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Goal

To understand some features of the
spectrum of the area operator
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Eigenvalues of the (simplified) area operator

as =
∑

ni∈MN

√
ni(ni + 2)

MN := {n1, . . . , nN} ∈ (N+)N

N ∈ N

MN = {1, . . . , 1︸ ︷︷ ︸
N1

, 2, . . . , 2︸ ︷︷ ︸
N2

, 3, . . . , 3︸ ︷︷ ︸
N3

, . . .} ≡ (N1, N2, . . .) ∈ c00(N)
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Eigenvalues of the (simplified) area operator

eigenvalue (N1, N2, . . .) eigenvalue (N1, N2, . . .)

0 (0, 0, 0, 0 . . .) 4
√

2 (0, 2, 0, 0 . . .)√
3 (1, 0, 0, 0 . . .) 2

√
35 (0, 0, 0, 0, 1, 0 . . .)

2
√

2 (0, 1, 0, 0 . . .) 2
√

2 + 2
√

3 (2, 1, 0, 0, 0 . . .)

2
√

3 (2, 0, 0, 0 . . .) 3
√

3 + 2
√

6 (1, 0, 0, 1, 0 . . .)√
15 (0, 0, 1, 0 . . .) 2

√
2 +
√

15 (0, 1, 1, 0, 0 . . .)

2
√

2 +
√

3 (1, 1, 0, 0 . . .)
4
√

3
(4, 0, 0, 0, 0 . . .)

2
√

6 (0, 0, 0, 1 . . .) (0, 0, 0, 0, 0, 0, 1 . . .)

3
√

3 (3, 0, 0, 0 . . .) 2
√

2 +
√

15 (2, 0, 1, 0, 0 . . .)√
3 +
√

15 (1, 0, 1, 0 . . .) 4
√

2 +
√

3 (1, 2, 0, 0, 0 . . .)

N(a) := 1 + ]

MN ∈ c00(N) /
∑

ni∈MN

√
ni(ni + 2) ≤ a


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Eigenvalues of the (simplified) area operator

3 2 2 15 4 3352 6 2 3 + 35
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First approach: approximations
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First approach: approximations

√
x(x+ 2) ∼ x+1− 1

2x
+O

(
1

x2

)
−→

√
ni(ni + 2) ∼ ni+1

x2 + x ∼ x2 −→
√
ni(ni + 2) ∼ ni

ni <
√
ni(ni + 2) < ni + 1

N−(a) ≤ N(a) ≤ N+(a)

N(a) := 1 + ]
{
MN ∈ c00(N) /

∑√
ni(ni + 2) ≤ a

}
N−(a) := 1 + ]

{
MN ∈ c00(N) /

∑
(ni + 1) ≤ a

}
N+(a) := 1 + ]

{
MN ∈ c00(N) /

∑
ni ≤ a

}
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First approach: approximations
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Playing with partitions

N+(a) := 1 + ]
{
MN ∈ c00(N) /

∑
ni ≤ a

}

=
∑
n≤a

p(n)

p(n) =
{

number of partitions of n in terms of positive integers
}

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1 so p(4) = 5

N−(a) := 1 + ]
{
MN ∈ c00(N) /

∑
(ni + 1) ≤ a

}

=
∑
n≤a

p1(n)
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Playing with partitions

Using generating functions and ideas of Hardy,
Ramanujan, Littlewood, Rademacher. . . we obtain

N−(a) ∼ 1

4a
√

3
Exp

(
π

√
2a

3

)
N+(a) ∼ 1

2π
√

2a
Exp

(
π

√
2a

3

)

Same exponent factor but different prefactor.
We can use ni + ε <

√
ni(ni + 2) < ni + 1 for ε ∈ (0, 1).

