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Introduction
Symmetries and similarity reductions

The study of symmetries represents a fundamental point related
to the analysis of integrability of differential equations, since this
invariance property may be used to achieve partial or complete
integration of such equations.
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Introduction

Introduction
Symmetries and similarity reductions

The study of symmetries represents a fundamental point related
to the analysis of integrability of differential equations, since this
invariance property may be used to achieve partial or complete
integration of such equations.

A standard method for finding solutions of a PDE can be im-
plemented using Lie symmetries: each Lie symmetry leads to a
similarity reduction for the PDE which allow us to reduce by one
the number of variables.
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Introduction

Introduction
Symmetries and similarity reductions for the spectral problem

In this work, we are concerned with the analysis of the Lax pair,
considered as a proof of the integrability of a PDE. As mentioned,
Lie symmetries for the PDE are very popular in literature, but
the symmetry analysis for the Lax pair is often less studied.
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Introduction

Introduction
Symmetries and similarity reductions for the spectral problem

In this work, we are concerned with the analysis of the Lax pair,
considered as a proof of the integrability of a PDE. As mentioned,
Lie symmetries for the PDE are very popular in literature, but
the symmetry analysis for the Lax pair is often less studied.

This approach has the benefit that the reduction associated to
each symmetry of the Lax pair provides both the reduced equa-
tions and the reduced spectral problem.
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NLS Egq. in
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Multi-component NLS Equation in 2 + 1
P. Albares et al., arXiv:1807.09039v1 [nlin.SI]

An integrable multi-component nonlinear Schrédinger equation
in 24+ 1 dimensions is presented:

i&t+&xx+2mx&:0, —Id’];+&ix+2mxd’T:0,

1
(my+aat) =o, 1)
X
where d(x,y,t) = (a1(x,y, t), az(x,y,t))T and @' is the
complex conjugate of &. m(x,y, t) is a real scalar function
related to the probability density & &'
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Multi-component NLS Equation in 2 + 1
P. Albares et al., arXiv:1807.09039v1 [nlin.SI]

An integrable multi-component nonlinear Schrédinger equation
in 24+ 1 dimensions is presented:

i&t+&xx+2mx&:0, —Io_z’];+&:f<x+2mxo77:0,

1

(my+aat) =o, 1)
X

where d(x,y,t) = (a1(x,y, t), az(x,y,t))T and @' is the

complex conjugate of &. m(x,y, t) is a real scalar function

related to the probability density & &'

m The reduction x = y of (1) yields the Manakov system, also
called vector NLS system.

m (1) is a multi-component generalization of the simplest NLS
Eq. in 2 4+ 1 dimensions.
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Lax Pair

The three-component Lax pair for (1), and its complex conjuga-
te, has the following form:

wy:—OéIX—OCEP’ wt:_wxx_2mxw
Xx = — a1, xt = — (a1), ¥ + a1« (2)
px = —azp, pr = — (a2), ¥ + ax 1«

where the eigenvector of the Lax Pair is defined by
V(x,y,t) = (¥(xy, 1), x(x,y,t), plx,y,t))T.

Note that no spectral parameter appears in this Lax Pair.
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Lie point symmetries

The following infinitesimal Lie point symmetries have been con-
sidered:
X =x +6§1(Xaya t, g, oz, mﬂ/’aX,P) + 0(52)7
.)/} =Yy +€§2(Xay, t7 a1, 0, mawﬂX7p) + 0(52)
/i- =t+ 553(Xa.)/a t,O[l, Q, m7¢7X7 P) + 0(52)

)

)

OAll =ao1+ 6771(X,y, t, a1, ao, ma¢aX7p) + 0(62)7
OA[2 :a2+5772(x,y, taal,abmawax,p)—’—o(ez)v (3)
Mm=m+em(x,y,t,a,a,mp, x,p)+ O(?),

¥

= ¢ +€¢1(Xaya t,al,OéQ, m7¢7X’p) + 0(52)’
)2 = X+€¢2(Xay7 t,aq,ao, ma¢aX7p) + 0(62)7
ﬁ = P+5¢3(X7y7 t,a17a2, m7¢7X7p) + 0(62)

where ¢ is the group parameter and &1, &2, &3, M1, 12, M3, ¢1,
¢2, @3 are the infinitesimals.
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Classical Lie
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Lie point symmetries

The infinitesimal generator of the group of the previous trans-
formations is given by the vector field

