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Introduction
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Goal

To understand some features of the
spectrum of the area operator \
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Eigenvalues of the (simplified) area operator
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Eigenvalues of the (simplified) area operator

| eigenvalue | (N1, Ny,...) | [ eigenvalue | (N1, Ny, ...) \
0 (0,0,0,0...) 42 (0,2,0,0...)
V3 (1,0,0,0...) 2v/35 (0,0,0,0,1,0...)
2V/2 (0,1,0,0...) 2v/2+2v3 | (2,1,0,0,0...)
2V/3 (2,0,0,0...) | | 3v3+2V6 | (1,0,0,1,0...)
V15 (0,0,1,0...) 2v/2 415 | (0,1,1,0,0...)

2v2++/3 | (1,1,0,0...) W3 (4,0,0,0,0...)
2V/6 (0,0,0,1...) (0,0,0,0,0,0,1...)
3v/3 (3,0,0,0...) 2v/2 + 15 | (2,0,1,0,0...)

V3++V15 | (1,0,1,0...) 42 +v3 | (1,2,0,0,0...)
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Eigenvalues of the (simplified) area operator

| eigenvalue | (N1, Ny,...) | [ eigenvalue | (N1, Ny, ...) \
0 (0,0,0,0...) 42 (0,2,0,0...)
V3 (1,0,0,0...) 2v/35 (0,0,0,0,1,0...)
2V/2 (0,1,0,0...) 2v/2+2v3 | (2,1,0,0,0...)
2V/3 (2,0,0,0...) | | 3v3+2V6 | (1,0,0,1,0...)
V15 (0,0,1,0...) 2v/2 415 | (0,1,1,0,0...)

2v2++/3 | (1,1,0,0...) W3 (4,0,0,0,0...)
2V/6 (0,0,0,1...) (0,0,0,0,0,0,1...)
3v/3 (3,0,0,0...) 2v/2 + 15 | (2,0,1,0,0...)

V3++V15 | (1,0,1,0...) 42 +v3 | (1,2,0,0,0...)

n,EMpn

N(a) :1+ﬂ{MNEcoo(N) /> \/ni(ni+2)<a}
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Eigenvalues of the (simplified) area operator

40
30
. — N(a)
10
N PN PN M Vs &

J. Margalef Bentabol From (quantum) geometry to spectral theory 4



First approach: approximations
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First approach: approximations
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First approach: approximations

1 1
\/x(:z—|—2)~x+1—%—|—0 <3:2> —  V/ni(n;+2) ~n;+1
22+~ z? — Vni(n; +2) ~ny
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First approach: approximations

1 1
\/x(:z—|—2)~x+1—%—|—0 <2> —  V/ni(ni+2) ~n;+1
x

22+~ z? — ni(n; +2) ~n;

Zni < Z\/m(m +2) < z:(nZ +1)
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First approach: approximations

1 1
\/x(:z—|—2)~x+1—%—|—0 <3:2> —  V/ni(n;+2) ~n;+1
22+~ z? — Vni(n; +2) ~ny

Zni < Z\/ni(ni+2) < Z(ni—i—l)
N(a):zl—f—jj{MNEcOO Z\/ (n; +2) Sa}

N_(a) ::1+t¢{MN6c00(N) /Y (ni+1) <a}
Ni(@) =1+ {My € cu(M) / > ni<al
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First approach: approximations

1 1
\/x(:z—|—2)~x+1—2——|—0 <3:2> —  V/ni(ni+2) ~n;+1
x

22+~ z? — ni(n; +2) ~n;

Zni < Z ni(n; +2) < z:(nZ +1)

N_(a) < N(a) < Ni(a)

N(a):zl-f—ﬁ{MNEcOO )/ nga}
N_(a):zl—l-ﬁ{MNEcoo / an—l-l <a}
N4 (a) :zl—l—ﬁ{MN € ¢oo(N Zn, Sa}
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First approach: approximations

V3 22 V15 26 V35 443 23 +4/35

J. Margalef Bentabol From (quantum) geometry to spectral theory 6



Playing with partitions

N, (a) _1+ti{M € coo(N) / Zniga}
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Playing with partitions

