

Necessary Condition for Local Controllability

Clément Moreau, Laetitia Giraldi, Pierre Lissy, Jean-Baptiste Pomet

13th Young Researchers Workshop on Geometry, Mechanics and Control

December 6th, 2018

Introduction

- ▶ Local controllability of nonlinear affine systems

Outline

- ▶ Two definitions for local controllability
- ▶ Known result for scalar-input systems
- ▶ New result for systems with two controls
- ▶ Example of application: magnetic microswimmer

Introduction

Let f_0, f_1 be analytic vector fields on \mathbf{R}^n . Consider the control-affine system with scalar-input control

$$\dot{z} = f_0(z) + u_1(t)f_1(z), \quad (1)$$

with $f_0(0) = 0$ (meaning that $(0, 0)$ is an equilibrium point for the system).

- ▶ Is this system locally controllable around 0?

Small-Time Local Controllability (STLC)

Definition 1 (STLC)

The control system (1) is STLC at $(0, 0)$ if, for every $\varepsilon > 0$, there exists $\eta > 0$ such that, for every z_0, z_1 in the ball centered at 0 with radius η , there exists a control $u(\cdot)$ in $L^\infty([0, \varepsilon])$ such that the solution of the control system $z(\cdot) : [0, \varepsilon] \rightarrow \mathbf{R}^n$ of (1) satisfies $z(0) = z_0$, $z(\varepsilon) = z_1$, and

$$\|u\|_{L^\infty} \leq \varepsilon.$$

Definition 2 (α -STLC)

Let $\alpha \geq 0$. The control system (1) is α -STLC at $(0, 0)$ if, for every $\varepsilon > 0$, there exists $\eta > 0$ such that, for every z_0, z_1 in the ball centered at 0 with radius η , there exists a control $u(\cdot)$ in $L^\infty([0, \varepsilon])$ such that the solution of the control system $z(\cdot) : [0, \varepsilon] \rightarrow \mathbf{R}^n$ of (1) satisfies $z(0) = z_0$, $z(\varepsilon) = z_1$, and

$$\|u\|_{L^\infty} \leq \alpha + \varepsilon.$$

Let us call:

- ▶ S_k the subspace of $C^\infty(\mathbf{R}^n, \mathbf{R}^n)$ spanned by all the Lie brackets of f_0, f_1 containing f_1 at most k times;
- ▶ $S_k(0)$ the subspace of \mathbf{R}^n spanned by the value at 0 of the elements of S_k .

Sufficient condition for STLC:

Theorem 1 (Sussmann 1983)

If, for all $k \geq 1$, $S_{2k}(0)$ is included in $S_{2k-1}(0)$, then (1) is STLC.

Necessary condition for STLC:

Theorem 2 (id.)

If $[f_1, [f_0, f_1]](0) \notin S_1(0)$, then (1) is not STLC(α) for any α .

What happens with a second control ?

Consider the new system

$$\dot{z} = f_0(z) + u_1(t)f_1(z) + u_2(t)f_2(z) \quad (2)$$

with $f_0(0) = 0$ and $f_2(0) = 0$.

Similarly to the scalar case, we call:

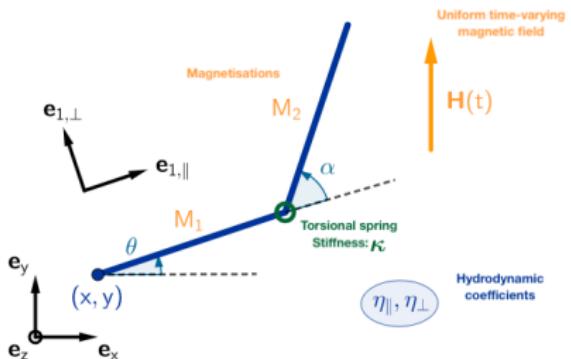
- ▶ R_1 the subspace of $C^\infty(\mathbf{R}^n, \mathbf{R}^n)$ spanned by all the Lie brackets of f_0, f_1, f_2 containing f_1 at most one time;
- ▶ $R_1(0)$ the subspace of \mathbf{R}^n spanned by the value at 0 of the elements of S_1 .

Theorem 3

Assume that $[f_1, [f_0, f_1]](0) \notin R_1(0)$. Then,

1. if $[f_1, [f_0, f_1]](0) \in \text{Span}(R_1(0), [f_1, [f_2, f_1]](0))$, (2) is not STLC.
2. else, (2) is not STLC(α) for any α .

Application : two-link magnetic micro-swimmer



- ▶ Hydrodynamics coefficients (Resistive Force Theory): η_{\parallel} , η_{\perp}
- ▶ Magnetic moments: M_1 , M_2
- ▶ Uniform time-varying magnetic field: $\mathbf{H}(t) \rightarrow$ **control function** with two scalar components projected on the moving basis $(\mathbf{e}_{1,\parallel}, \mathbf{e}_{1,\perp})$

Writing balance of forces and moments give a control system :

$$\dot{\mathbf{z}} = f_0(\mathbf{z}) + H_{\perp} f_1(\mathbf{z}) + H_{\parallel} f_2(\mathbf{z}).$$

where the state is $\mathbf{z} = (x, y, \theta, \alpha)$ and H_{\parallel} et H_{\perp} the controls. Moreover, 0 is an equilibrium, and $f_0(0) = f_2(0) = 0$.

Application : two-link magnetic micro-swimmer

Suppose $M_1 \neq 0$, $M_2 \neq 0$, $M_1 + M_2 \neq 0$ and $\eta \neq \xi$. Then one can check that $R_1(0) = \text{Vect } (e_2, e_3, e_4)$, and

$$[f_1, [f_0, f_1]](0) = \left(\frac{216 M_1 M_2 (M_1 - M_2)}{\ell^8 \eta^2 \xi}, 0, 0, 0 \right),$$

$$[f_1, [f_2, f_1]](0) = \left(-\frac{216 \kappa (M_1 + M_2)(M_1 - M_2)}{\ell^8 \eta^2 \xi}, 0, 0, 0 \right).$$

Therefore:

Theorem 4

The two-link swimmer is not STLC.

But one can also show:

Theorem 5 (Giraldi, Pomet, 2017)

The two-link swimmer is K-STLC with $K = 2 \kappa \left| \frac{M_2 + M_1}{M_2 M_1} \right|$.

Possible extensions for the result: second obstruction when
 $[f_1, [f_0, f_1]](0) \in R_1(0)$, but not $[[f_0, f_1], [f_0, [f_0, f_1]]](0)$.