

Groupoids and Distributions: *A new way to deal with non-uniform material bodies*

V.M. Jiménez

Joint work with M. de León and M. Epstein

- Groupoids and Constitutive theory: A (very) brief introduction.

- Groupoids and Constitutive theory: A (very) brief introduction.
- Material distribution.

- Groupoids and Constitutive theory: A (very) brief introduction.
- Material distribution.
- Graded uniformity.

- Groupoids and Constitutive theory: A (very) brief introduction.
- Material distribution.
- Graded uniformity.
- Generalized homogeneity.

Groupoids and Constitutive theory: A (very) brief introduction

- *Simple medium: \mathcal{B}*

- *Simple medium: \mathcal{B}*
- *Configuration of \mathcal{B} : $\psi : \mathcal{B} \rightarrow \mathbb{R}^3$*

- *Simple medium: \mathcal{B}*
- *Configuration of \mathcal{B} : $\psi : \mathcal{B} \rightarrow \mathbb{R}^3$*
- *Reference configuration of \mathcal{B} : $\psi_0 : \mathcal{B} \rightarrow \mathbb{R}^3$*

- Simple medium: \mathcal{B}
- Configuration of \mathcal{B} : $\psi : \mathcal{B} \rightarrow \mathbb{R}^3$
- Reference configuration of \mathcal{B} : $\psi_0 : \mathcal{B} \rightarrow \mathbb{R}^3$
- Infinitesimal configuration at X : $j_{X, \psi(X)}^1 \psi$

- Simple medium: \mathcal{B}
- Configuration of \mathcal{B} : $\psi : \mathcal{B} \rightarrow \mathbb{R}^3$
- Reference configuration of \mathcal{B} : $\psi_0 : \mathcal{B} \rightarrow \mathbb{R}^3$
- Infinitesimal configuration at X : $j_{X,\psi(X)}^1 \psi$
- Deformation: $\kappa = \psi \circ \psi_0^{-1}$

- Simple medium: \mathcal{B}
- Configuration of \mathcal{B} : $\psi : \mathcal{B} \rightarrow \mathbb{R}^3$
- Reference configuration of \mathcal{B} : $\psi_0 : \mathcal{B} \rightarrow \mathbb{R}^3$
- Infinitesimal configuration at X : $j_{X, \psi(X)}^1 \psi$
- Deformation: $\kappa = \psi \circ \psi_0^{-1}$
- Infinitesimal deformation at $\psi_0(X)$: $j_{\psi_0(X), \psi(X)}^1 \kappa$

- Simple medium: \mathcal{B}
- Configuration of \mathcal{B} : $\psi : \mathcal{B} \rightarrow \mathbb{R}^3$
- Reference configuration of \mathcal{B} : $\psi_0 : \mathcal{B} \rightarrow \mathbb{R}^3$
- Infinitesimal configuration at X : $j_{X, \psi(X)}^1 \psi$
- Deformation: $\kappa = \psi \circ \psi_0^{-1}$
- Infinitesimal deformation at $\psi_0(X)$: $j_{\psi_0(X), \psi(X)}^1 \kappa$
- Response functional: $W : Gl(3, \mathbb{R}) \times \mathcal{B} \rightarrow V$

1-jets Lie groupoid on \mathcal{B}

$$\Pi^1(\mathcal{B}, \mathcal{B}) \rightrightarrows \mathcal{B}$$

1-jets Lie groupoid on \mathcal{B}

$$\Pi^1(\mathcal{B}, \mathcal{B}) \rightrightarrows \mathcal{B}$$

$$W : \Pi^1(\mathcal{B}, \mathcal{B}) \rightarrow V$$

Definition 1.1

A body \mathcal{B} is said to be *uniform* if for each two points $X, Y \in \mathcal{B}$ there exists a local diffeomorphism ψ from an open neighbourhood $\mathcal{U} \subseteq \mathcal{B}$ of X to an open neighbourhood $\mathcal{V} \subseteq \mathcal{B}$ of Y such that $\psi(X) = Y$ and

$$W \left(j_{Y, \kappa(Y)}^1 \kappa \cdot j_{X, Y}^1 \psi \right) = W \left(j_{Y, \kappa(Y)}^1 \kappa \right), \quad (1)$$

for all infinitesimal deformation $j_{Y, \kappa(Y)}^1 \kappa$. Any 1-jet $j_{X, Y}^1 \psi$ satisfying Eq. (1) is called *material isomorphism*.