Ni(a) =1+4{My €cp®™) / Y ni<a} = p(n)

n<a

p(n) = {number of partitions of n in terms of positive integers}
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Playing with partitions

Ni(a) =1+4{My €cp®™) / Y ni<a} = p(n)

p(n) = {number of partitions of n in terms of positive integers}

4=3+1=2+2=2+14+1=1+1+1+1so p(4)=5
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Playing with partitions

Ny(a) :==1+4 {MN € cpo(N) / an < a} = Zp(n)
n<a
p(n) = {number of partitions of n in terms of positive integers}
4=34+1=2+2=24+141=1+1+1+4+1 so p4)=5

N—(a) =1+14 {MN € CDO(N) / Z(nl + 1) < a} = Zpl(n)

n<a
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Playing with partitions

Using generating functions and ideas of Hardy,
Ramanujan, Littlewood, Rademacher. . . we obtain J

1 2a 1 2a
N_(a) ~ 4a\/§EXp <7r 3) Ni(a) ~ 271_\/%Exp <7T 3)
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Playing with partitions

Using generating functions and ideas of Hardy,
Ramanujan, Littlewood, Rademacher. . . we obtain J

1 2a 1 2a
N_(a) ~ 4a\/§EXp <7r 3) Ni(a) ~ 271_\/%Exp <7T 3)

@ Same exponent factor but different prefactor.
@ Wecanuse n; + ¢ < v/ni(n; +2) <n; +1fore € (0,1).
@ No clear approximation for N. New ideas are needed!
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Second approach: Laplace transform
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N as a staircase function

We rewrite N(a) = Z O(a — ay) T — Z sk € Spec(N)
n=1
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N as a staircase function

We rewrite N(a) = Z O(a — ay) T — Z sk € Spec(N)
n=1

O(a—ayn) = L1 (5(9(3: —an), z),a>
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N as a staircase function

We rewrite N(a) = Z O(a — ay) T — Z sk € Spec(N)
n=1

ctioco z(a—an)
0(a — ay) :L‘_l(ﬁ(H(x—an),z),a) = 1/ € dz

218 Jo—ioo z
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N as a staircase function

We rewrite N(a) = Z O(a — ay) T — Z sk € Spec(N)
n=1

1 c+ioo ez( —an)
0(a — ay) :L‘_l(ﬁ(H(x—an),z),a) = / dz
218 Jo—ioo z
1 ctico X —z(a—an) 1 ctioo ,za X
V=g [ X =g [ S e
27 Jo—ioo ot z 27 Joring  Z et
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N as a staircase function

We rewrite N(a Z O(a — ay) an = Z sk € Spec(N

1 c+ioo ez(a—an)
0(a — ay) :L‘_l(ﬁ(H(x—an),z),a) = / dz
218 Jo—ioo z
1 ctico O —z(a—an) 1 ct+ico ,za X
N@=gn [ Xt [ e
270 J e ioo — z 21 Je—ico 2 fo—
1 c+ioco e?a
= — —E 1 1 = Zsk dz — 0
i ). Xp Z n e z—0(a)
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N as a staircase function

—100

1 ct+ioco ,za
N(a)zm/ A eEXp[ Zln ) ]dz—@(a)
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N as a staircase function

—100

1 ct+ioco ,za
N(a):m/ A eExp[ Zln Zsk]dz—ﬁ(a)

@ s; = k partitions with integers
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N as a staircase function

c+i00 e*a
N(a) = 1/ —Exp [ Zln ) ] dz — 6(a)

211 — oo

@ s; = k partitions with integers
@ s, = 2k partitions with even integers
@ s, = k*™ partitions with even powers
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N as a staircase function

c+i00 e*a
N(a) = 1/ —Exp [ Zln ) ] dz — 6(a)

211 — oo

@ s; = k partitions with integers

@ s, = 2k partitions with even integers
@ s, = k*™ partitions with even powers
@ s = py partitions with prime numbers
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N as a staircase function

211 — oo

c+i00 e*a
N(a) = 1/ —Exp [ Zln ) ] dz — 6(a)

