P) satisfying the second group of equations (2), we have that
0 0
X, =—+F —
axa + « aq/ < %(P) Y

thus of a0

3 a_ 20 qyn J '

Ix W Fa X! dx X0 dqj ,

and the first group of equations (2) leads to
F/ afly —0 ag . a];a _ _F/ <ale 8];-0‘) .

Y oxn og oxe " “\og aq

As in the Lagrangian formalism, this system of (linear) equations allows us to determine (partially) the component functions F! and,
eventually, could give constraints functions (depending on the rank of the matrices involved). If this last situation happens, then the
constraint algorithm follows by demanding the tangency condition for the vector fields X,.
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