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Introduction
Symmetries and similarity reductions

The study of symmetries represents a fundamental point related
to the analysis of integrability of differential equations, since this
invariance property may be used to achieve partial or complete
integration of such equations.

A standard method for finding solutions of a PDE can be im-
plemented using Lie symmetries: each Lie symmetry leads to a
similarity reduction for the PDE which allow us to reduce by one
the number of variables.
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Introduction
Symmetries and similarity reductions for the spectral problem

In this work, we are concerned with the analysis of the Lax pair,
considered as a proof of the integrability of a PDE. As mentioned,
Lie symmetries for the PDE are very popular in literature, but
the symmetry analysis for the Lax pair is often less studied.

This approach has the benefit that the reduction associated to
each symmetry of the Lax pair provides both the reduced equa-
tions and the reduced spectral problem.
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Multi-component NLS Equation in 2 + 1
P. Albares et al., arXiv:1807.09039v1 [nlin.SI]

An integrable multi-component nonlinear Schrödinger equation
in 2 + 1 dimensions is presented:

i~αt + ~αxx + 2mx ~α = 0, −i~α†t + ~α†xx + 2mx ~α
† = 0,(

my + ~α ~α†
)

x
= 0,

(1)

where ~α(x , y , t) = (α1(x , y , t), α2(x , y , t))ᵀ and ~α† is the
complex conjugate of ~α. m(x , y , t) is a real scalar function
related to the probability density ~α ~α†.

The reduction x = y of (1) yields the Manakov system, also
called vector NLS system.
(1) is a multi-component generalization of the simplest NLS
Eq. in 2 + 1 dimensions.
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Lax Pair

The three-component Lax pair for (1), and its complex conjuga-
te, has the following form:

ψy = −α†1 χ− α†2 ρ, ψt = −ψxx − 2mx ψ

χx = −α1 ψ, χt = − (α1)x ψ + α1 ψx (2)
ρx = −α2 ψ, ρt = − (α2)x ψ + α2 ψx

where the eigenvector of the Lax Pair is defined by
~Ψ(x , y , t) = (ψ(x , y , t), χ(x , y , t) , ρ(x , y , t))ᵀ.

Note that no spectral parameter appears in this Lax Pair.
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Lie point symmetries

The following infinitesimal Lie point symmetries have been con-
sidered:

x̂ = x + ε ξ1(x , y , t, α1, α2,m, ψ, χ, ρ) +O(ε2),
ŷ = y + ε ξ2(x , y , t, α1, α2,m, ψ, χ, ρ) +O(ε2),
t̂ = t + ε ξ3(x , y , t, α1, α2,m, ψ, χ, ρ) +O(ε2),
α̂1 = α1 + ε η1(x , y , t, α1, α2,m, ψ, χ, ρ) +O(ε2),
α̂2 = α2 + ε η2(x , y , t, α1, α2,m, ψ, χ, ρ) +O(ε2),
m̂ = m + ε η3(x , y , t, α1, α2,m, ψ, χ, ρ) +O(ε2),
ψ̂ = ψ + ε φ1(x , y , t, α1, α2,m, ψ, χ, ρ) +O(ε2),
χ̂ = χ+ ε φ2(x , y , t, α1, α2,m, ψ, χ, ρ) +O(ε2),
ρ̂ = ρ+ ε φ3(x , y , t, α1, α2,m, ψ, χ, ρ) +O(ε2)

(3)

where ε is the group parameter and ξ1, ξ2, ξ3, η1, η2, η3, φ1,
φ2, φ3 are the infinitesimals.
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Lie point symmetries

The infinitesimal generator of the group of the previous trans-
formations is given by the vector field

X = ξ1
∂

∂x + ξ2
∂

∂y + ξ3
∂

∂t + η1
∂

∂u + η2
∂

∂ω
+ η3

∂

∂m

+ φ1
∂

∂ψ
+ φ2

∂

∂χ
+ φ3

∂

∂ρ

(4)

This infinitesimal transformation induces a well known one in the
derivatives of the fields. This procedure, applied to (2), leads to
an overdetermined system of PDEs for the infinitesimals, whose
solution provides the symmetry transformations.
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Results: Lie symmetries for (1)

The following sets of symmetries have been obtained:

ξ1 = 4K̇1(t) x + 2K2(t)
ξ2 = 2C1(y)
ξ3 = 8K1(t)
η1 =

[
i
(
K̈1(t)x2 + K̇2(t)x + K3(t) + C2(y)

)
− 2K̇1(t)− C ′1(y)

]
α1

+ [C4(y) + i C5(y)]α2

η2 =
[
i
(
K̈1(t)x2 + K̇2(t)x + K3(t) + C3(y)

)
− 2K̇1(t)− C ′1(y)