@ s; = k partitions with integers

@ s, = 2k partitions with even integers
@ s, = k*™ partitions with even powers
@ s = py partitions with prime numbers
°

s =/ k(k + 2) our problem at hand
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N as a staircase function

—100

1 ct+ioco ,za
N(a)zm/ A eEXp[ Zln ) ]dz—@(a)
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N as a staircase function

1 ct+ioco ,za
N(a)zm/ A eEXp[ Zln ) ]dz—@(a)

—100
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N as a staircase function

1 ct+ioco ,za
N(a)zm/ A eEXp[ Zln ) ]dz—@(a)

—100

L w4+ 1)) ri(’”“’/”

o ). 2 W Tw/2) ——oy (W + £, 3)
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N as a staircase function

—100

1 ct+ioco ,za
N(a)zm/ A eEXp[ Zln D)) ]dz—@(a)
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N as a staircase function

1 ct+ioco ,za
N(a)zm/ A eEXp[ Zln ) ]dz—@(a)

1 c+ioco o 2k F(k‘ + w/2)
% i S C(’UJ + ]')F( )k:() k" ( /2) C(’UJ + k? 3)
Poles: 1,0, —1, —2k, —2k — 1 )

J. Margalef Bentabol From (quantum) geometry to spectral theory 10



N as a staircase function

1 ct+ioco ,za
N(a)zm/ A eEXp[ Zln ) ]dz—@(a)

1 c+ioco o 2k F(k‘ + w/2)
% i S C(’UJ + ]')F( )k:() k" ( /2) C(’UJ + k? 3)
Poles: 1,0, —1, —2k, —2k — 1 )

N 1 c+ioco 1/2E ’/T2 zl = ]
(a)mm c_iooz Xp (a—a*)z%—@—l—z nz | F(z)dz

J. Margalef Bentabol From (quantum) geometry to spectral theory 10



Approximating NV

™

T 2 zsinh z — cosh 2z
an T (amoo)  Lyp() =220

7T2 «
N((Z) ~ \1[043/2@_06/2]‘7 (a) 1_3/2 <3a aF 4> = No(a) J
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Approximating NV

™ o
N(a) ~ \}%aig/ze_a/QF (@) I_3)9 (304 + 4> =: Noy(a) J

T 2 zsinh z — cosh 2z
a~—— (a— o0) I_35(2) = \/; pYp

N(a) ~ 2a1\fEXp ( 2;) =: Ngs(a) (a — o0) J
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Approximating NV

™ o
N(a) ~ \}%aig/ze_a/QF (@) I_3)9 (304 + 4> =: Noy(a) J

T 2 zsinh z — cosh 2z
a~—— (a— o0) I_35(2) = \/; pYp

N(a) ~ 2a1\fEXp ( \/?) =: Ngs(a) (a — o0) J

1 2 1 2
N_(a) ~ Exp (7 = Ni(a) ~ Exp (7 -
4av/3 3 2mv/2a 3
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How good are our results?
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How good are our results?

20

15) — N(a) = No(a)

10 b ‘n JV i

|
5 l )Fa )‘ } |
P m‘,\lﬁ“ [Jl I“{\'_[f!'[ki rj\'ﬂ”w{ »‘N} ‘{ M n[ Mﬂ( i % \| L a
5 10 | T Thg ’uf‘ ”‘U Ui sz 1Ay 125

|
~10}
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Conclusions

@ Approximations based on counting partitions give some
qualitative information but not all.
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Conclusions

@ Approximations based on counting partitions give some
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@ N_(a) is really good, it only fails by a constant /2 factor.
Difficult to guess a priori.

@ We get a very accurate representation for N(a) valid for all
areas.
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Conclusions

@ Approximations based on counting partitions give some
qualitative information but not all.

@ N_(a) is really good, it only fails by a constant /2 factor.
Difficult to guess a priori.

@ We get a very accurate representation for N(a) valid for all
areas.

@ The used methods may be useful to tackle similar
problems.
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N as a staircase function

J. Margalef Bentabol

’a\ Nys(a) \ No(a) \ N(a) ‘
10 68 42 43

30 8599 6282 6282
50 | 307719 | 237955 | 237788
70 | 6099037 | 4870521 | 4867770
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