No clear approximation for N . New ideas are needed!
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Second approach: Laplace transform
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N as a staircase function

We rewrite N(a) =

∞∑
n=1

θ(a− an) an =
∑

sk ∈ Spec(N)

θ(a− an) = L−1
(
L
(
θ(x− an), z

)
, a
)

=
1

2πi

∫ c+i∞

c−i∞

ez(a−an)

z
dz

N(a) =
1

2πi

∫ c+i∞

c−i∞

∞∑
n=1

e−z(a−an)

z
dz =

1

2πi

∫ c+i∞

c−i∞

eza

z

∞∑
n=1

e−zandz

= · · · =

=
1

2πi

∫ c+i∞

c−i∞

eza

z
Exp

[
−
∞∑
k=1

ln
(
1− e−zsk

)]
dz − θ(a)
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N as a staircase function

N(a) =
1

2πi

∫ c+i∞

c−i∞

eza

z
Exp

[
−
∞∑
k=1

ln
(
1− e−zsk

)]
dz − θ(a)

sk = k partitions with integers
sk = 2k partitions with even integers
sk = k2m0 partitions with even powers
sk = pk partitions with prime numbers
sk =

√
k(k + 2) our problem at hand

1

2πi

∫ c+i∞

c−i∞
s−wζ(w + 1)Γ(w)

∞∑
k=0

2k

k!

Γ(k + w/2)

Γ(w/2)
ζ(w + k, 3)

Poles: 1, 0,−1,−2k,−2k − 1

N(a) ∼ 1

2π3/2i

∫ c+i∞

c−i∞
z1/2Exp

(
(a− a∗)z +

π2

6z
+
z

4
ln z

)
F (z)dz
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Approximating N

N(a) ∼ 1√
π
α3/2e−α/2F (α) I−3/2

(
π2

3α
+
α

4

)
=: N0(a)

α ∼ π√
6a

(a→∞) I−3/2(z) =

√
2

π

z sinh z − cosh z

z3/2

N(a) ∼ 1

2a
√

6
Exp

(
π

√
2a

3

)
=: Nas(a) (a→∞)

N−(a) ∼ 1

4a
√

3
Exp

(
π

√
2a

3

)
N+(a) ∼ 1

2π
√

2a
Exp

(
π

√
2a

3

)

J. Margalef Bentabol | From (quantum) geometry to spectral theory 11



Approximating N

N(a) ∼ 1√
π
α3/2e−α/2F (α) I−3/2

(
π2

3α
+
α

4

)
=: N0(a)

α ∼ π√
6a

(a→∞) I−3/2(z) =

√
2

π

z sinh z − cosh z

z3/2

N(a) ∼ 1

2a
√

6
Exp

(
π

√
2a

3

)
=: Nas(a) (a→∞)

N−(a) ∼ 1

4a
√

3
Exp

(
π

√
2a

3

)
N+(a) ∼ 1

2π
√

2a
Exp

(
π

√
2a

3

)

J. Margalef Bentabol | From (quantum) geometry to spectral theory 11



Approximating N

N(a) ∼ 1√
π
α3/2e−α/2F (α) I−3/2

(
π2

3α
+
α

4

)
=: N0(a)

α ∼ π√
6a

(a→∞) I−3/2(z) =

√
2

π

z sinh z − cosh z

z3/2

N(a) ∼ 1

2a
√

6
Exp

(
π

√
2a

3

)
=: Nas(a) (a→∞)

N−(a) ∼ 1

4a
√

3
Exp

(
π

√
2a

3

)
N+(a) ∼ 1

2π
√

2a
Exp

(
π

√
2a

3

)

J. Margalef Bentabol | From (quantum) geometry to spectral theory 11



How good are our results?
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Conclusions

Approximations based on counting partitions give some
qualitative information but not all.

N−(a) is really good, it only fails by a constant
√

2 factor.
Difficult to guess a priori.

We get a very accurate representation for N(a) valid for all
areas.

The used methods may be useful to tackle similar
problems.
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N as a staircase function

a Nas(a) N0(a) N(a)

10 68 42 43
30 8599 6282 6282
50 307719 237955 237788
70 6099037 4870521 4867770
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