Definition 1.1

A body \mathcal{B} is said to be *uniform* if for each two points $X, Y \in \mathcal{B}$ there exists a local diffeomorphism ψ from an open neighbourhood $\mathcal{U} \subseteq \mathcal{B}$ of X to an open neighbourhood $\mathcal{V} \subseteq \mathcal{B}$ of Y such that $\psi(X) = Y$ and

$$W \left(j_{Y, \kappa(Y)}^1 \kappa \cdot j_{X, Y}^1 \psi \right) = W \left(j_{Y, \kappa(Y)}^1 \kappa \right), \quad (1)$$

for all infinitesimal deformation $j_{Y, \kappa(Y)}^1 \kappa$. Any 1-jet $j_{X, Y}^1 \psi$ satisfying Eq. (1) is called *material isomorphism*.

Material groupoid:

$$\Omega(\mathcal{B}) \rightrightarrows \mathcal{B}$$

Definition 1.2

A body \mathcal{B} is said to be *smoothly uniform* if for each point $X \in \mathcal{B}$ there is an infinitesimal neighbourhood \mathcal{U} around X such that for all $Y \in \mathcal{U}$ there exists a smooth field of material isomorphisms P from $\epsilon(X)$ to a material isomorphism $j_{Y,X}^1\phi$.

Definiton 1.3

A simple body \mathcal{B} is said to be *homogeneous* if it admits a (global) configuration ψ of \mathcal{B} which induces a smooth field of material isomorphisms P , i.e.,

$$P(X, Y) = j_{X,Y}^1 \left(\psi^{-1} \circ \tau_{\psi(Y) - \psi(X)} \circ \psi \right), \quad \forall X, Y \in \mathcal{B},$$

where $\tau_{\psi(Y) - \psi(X)} : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ denotes the translation on \mathbb{R}^3 by the vector $\psi(Y) - \psi(X)$. \mathcal{B} is said to be *locally homogeneous* if there exists a covering of \mathcal{B} by homogeneous open sets.

Proposition 1.1

Let \mathcal{B} be a body. \mathcal{B} is uniform if, and only if, $\Omega(\mathcal{B})$ is a transitive subgroupoid of $\Pi^1(\mathcal{B}, \mathcal{B})$.

Proposition 1.2

Let \mathcal{B} be a body. \mathcal{B} is smoothly uniform if, and only if, $\Omega(\mathcal{B})$ is a transitive Lie subgroupoid of $\Pi^1(\mathcal{B}, \mathcal{B})$.

Proposition 1.3

Let \mathcal{B} be a body. \mathcal{B} is homogeneous if, and only if, $\Omega(\mathcal{B})$ is an *integrable* Lie subgroupoid of $\Pi^1(\mathcal{B}, \mathcal{B})$.

Material distribution

$$\begin{array}{ccc} \Pi^1(\mathcal{B}, \mathcal{B}) & \xrightarrow{A\Omega(\mathcal{B})^T} & \mathcal{P}(T\Pi^1(\mathcal{B}, \mathcal{B})) \\ \uparrow \epsilon & \nearrow A\Omega(\mathcal{B}) & \downarrow T\alpha \\ \mathcal{B} & \xrightarrow{A\Omega(\mathcal{B})^\sharp} & \mathcal{P}(T\mathcal{B}) \end{array}$$