0 0 0
X = 51 +§2 +§3 +7718 B m
s o P (4)
+¢1 +¢2 +¢3
oY dp

+m—+n
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symmetries

Lie point symmetries

The infinitesimal generator of the group of the previous trans-
formations is given by the vector field

0 0 0
X = §1 +§2 +§3 +7718 Jrnz8 +7735m

3 9 (4)

+¢1 0 +¢2 +¢3

o

This infinitesimal transformation induces a well known one in the
derivatives of the fields. This procedure, applied to (2), leads to
an overdetermined system of PDEs for the infinitesimals, whose
solution provides the symmetry transformations.
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2+ 1 dim. The following sets of symmetries have been obtained:
Paz

51 = 4K1(1.' X+ 2K2(t)

)
& =2G(y)
53 = 8K1(t)

Classical Lie

symmetries m = [i (Ki(t)x* + Ka(t)x + K3(t) + Ga(y)) — 2Ki(t) — Gi(y)] aa
+ [Gily) + i Gs(y)] a2

ne = [i (Ki(t)x* + Ka(t)x + Ks(t) + G3(y)) — 2Ki(t) — C{(¥)] a2
—[Gly) =i G(y)] n

. 1... 1. 1.
n3 = —4Ky(t) m+ 6Kl(t)x3 + ZKQ((‘,‘)X2 + §K3(t)x +d(y, t)

(5)
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And for the Lax Pair:

o1 = |—i (Ku(t)x® + Ko(t)x + Ka(t)) — 2Ka(t) + A|
¢2 = [iG(y) = Ci(y) + Al x + [Caly) + iCs(¥)] p (6)
¢3 = [iG(y) — CL(y) + Al p = [Galy) — iGs(y)] x

Classical Lie
symmetries
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Classical Lie
symmetries

Analysis of the symmetries

- These Lie symmetries depend on a set of nine arbitrary fun-
ctions:

m Three arbitrary real functions of t, Ki(t),i =1,...,3.
m Five arbitrary real functions of y, Ci(y),j =1,...,5.
m One arbitrary real function 6(y, t).
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Analysis of the symmetries

- These Lie symmetries depend on a set of nine arbitrary fun-
ctions:

m Three arbitrary real functions of t, Ki(t),i =1,...,3.
m Five arbitrary real functions of y, Ci(y),j =1,...,5.
m One arbitrary real function 6(y, t).

- These symmetries only include an arbitrary constant .
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Classical Lie
symmetries

Analysis of the symmetries

- These Lie symmetries depend on a set of nine arbitrary fun-
ctions:

m Three arbitrary real functions of t, Ki(t),i =1,...,3.
m Five arbitrary real functions of y, Ci(y),j =1,...,5.
m One arbitrary real function (y, t).

- These symmetries only include an arbitrary constant .

- Symmetries (5) can be analogously derived for the starting
system of PDEs (1), whereas symmetries (6) correspond to the
transformation of the eigenfunctions of the Lax pair.
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Classical Lie
symmetries

Analysis of the symmetries

- These Lie symmetries depend on a set of nine arbitrary fun-
ctions:

m Three arbitrary real functions of t, Ki(t),i =1,...,3.
m Five arbitrary real functions of y, Ci(y),j =1,...,5.
m One arbitrary real function (y, t).

- These symmetries only include an arbitrary constant .

- Symmetries (5) can be analogously derived for the starting
system of PDEs (1), whereas symmetries (6) correspond to the
transformation of the eigenfunctions of the Lax pair.

- The only additional symmetry that corresponds strictly to the
Lax pair itself is the one associated with A.
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Infinitesimal generators |

The ten infinitesimal generator associated to these symmetries
are

o _lag 0 op 0 o 9
X{Kl(t)} ~ 55 Ki om + ix“Ky (0‘1 Do +a28a2 11)781/}
. 0 0 0 7] 0
#2622~ g0, g0, ~2mgn )
0
+8Ky

R _lop 0 ik (0 ? pa P O 9
Xty = 3 g, + XK (0‘1 gor " 00, Yau) T 0%

B 1.9 . 0 9 0
Xy = Mg, 71K (O‘lml T2, Vg



Infinitesimal generators ||

Lie
symmetries for

g o
- Y{[lcll(y)} =-q (al Ao + 2 Da
Yidoy = iC (alail +y % )
Commutation Y‘{[Eé]s(y)} =iG (azaiz + paap)
relations Y{[‘g(y)} G (%8(31 131
hoy Gﬁ@i} + Xaa try
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Commutation relations

m These generators can be classified in the one associated
to the arbitrary constant and the ones associated to the
arbitrary functions.
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Commutation relations

m These generators can be classified in the one associated
to the arbitrary constant and the ones associated to the
arbitrary functions.

m The generators depending on arbitrary functions do not give
rise a Lie Algebra, but the commutator of two symmetry
generators is also a generator of a symmetry.



