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Poisson—Hopf algebras in Lie-Hamilton systems
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We merge quantum algebras with Lie systems in order to establish a new formalism, say
Poisson—Hopf algebra deformations of Lie systems. Our procedure can be applied to those
Lie systems endowed with a symplectic structure, the so called Lie-Hamilton systems. This
is a general approach since it can be applied to any quantum deformation, any underlying
manifold and any dimension. One of its main features is that, under quantum deforma-
tion, Lie systems are promoted to involutive distributions. Thus a quantum deformed Lie
system has no longer an underlying Vessiot—Guldberg Lie algebra nor a quantum algebra
one. However, it keeps a (deformed) Poisson—Hopf algebra structure which enables one to
obtain, in an explicit way, the t-independent constants of motion from quantum deformed
Casimir invariants which can be useful in a further construction of the corresponding de-
formed superposition rules. Moreover, we illustrate our general approach by considering the
non-standard quantum deformation of sl(2) applied to well-known Lie systems, such as the
oscillator problem or Milne-Pinney equation and several types of Riccati equations.
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