]
α2

− [C4(y)− i C5(y)]α1

η3 = −4K̇1(t) m + 1
6
...
K1(t)x3 + 1

4 K̈2(t)x2 + 1
2 K̇3(t)x + δ(y , t)

(5)
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Results: Lie symmetries for (2)

And for the Lax Pair:

φ1 =
[
−i
(
K̈1(t)x2 + K̇2(t)x + K3(t)

)
− 2K̇1(t) + λ

]
ψ

φ2 =
[
iC2(y)− C ′1(y) + λ

]
χ+ [C4(y) + iC5(y)] ρ

φ3 =
[
iC3(y)− C ′1(y) + λ

]
ρ− [C4(y)− iC5(y)]χ

(6)
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Analysis of the symmetries

- These Lie symmetries depend on a set of nine arbitrary fun-
ctions:

Three arbitrary real functions of t, Ki (t), i = 1, ..., 3.
Five arbitrary real functions of y , Cj(y), j = 1, ..., 5.
One arbitrary real function δ(y , t).

- These symmetries only include an arbitrary constant λ.

- Symmetries (5) can be analogously derived for the starting
system of PDEs (1), whereas symmetries (6) correspond to the
transformation of the eigenfunctions of the Lax pair.

- The only additional symmetry that corresponds strictly to the
Lax pair itself is the one associated with λ.
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Infinitesimal generators I

The ten infinitesimal generator associated to these symmetries
are

X [1]
{K1(t)} = 1

6x3 ...K1
∂

∂m + ix2K̈1

(
α1

∂

∂α1
+ α2

∂

∂α2
− ψ ∂

∂ψ

)
+ 2K̇1

(
2x ∂

∂x − α1
∂

∂α1
− α2

∂

∂α2
− 2m ∂

∂m − ψ
∂

∂ψ

)
+ 8K1

∂

∂t

X [2]
{K2(t)} = 1

4x2K̈2
∂

∂m + ixK̇2

(
α1

∂

∂α1
+ α2

∂

∂α2
− ψ ∂

∂ψ

)
+ 2K2

∂

∂x

X [3]
{K3(t)} = 1

2xK̇3
∂

∂m + iK3

(
α1

∂

∂α1
+ α2

∂

∂α2
− ψ ∂

∂ψ

)
Z{δ(y ,t)} = δ

∂

∂m
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Infinitesimal generators II

Y [1]
{C1(y)} = −C ′1

(
α1

∂

∂α1
+ α2

∂

∂α2
+ χ

∂

∂χ
+ ρ

∂

∂ρ

)
+ 2C1

∂

∂y

Y [2]
{C2(y)} = iC2

(
α1

∂

∂α1
+ χ

∂

∂χ

)
Y [3]
{C3(y)} = iC3

(
α2

∂

∂α2
+ ρ

∂

∂ρ

)
Y [4]
{C4(y)} = C4

(
α2

∂

∂α1
− α1

∂

∂α2
+ ρ

∂

∂χ
− χ ∂

∂ρ

)
Y [5]
{C5(y)} = iC5

(
α2

∂

∂α1
+ α1

∂

∂α2
+ ρ

∂

∂χ
+ χ

∂

∂ρ

)
Λ{λ} =

(
ψ
∂

∂ψ
+ χ

∂

∂χ
+ ρ

∂

∂ρ

)
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Commutation relations

These generators can be classified in the one associated
to the arbitrary constant and the ones associated to the
arbitrary functions.

The generators depending on arbitrary functions do not give
rise a Lie Algebra, but the commutator of two symmetry
generators is also a generator of a symmetry.

X [1]
{K1} X [2]

{K2} X [3]
{K3} Z{δ}

X [1]
{H1} X [1]

{8H1K̇1−8K1Ḣ1}
X [2]
{8H1K̇2−4K2Ḣ1}

X [3]
{8H1K̇3}

Z{8H1∂t(δ)+4δḢ1}

X [2]
{H2} −X [2]

{8K1Ḣ2−4H2K̇1}
X [3]
{2H2K̇2−2K2Ḣ2}

Z{H2K̇3} 0

X [3]
{H3} −X [3]

{8K1Ḣ3}
−Z{K2Ḣ3} 0 0

Z{γ} −Z{8K1∂t(γ)+4γK̇1} 0 0 0
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Commutation relations

Z{δ} Y [1]
{C1} Y [2]

{C2} Y [3]
{C3} Y [4]

{C4} Y [5]
{C5}

Z{γ} 0 −Z{2 C1∂y (γ)} 0 0 0 0
Y [1]
{J1} Z{2 J1∂y (δ)} Y [1]

{2(J1 C ′
1−C1 J ′

1)} Y [2]
{2J1C ′

2}
Y [3]
{2J1C ′

3}
Y [4]
{2J1C ′

4}
Y [5]
{2J1C ′

5}

Y [2]
{J2} 0 −Y [2]