$$\begin{array}{ccc} \Pi^1(\mathcal{B}, \mathcal{B}) & \xrightarrow{A\Omega(\mathcal{B})^T} & \mathcal{P}(T\Pi^1(\mathcal{B}, \mathcal{B})) \\ \uparrow \epsilon & \nearrow A\Omega(\mathcal{B}) & \downarrow T\alpha \\ \mathcal{B} & \xrightarrow{A\Omega(\mathcal{B})^\sharp} & \mathcal{P}(T\mathcal{B}) \end{array}$$

$$\overline{\mathcal{H}}(g) \mapsto \Omega(\mathcal{B})$$

$$\mathcal{H}(X) \mapsto \mathcal{B}$$

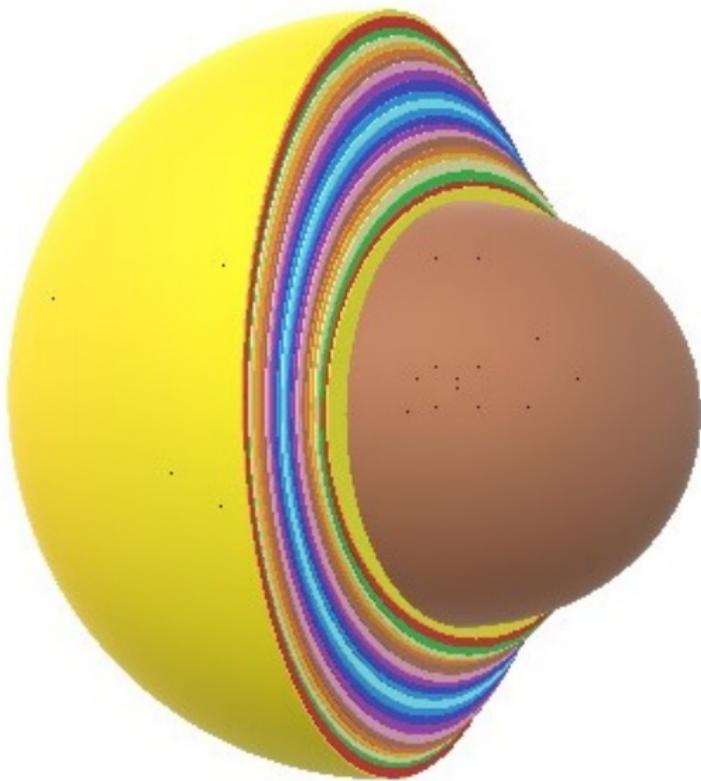
$$\begin{array}{ccc}
 \Pi^1(\mathcal{B}, \mathcal{B}) & \xrightarrow{A\Omega(\mathcal{B})^T} & \mathcal{P}(T\Pi^1(\mathcal{B}, \mathcal{B})) \\
 \uparrow \epsilon & \nearrow A\Omega(\mathcal{B}) & \downarrow T\alpha \\
 \mathcal{B} & \xrightarrow{A\Omega(\mathcal{B})^\sharp} & \mathcal{P}(T\mathcal{B})
 \end{array}$$

$$\overline{\mathcal{H}}(g) \mapsto \Omega(\mathcal{B})$$

$$\mathcal{H}(X) \mapsto \mathcal{B}$$

Theorem 2.1

For all $X \in \mathcal{B}$, $\Omega(\mathcal{H}(X))$ is a transitive Lie subgroupoid of $\Pi^1(\mathcal{B}, \mathcal{B})$. Thus, any body \mathcal{B} can be covered by a foliation of smoothly uniform material submanifolds.



Graded uniformity

Definition 3.1

Let \mathcal{B} be a simple body. \mathcal{B} is said to be *uniform of grade p at* $X \in \mathcal{B}$ if $A\Omega(\mathcal{B})_X^\sharp$ has dimension p . \mathcal{B} is *uniform of grade p* if it is uniform of grade p at all its points.