Commutation relations

Lie
ies f e . .
TNLS Eq. n m These generators can be classified in the one associated
2 + 1dim. . .
Fhdm to the arbitrary constant and the ones associated to the

Paz Albares . .
arbitrary functions.

m The generators depending on arbitrary functions do not give
rise a Lie Algebra, but the commutator of two symmetry
generators is also a generator of a symmetry.

Commutation
relations

[1] [2] (3]

| Xk Xy | Xy | 2}
[ [1] [2] [3] ]
X{Hl} X{st—/lKlszlHl} X{8H1K2—4K2H1} X{8H1K3} Z{8H18t(6)+45H1}
X2 Y2 . B ] 7z 0
{[h]!z} {8K1H]2—4H2K1} {2H Ky —2KaFh} {H2K3}
3 3
X{H3} 7X{8K1H3} 7Z{K2H3} 0 0
Zin || ~Lskon+arky) 0 0 0
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Paz Albares 5?31} 7 : yﬁf& sl y[2]0 Y[a]o ymo Y[s]o
{h} {240,(9)} {241 G-G )} {246} {245} {25 ¢} {24¢l}
o 0 Voo ° 0 Vhay s
Yo, 0 ~Vhas 0 0 i s
Y{[j,],} 0 - Y([glcu;} Y{[E]c2 W |- Y{[g]c3 4} 0 - ([Z]J,, ot Y{lglj, G
T’E} 0 Yoo | -Yiea | Yl Y{[?cus} - Yglcus} 0

Commutation
relations
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{h} {240,(9)} {241 G-G )} {246} {245} {251} {24¢l}
Yo, 0 Voo ° 0 Vhay s
Yo, 0 ~Vhas 0 0 i s
Y{[j,],} 0 - Y{[;]C]J“ Y{[E]c2 W |- Y{[glc3 4} 0 - ([Z]J,, ot Y{E]J, G
T’E } 0 Yoo | Yo YJ"A ) Y{[?cus} - Y{lglcus} 0

Commutation

m Ay commutes with all other generators.

relations
Ul U _0 i— _
- [X{Kj(t)}, Y{C/(y)}} =0,j=1,..3,/=1,..,5.
m Every commutator provides another generator, in an unu-

sual way due to the presence of the arbitrary functions.

It is possible to construct a finite dimensional Lie Algebra
by selecting special values for the arbitrary functions.
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Similarity reductions

After determining the symmetries, the similarity reduction for
each symmetry may be performed, which allows to reduce by
one the number of independent variables.
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Similarity reductions

After determining the symmetries, the similarity reduction for
each symmetry may be performed, which allows to reduce by
one the number of independent variables.

Similarity reductions can be computed from the analysis of in-
variant solutions, obtained by solving the characteristic system

de _dy _dt_doy _doy _dm_dv_dx _dp

H & & m  m  om b ¢ b3 @
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Similarity reductions

After determining the symmetries, the similarity reduction for
each symmetry may be performed, which allows to reduce by
one the number of independent variables.

Similarity reductions can be computed from the analysis of in-
variant solutions, obtained by solving the characteristic system

de _dy _dt_doy _doy _dm_dv_dx _dp

— === = = = = = (M
&G & &ooom mn n 91 ¢ @3
In the following, we will deal with the invariant solutions
Original variables New reduced variables
Independent variables X,y,t P, q
Fields ai(x,y, t),c2(x,y,t),m(x,y,t)  F(p,q), H(p,q), N(p, q)

Eigenfunctions P(x, ¥, t), x(x, ¥, t), p(x, v, t)  ®(p, q), X(P, ), A, 9),
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Similarity reductions

The following nontrivial cases have been considered:
m Ki(t) #0, Ka(t) #0, Gi(y) #0
m Ki(t) #0, Ko(t) #0, Gi(y) =0
m Ko(t) #0, Gi(y) #0, Ki(t) =0



Similarity reductions

m Ki(t) #0, Ka(t) # 0, Gi(y) #0
[ Kl(t) #0, Kz(t) #0, Cl(y) =0
m Ko(t) #0, Gi(y) #0, Ki(t) =0