{2C1J ′
2}

0 0 −Y [5]
{J2 C4} Y [4]

{J2 C5}

Y [3]
{J3} 0 −Y [3]

{2C1J ′
3}

0 0 Y [5]
{J3 C4} −Y [4]

{J3 C5}

Y [4]
{J4} 0 −Y [4]

{2C1J ′
4}

Y [5]
{C2 J4} −Y [5]

{C3 J4} 0 −Y [2]
{2 J4C5} + Y [3]

{2 J4C5}

Y [5]
{J5} 0 −Y [5]

{2C1J ′
5}

−Y [4]
{C2 J5} Y [4]

{C3 J5} Y [2]
{2 C4J5} − Y [3]

{2 C4J5} 0

Λ{λ} commutes with all other generators.[
X [j]
{Kj (t)},Y

[l]
{Cl (y)}

]
= 0, j = 1, ..., 3, l = 1, ..., 5.

Every commutator provides another generator, in an unu-
sual way due to the presence of the arbitrary functions.
It is possible to construct a finite dimensional Lie Algebra
by selecting special values for the arbitrary functions.
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Similarity reductions

After determining the symmetries, the similarity reduction for
each symmetry may be performed, which allows to reduce by
one the number of independent variables.

Similarity reductions can be computed from the analysis of in-
variant solutions, obtained by solving the characteristic system

dx
ξ1

= dy
ξ2

= dt
ξ3

= dα1
η1

= dα2
η2

= dm
η3

= dψ
φ1

= dχ
φ2

= dρ
φ3

(7)

In the following, we will deal with the invariant solutions

Original variables New reduced variables
Independent variables x , y , t p, q

Fields α1(x , y , t), α2(x , y , t),m(x , y , t) F (p, q),H(p, q),N(p, q)
Eigenfunctions ψ(x , y , t), χ(x , y , t), ρ(x , y , t) Φ(p, q),Σ(p, q),Ω(p, q),
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Similarity reductions

The following nontrivial cases have been considered:
K1(t) 6= 0, K2(t) 6= 0, C1(y) 6= 0
K1(t) 6= 0, K2(t) 6= 0, C1(y) = 0
K2(t) 6= 0, C1(y) 6= 0, K1(t) = 0

We introduce the shorthand notation:

I0(t) = 1
4

∫ K2(t)
K1(t) 3

2
dt, I1(t) = 1

4

∫ K2(t)2

K1(t)2 dt,

I2(t) = 1
512

∫ K2(t)3

K1(t) 5
2

dt
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I. K1(t) 6= 0, K2(t) 6= 0, C1(y) 6= 0
K1(t) 6= 0, C1(y) 6= 0, K2(t) = 0

Reduced variables
p = x√

K1(t)
− I0(t), q = 4

∫ dy
C1(y) −

∫ dt
K1(t)

Reduced fields

α1(x , y , t) = 2F (p, q)
K1(t) 1

4 C1(y) 1
2

e
i
8

(
K̇1(t)
K1(t) x2+ K2(t)

K1(t) x−I1(t)
)

α2(x , y , t) = 2H(p, q)
K1(t) 1

4 C1(y) 1
2

e
i
8

(
K̇1(t)
K1(t) x2+ K2(t)

K1(t) x−I1(t)
)

m(x , y , t) = x3

24K1(t)− 1
2

(
K1(t) 1

2

)
tt

+ x2

32K1(t)− 1
2

(
K2(t)√
K1(t)

)
t

− 1
32x İ1(t) + N(p, q) + I2(t)√

K1(t)
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I. K1(t) 6= 0, K2(t) 6= 0, C1(y) 6= 0

Reduced eigenfunctions

ψ(x , y , t) = Φ(p, q)
2K1(t) 1

4
e
− i

8

(
K̇1(t)
K1(t) x2+ K2(t)

K1(t) x−I1(t)
)

+ λ
8

∫
dt

K1(t)

χ(x , y , t) = Σ(p, q)
C1(y) 1

2
e

λ
8

∫
dt

K1(t) , ρ(x , y , t) = Ω(p, q)
C1(y) 1

2
e

λ
8

∫
dt

K1(t)

Reduced equations
iFq − Fpp − 2FNp = 0
iHq − Hpp − 2HNp = 0(

Nq + FF † + HH†
)

p = 0

which is a nonlocal multi-component NLS Eq. in 1 + 1 dim. for
{F † ,H†} and density Nq.
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I. K1(t) 6= 0, K2(t) 6= 0, C1(y) 6= 0

Reduced spectral problem
p-Lax Pair

Φpp +
(
2Np −

i
8λ
)