Definition 3.1

Let \mathcal{B} be a simple body. \mathcal{B} is said to be *uniform of grade p at* $X \in \mathcal{B}$ if $A\Omega(\mathcal{B})_X^\sharp$ has dimension p . \mathcal{B} is *uniform of grade p* if it is uniform of grade p at all its points.

Smoothly uniform \Leftrightarrow Uniform of grade 3

Definition 3.1

Let \mathcal{B} be a simple body. \mathcal{B} is said to be *uniform of grade p at* $X \in \mathcal{B}$ if $A\Omega(\mathcal{B})_X^\sharp$ has dimension p . \mathcal{B} is *uniform of grade p* if it is uniform of grade p at all its points.

Smoothly uniform \Leftrightarrow Uniform of grade 3

Laminated body \Leftrightarrow Uniform of grade 2

Definition 3.1

Let \mathcal{B} be a simple body. \mathcal{B} is said to be *uniform of grade p at* $X \in \mathcal{B}$ if $A\Omega(\mathcal{B})_X^\sharp$ has dimension p . \mathcal{B} is *uniform of grade p* if it is uniform of grade p at all its points.

Smoothly uniform \Leftrightarrow Uniform of grade 3

Laminated body \Leftrightarrow Uniform of grade 2

Filamented bundles \Leftrightarrow Uniform of grade 1

Corollary 3.1

Let \mathcal{B} be a body and let $X \in \mathcal{B}$. \mathcal{B} is uniform of grade p at X if, and only if, the uniform body submanifold at X (that is, the leaf $\mathcal{H}(X)$ of the body foliation) has dimension p .

Corollary 3.1

Let \mathcal{B} be a body and let $X \in \mathcal{B}$. \mathcal{B} is uniform of grade p at X if, and only if, the uniform body submanifold at X (that is, the leaf $\mathcal{H}(X)$ of the body foliation) has dimension p .

Corollary 3.2

Let \mathcal{B} be a body. \mathcal{B} is uniform of grade p if, and only if, the body foliation \mathcal{H} is regular of rank p .

Corollary 3.3

Let \mathcal{B} be a body and let $X \in \mathcal{B}$. \mathcal{B} is uniform of grade greater or equal to p at X if, and only if, there exists a foliation $\{\mathcal{H}'(X)\}$ by smoothly uniform submanifolds of \mathcal{B} such that the leaf $\mathcal{H}'(X)$ has dimension greater or equal to p .

Corollary 3.3

Let \mathcal{B} be a body and let $X \in \mathcal{B}$. \mathcal{B} is uniform of grade greater or equal to p at X if, and only if, there exists a foliation $\{\mathcal{H}'(X)\}$ by smoothly uniform submanifolds of \mathcal{B} such that the leaf $\mathcal{H}'(X)$ has dimension greater or equal to p .

Corollary 3.4

Let \mathcal{B} be a body. \mathcal{B} is uniform of grade p or greater if, and only if, the body can be foliated by smoothly uniform material submanifolds of dimension p .

Generalized homogeneity

Defintion 4.1

Let \mathcal{B} be a simple body and \mathcal{N} be a submanifold of \mathcal{B} . \mathcal{N} is said to be *locally homogeneous* if, and only if, for all point $X \in \mathcal{N}$ there exists a local configuration $\kappa_{\mathcal{U}}$ of \mathcal{B} , with $X \in \mathcal{U}$, which satisfies that

$$j_{Y,Z}^1 \left(\kappa_{\mathcal{U}}^{-1} \circ \tau_{\kappa_{\mathcal{U}}(Z) - \kappa_{\mathcal{U}}(Y)} \circ \kappa_{\mathcal{U}} \right),$$

is a material isomorphism for all $Y, Z \in \mathcal{U} \cap \mathcal{N}$. We will say that \mathcal{N} is *homogeneous* if \mathcal{U} cover \mathcal{S} (i.e., $\mathcal{N} \subseteq \mathcal{U}$).