We introduce the shorthand notation:
1/ Kz(t)z
Ki(t)?

oo =5 [ If((t’;) dt. h(t)=
1 2
1 Ko(t)3
20 =5 (o)

The following nontrivial cases have been considered:

Paz

dt

Similarity
reductions

5
2

dt,
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Similarity
reductions

l. Kl(t) 75 0, Kg(t) 7'5 0, Cl(y) 75 0

Ki(t) #0, Gi(y) #0, Ko(t) =0

Reduced variables

p = \/}?1_((-) - lo(t),

_ d d
q= 4f Cl(};/j - f Klzttj




l. Kl(t) 75 0, Kg(t) 74 0, Cl(y) ?é 0

Ki(t) #0, Gi(y) #0, Kx(t) =0

Reduced variables

p= \/!?1(t) a /o(t), 9= 4f Ci( Y) f Ki( f)

Reduced fields

_2F(pa) _ b(R o)
Kl(t) Cl( )%
_2H(p.q) _ (Rt t)
Kl(t)4 Gi(y)?

) = 3k (07),, + S0 ( KK(t()t)>

. N(p,q) + h(t)
_ ﬁx/1(t) + 0

Lie
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2 4+ 1dim.

Paz Albares

ai(x,y, t) =

Similarity
reductions (X Y, )

(NI

\




| Ki(t) # 0, Ka(t) #0, Gi(y) # 0

Lie
symmetries for Bl Reduced eigenfunctions
a NLS Egq. in
2 + 1dim.
Paz Albares i 1(t) A dt
piy, ) = 29 H(AEERO) 4 [ o
e 2 Ky(t)i
X(x,y,t) = 2(p. q) et [ 7, p(x,y,t) = 2p.q) q) et/ o

Similarity
reductions




Lie

l. Kl(t) #0, Kz(t) #0, Cl(y) #0
(K4 on0) 4 o
dt

a NLS Egq. in
2+ 1dim.
Paz Albares 5
®(p,q) —z(x
X,y,t) = e
Yy ) 2 Kl(t)%
> 2 t Q 2
X(X,y, t) = (P, ql) eé Kld(f), p(x7y’ t) — (P, ql) eg\ f Kq(t)
Giy)? Gly)z |
Reduced equations
Similarit
reductior):s ,Fq — Fpp _ 2FNP = 0
iHy — Hpp — 2HN, = 0
(Ng + FFT + HHT)P -0

which is a nonlocal multi-component NLS Eq. in 1 4+ 1 dim. for

A\

{FT,HT} and density N,.
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| Ki(t) # 0, Ka(t) #0, Gi(y) # 0

Reduced spectral problem

m p-Lax Pair

q>,,,,+<2Np—é/\>¢—iFT2—iHTQ:0
S,4+Fd=0
Q,+Hb=0
m g-Lax Pair
O, +FIZ+HQ=0
A
Tq+i(Fo,—Fp®) - SX=0

Qg +i(H®, — Hy®) ~ 20.=0

m )\ plays the role of the spectral parameter.
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Paz Albares Kl(t)

Reduced variables

Similarity
reductions
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Il Ki(t) # 0, Kao(t) #£0, Ci(y) =0

q=Yy

Reduced variables

Reduced fields

Ozl(X y, ) (P q;) 68 KX TR
Ki(t)
H(p, ,<K1<§) 2, Kol 7,(t))
052()(7}/7 t) _ (P q;) e KRo* TR
Kl(t)4

m(x, y,t) = %Kl(t)_% (Kl(t) ) + 32K1( e (

N(p,q) + h(t)

— —xl

% (t) +

Kl(t)

Kg(t)
Kl(t)

)

A




Il Ki(t) # 0, Kao(t) #£0, Ci(y) =0
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® - (gl(t) 2—0—? D x— h(f))"‘% R
¢(X7y7 t) = (p7 q) e 10X 1(0 f 10

Ki(t)7
Afi Af dt
x(x,y,t) =X(p,q) et ) }O, p(x,y,t) =Q(p,q) et ) RO

Similarity
reductions
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Similarity
reductions

Il Ki(t) # 0, Kao(t) #£0, Ci(y) =0

Reduced eigenfunctions

O(p, ) (R0 +3 [ oty
Ki(t)s

Y(x,y,t) =

A f dt by f dt
x(x,y,t) =Z(p,q)e® ) M@, p(x,y,t) =Q(p,q)e* ) KO
Reduced equations
Fop + 2FN, = 0
Hpp + 2HN,, = 0