Φ− iF †Σ− iH†Ω = 0

Σp + F Φ = 0
Ωp + H Φ = 0

q-Lax Pair
Φq + F † Σ + H† Ω = 0

Σq + i (F Φp − Fp Φ)− λ

8Σ = 0

Ωq + i (H Φp − Hp Φ)− λ

8Ω = 0

λ plays the role of the spectral parameter.
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II. K1(t) 6= 0, K2(t) 6= 0, C1(y) = 0

Reduced variables
p = x√
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24K1(t)− 1
2
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2

)
tt
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K2(t)√
K1(t)

)
t
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K1(t) 1

4
e
− i

8

(
K̇1(t)
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K1(t) x−I1(t)
)

+ λ
8

∫
dt

K1(t)

χ(x , y , t) = Σ(p, q) e
λ
8

∫
dt

K1(t) , ρ(x , y , t) = Ω(p, q) e
λ
8

∫
dt

K1(t)

Reduced equations
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Nq + FF † + HH†
)
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II. K1(t) 6= 0, K2(t) 6= 0, C1(y) = 0

Reduced spectral problem
p-Lax Pair

Φpp + (2Np −
i
8λ)Φ = 0

Σp + F Φ = 0, Ωp + H Φ = 0

q-Lax Pair

Φq + F †Σ + H† Ω = 0
λΣ− 8i (F Φp − Fp Φ) = 0, λΩ− 8i (H Φp − Hp Φ) = 0

Or equivalently, the scalar Lax pair in 1 + 1

Φpp + (2Np −
i
8λ)Φ = 0

λΦq − 8i
{(

F † Fp + H† Hp
)

Φ + Nq Φp
}

= 0
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III. K2(t) 6= 0, C1(y) 6= 0, K1(t) = 0

Reduced variables
p = x

K2(t) −
∫ dy

C1(y) , q =
∫ dt

K2(t)2

Reduced fields

α1(x , y , t) = F (p, q)
K2(t) 1

2 C1(y) 1
2

e
i
4

(
K̇2(t)
K2(t) x2+2p−q

)

α2(x , y , t) = H(p, q)
K2(t) 1

2 C1(y) 1
2

e
i
4

(
K̇2(t)
K2(t) x2+2p−q

)

m(x , y , t) = 1
24

K̈2(t)
K2(t) x3 + N(p, q)

K2(t)
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III. K2(t) 6= 0, C1(y) 6= 0, K1(t) = 0

Reduced eigenfunctions

ψ(x , y , t) = Φ(p, q)
K2(t) 1

2
e
− i

4

(
K̇2(t)
K2(t) x2−q

)
+ λ

2

∫
dy

C1(y)

χ(x , y , t) = Σ(p, q)
C1(y) 1

2
e

λ
2

∫
dy

C1(y) + i p
2 , ρ(x , y , t) = Ω(p, q)

C1(y) 1
2

e
λ
2

∫
dy

C1(y) + i p
2

Reduced equations
iFq + (Fp + iF )p + 2FNp = 0
iHq + (Hp + iH)p + 2HNp = 0(

Np − FF † − HH†
)

p = 0
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III. K2(t) 6= 0, C1(y) 6= 0, K1(t) = 0

Reduced spectral problem
p-Lax Pair

Φp −
(
F † Σ + H† Ω

)
− λ

2 Φ = 0

Σp + F Φ + i
2Σ = 0, Ωp + H Φ + i

2Ω = 0

q-Lax Pair

Φq − i
(
FF † + HH† − 2Np −

(λ2 + 1)
4

)
Φ +

(
iF †

p + iλ+ 1
2 F †

)
Σ

+
(
iH†

p + iλ+ 1
2 H†

)
Ω = 0

Σq −
(

(iλ+ 1)
2 F − iFp

)
Φ− iFF †Σ− iFH†Ω = 0

Ωq −
(

(iλ+ 1)
2 H − iHp

)
Φ− iHF †Σ− iHH†Ω = 0
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Conclusions and future perspectives

Classical Lie symmetries have been determined for a gene-
ralized multi-component NLS Eq. in 2 + 1 dimensions (1)
and its Lax Pair, in terms of nine arbitrary functions and a
single arbitrary constant.

The commutation relations for the generators associated to
each symmetry have been analyzed.
Similarity reductions have been performed, obtaining simul-
taneously the reduced spectral problem and the reduced
equations.
Remark that three special reductions lead to nontrivial pro-
blems in 1 + 1 dimensions.
The spectral parameter arises naturally in the process of
constructing the reductions, due to the symmetry associated
to the arbitrary constant.
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blems in 1 + 1 dimensions.
The spectral parameter arises naturally in the process of
constructing the reductions, due to the symmetry associated
to the arbitrary constant.
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Thank you for your attention!
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