Definition 4.2

Let \mathcal{B} be a simple body. \mathcal{B} is said to be *locally homogeneous* if, and only if, for all point $X \in \mathcal{B}$ there exists a local configuration ψ of \mathcal{B} , with $X \in U$, which is a foliated chart and it satisfies that

$$j_{Y,Z}^1 \left(\psi^{-1} \circ \tau_{\psi(Z) - \psi(Y)} \circ \psi \right),$$

is a material isomorphism for all $Z \in U \cap \mathcal{H}(Y)$. We will say that \mathcal{B} is *homogeneous* if $U = \mathcal{B}$.

Definition 4.2

Let \mathcal{B} be a simple body. \mathcal{B} is said to be *locally homogeneous* if, and only if, for all point $X \in \mathcal{B}$ there exists a local configuration ψ of \mathcal{B} , with $X \in U$, which is a foliated chart and it satisfies that

$$j_{Y,Z}^1 \left(\psi^{-1} \circ \tau_{\psi(Z) - \psi(Y)} \circ \psi \right),$$

is a material isomorphism for all $Z \in U \cap \mathcal{H}(Y)$. We will say that \mathcal{B} is *homogeneous* if $U = \mathcal{B}$.

- **A smoothly uniform body \mathcal{B} is homogeneous** if, and only if, \mathcal{B} is homogeneous "in the usual sense".

Definition 4.2

Let \mathcal{B} be a simple body. \mathcal{B} is said to be *locally homogeneous* if, and only if, for all point $X \in \mathcal{B}$ there exists a local configuration ψ of \mathcal{B} , with $X \in U$, which is a foliated chart and it satisfies that

$$j_{Y,Z}^1 \left(\psi^{-1} \circ \tau_{\psi(Z) - \psi(Y)} \circ \psi \right),$$

is a material isomorphism for all $Z \in U \cap \mathcal{H}(Y)$. We will say that \mathcal{B} is *homogeneous* if $U = \mathcal{B}$.

- **A smoothly uniform body \mathcal{B} is homogeneous** if, and only if, \mathcal{B} is homogeneous "in the usual sense".
- **A laminated (bundle) body \mathcal{B} is strongly homogeneous** if, and only if, \mathcal{B} is homogeneous and the homogeneous charts are also relaxable.

Proposition 4.2

Let \mathcal{B} be a simple body. \mathcal{B} is homogeneous if, and only if, for each $X \in \mathcal{B}$ there exists a local chart (X^I) on X such that,

$$\frac{\partial W}{\partial X^L} = 0,$$

for all $L \leq \dim(\mathcal{H}(X))$.

- **V. M. Jiménez, M. de León and M. Esptein**, *Material distributions*, Mathematics and Mechanics of Solids, (2017).
- **V. M. Jiménez, M. de León and M. Esptein**, *Characteristic distribution: An application to material bodies*, Journal of Geometry and Physics, 127 (2018) 19-31.
- **V. M. Jiménez, M. de León and M. Esptein**, *Lie groupoids and algebroids applied to the study of uniformity and homogeneity of Cosserat media*, International Journal of Geometric Methods in Modern Physics, 15 (2018) 08.
- **M. Esptein, V. M. Jiménez and M. de León**, *Material geometry*, Journal of Elasticity, (2018) 1-24.

- **V. M. Jiménez, M. de León and M. Esptein**, *Material distributions*, Mathematics and Mechanics of Solids, (2017).
- **V. M. Jiménez, M. de León and M. Esptein**, *Characteristic distribution: An application to material bodies*, Journal of Geometry and Physics, 127 (2018) 19-31.
- **V. M. Jiménez, M. de León and M. Esptein**, *Lie groupoids and algebroids applied to the study of uniformity and homogeneity of Cosserat media*, International Journal of Geometric Methods in Modern Physics, 15 (2018) 08.
- **M. Esptein, V. M. Jiménez and M. de León**, *Material geometry*, Journal of Elasticity, (2018) 1-24.

MUITO OBRIGADO!