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Groupoids and Constitutive theory: A (very) brief introduction

Simple medium: B

Configuration of B: ψ : B → R3

Reference configuration of B: ψ0 : B → R3

Infinitesimal configuration at X: j1X,ψ(X)ψ

Deformation: κ = ψ ◦ ψ−1
0

Infinitesimal deformation at ψ0 (X): j1
ψ0(X),ψ(X)κ

Response functional: W : Gl (3, R)×B → V
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V.M. Jiménez Groupoids and Distributions 4 / 23



Groupoids and Constitutive theory: A (very) brief introduction

1-jets Lie groupoid on B

Π1 (B,B) ⇒ B

↘
W : Π1 (B,B)→ V
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Groupoids and Constitutive theory: A (very) brief introduction

Definition 1.1

A body B is said to be uniform if for each two points X, Y ∈ B
there exists a local diffeomorphism ψ from an open
neighbourhood U ⊆ B of X to an open neighbourhood V ⊆ B of
Y such that ψ (X) = Y and

W
(

j1Y,κ(Y)κ · j
1
X,Yψ

)
= W

(
j1Y,κ(Y)κ

)
, (1)

for all infinitesimal deformation j1Y,κ(Y)κ. Any 1−jet j1X,Yψ

satisfying Eq. (1) is called material isomorphism.

Material groupoid: Ω (B) ⇒ B
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Groupoids and Constitutive theory: A (very) brief introduction

Definition 1.2

A body B is said to be smoothly uniform if for each point X ∈ B
there is an infinitesimal neighbourhood U around X such that
for all Y ∈ U there exists a smooth field of material
isomorphisms P from ε (X) to a material isomorphism j1Y,Xφ.
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Groupoids and Constitutive theory: A (very) brief introduction

Definiton 1.3

A simple body B is said to be homogeneous if it admits a (global)
configuration ψ of B which induces a smooth field of material
isomorphisms P, i.e.,

P (X, Y) = j1X,Y

(
ψ−1 ◦ τψ(Y)−ψ(X) ◦ ψ

)
, ∀X, Y ∈ B,

where τψ(Y)−ψ(X) : R3 → R3 denotes the translation on R3 by
the vector ψ (Y)− ψ (X). B is said to be locally homogeneous if
there exists a covering of B by homogeneous open sets.

V.M. Jiménez Groupoids and Distributions 8 / 23



Groupoids and Constitutive theory: A (very) brief introduction

Proposition 1.1

Let B be a body. B is uniform if, and only if, Ω (B) is a transitive
subgroupoid of Π1 (B,B).
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Proposition 1.2

Let B be a body. B is smoothly uniform if, and only if, Ω (B) is a
transitive Lie subgroupoid of Π1 (B,B).
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Groupoids and Constitutive theory: A (very) brief introduction

Proposition 1.3

Let B be a body. B is homogeneous if, and only if, Ω (B) is an
integrable Lie subgroupoid of Π1 (B,B).
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Material distribution

Material distribution
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Material distribution

B
AΩ (B)]-

��
��

�
��

��*

AΩ (B)

P (TB)

ε
6

Tα
?

Π1 (B,B)
AΩ (B)T

-P
(
TΠ1 (B,B)

)

H (g) 7→ Ω (B)

H (X) 7→ B

Theorem 2.1

For all X ∈ B, Ω (H (X)) is a transitive Lie subgroupoid of
Π1 (B,B). Thus, any body B can be covered by a foliation of
smoothly uniform material submanifolds.
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Material distribution
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Graded uniformity

Graded uniformity
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Graded uniformity

Definition 3.1

Let B be a simple body. B is said to be uniform of grade p at
X ∈ B if AΩ (B)]X has dimension p. B is uniform of grade p if it is
uniform of grade p at all its points.

Smoothly uniform ⇔ Uniform of grade 3

Laminated body ⇔ Uniform of grade 2

Filamented bundles ⇔ Uniform of grade 1
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Graded uniformity

Corollary 3.1

Let B be a body and let X ∈ B. B is uniform of grade p at X if, and
only if, the uniform body submanifold at X (that is, the leaf H (X)
of the body foliation) has dimension p.

Corollary 3.2

Let B be a body. B is uniform of grade p if, and only if, the body
foliation H is regular of rank p.
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Graded uniformity

Corollary 3.3

Let B be a body and let X ∈ B. B is uniform of grade greater or
equal to p at X if, and only if, there exists a foliation {H′ (X)} by
smoothly uniform submanifolds of B such that the leaf H′ (X) has
dimension greater or equal to p.

Corollary 3.4

Let B be a body. B is uniform of grade p or greater if, and only if,
the body can be foliated by smoothly uniform material submanifolds
of dimension p.

V.M. Jiménez Groupoids and Distributions 18 / 23



Graded uniformity

Corollary 3.3

Let B be a body and let X ∈ B. B is uniform of grade greater or
equal to p at X if, and only if, there exists a foliation {H′ (X)} by
smoothly uniform submanifolds of B such that the leaf H′ (X) has
dimension greater or equal to p.

Corollary 3.4

Let B be a body. B is uniform of grade p or greater if, and only if,
the body can be foliated by smoothly uniform material submanifolds
of dimension p.
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Generalized homogeneity
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Generalized homogeneity

Defintion 4.1

Let B be a simple body and N be a submanifold of B. N is said
to be locally homogeneous if, and only if, for all point X ∈ N there
exists a local configuration κU of B, with X ∈ U , which satisfies
that

j1Y,Z

(
κ−1
U ◦ τκU (Z)−κU (Y) ◦ κU

)
,

is a material isomorphism for all Y, Z ∈ U ∩N . We will say that
N is homogeneous if U cover S (i.e., N ⊆ U ).
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Generalized homogeneity

Definition 4.2

Let B be a simple body. B is said to be locally homogeneous if, and
only if, for all point X ∈ B there exists a local configuration ψ of B,
with X ∈ U, which is a foliated chart and it satisfies that

j1Y,Z

(
ψ−1 ◦ τψ(Z)−ψ(Y) ◦ ψ

)
,

is a material isomorphism for all Z ∈ U ∩H (Y). We will say that B
is homogeneous if U = B.

A smoothly uniform body B is homogeneous if, and only if,
B is homogeneous ”in the usual sense”.

A laminated (bundle) body B is strongly homogeneous if,
and only if, B is homogeneous and the homogeneous charts are
also relaxable.
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Generalized homogeneity

Proposition 4.2

Let B be a simple body. B is homogeneous if, and only if, for each
X ∈ B there exists a local chart

(
X I) on X such that,

∂W
∂XL = 0,

for all L ≤ dim (H (X)).
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Generalized homogeneity
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M. Esptein, V. M. Jiménez and M. de León, Material geometry, Journal of Elasticity,
(2018) 1-24.

MUITO OBRIGADO!
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