(Ng + FFT + HHT) /=0
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Similarity
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Il Ki(t) # 0, Kao(t) #£0, Ci(y) =0

Reduced spectral problem

m p-Lax Pair

O, + (2N, — é)\)cb =0
Y,+ F®=0, Q+HP=0
m g-Lax Pair

O+ FIZ+HIQ=0
AL —8i(Fb,—F,®)=0, A\2-8i(H®,—H,®)=0

m Or equivalently, the scalar Lax pairin 1+ 1

®pp + (2N, — é)\)CD =0
A, —8i {(FT Fy+ H H,) &+ Nyd,} =0
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. Ka(t) #£0, Gi(y) #0, Ki(t) =0

Reduced variables

X d d
P=wrm Jaty 9= mer




. Ka(t) #£0, Gi(y) #0, Ki(t) =0

Lie
symmetries for
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2 4+ 1dim.

Reduced variables

X d! d
P=wrm Jaty 9= mer

Reduced fields

Flp.q)  +(Mir20-0)

Paz

(67 X7y7t =
1000 = et G

Similarity i Kao() 2
reductions H 7 ; B +2p—
duct ozz(x,y, t): %64 (@‘) P q)

Ka(t)2 Gi(y)?

1 Kao(t) 3, N(p,q)

t -




. Ka(t) #£0, Gi(y) #0, Ki(t) =0
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i [ Ka() y
¢(X t) _ q)(p, q) 6_1(756X2_q)+% Cld(}’)
) ) 1
KQ(t)5

X(va, t): Me%fcld{Y)Jr%p’ p(X, ,t) Q(paq) Af Giy +iT"
G(y)?

Similarity
reductions




. Ka(t) #£0, Gi(y) #0, Ki(t) =0
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W(x,y, 1) = 2P, 9) e—%(%%XZ—q)+g 2
' Yy Kz(t)%
X(vav t) = M e%f Cf{.V)Jr%p p(X, ; ) Q(p, q) e%f Giy +%"

= T 9 ey 1 Cl(.V)
Gi(y)2 Gi(y)2

4

Similarity
reductions

iFq + (Fp+ iF), + 2FN, = 0
iHg + (Hp + iH),, + 2HN, = 0
(Np — FFT — HH') /=0




Lie

[l. Kg(t) 75 0, C1(y) 75 0, Kl(t) =0

Reduced spectral problem
a NLS Egq. in

2+ 1 dim. m p-Lax Pair

Paz Albares A
¢~ (FIZ+H'Q) -~ S0 =0

Zp+F¢+éZ:0, Q,,+H¢+és2=o
m g-Lax Pair
2 .
—i(FFT+HHT—2N,,— bt :”) o+ (iF,H——’)‘;—lFT)Z

)\—l-l

Similarity
reductions

iHi + 22 HT)on

+
( A+ F)cb—iFFT):—;FHTQ:o

) o — iHF'Y — iHHTQ =0
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Conclusions

Conclusions and future perspectives

m Classical Lie symmetries have been determined for a gene-
ralized multi-component NLS Eq. in 2 + 1 dimensions (1)
and its Lax Pair, in terms of nine arbitrary functions and a
single arbitrary constant.
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m Classical Lie symmetries have been determined for a gene-
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and its Lax Pair, in terms of nine arbitrary functions and a
single arbitrary constant.

m The commutation relations for the generators associated to
each symmetry have been analyzed.
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Conclusions and future perspectives

m Classical Lie symmetries have been determined for a gene-
ralized multi-component NLS Eq. in 2 + 1 dimensions (1)
and its Lax Pair, in terms of nine arbitrary functions and a
single arbitrary constant.

m The commutation relations for the generators associated to
each symmetry have been analyzed.

m Similarity reductions have been performed, obtaining simul-
taneously the reduced spectral problem and the reduced
equations.
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Conclusions
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blems in 1 4+ 1 dimensions.
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m The commutation relations for the generators associated to
each symmetry have been analyzed.

m Similarity reductions have been performed, obtaining simul-
taneously the reduced spectral problem and the reduced
equations.

Geeliets m Remark that three special reductions lead to nontrivial pro-

blems in 1 4+ 1 dimensions.

m The spectral parameter arises naturally in the process of
constructing the reductions, due to the symmetry associated
to the arbitrary constant.
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Thank you for your attention!
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