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Mechanical systems

Mechanical systems

Described via Lagrangian or Hamiltonian formulation

Built-in geometric properties (Manifold structure of
configuration space, symplecticity)

Built-in conservation laws due to symmetries (Noether
theorem)
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Symplectic integrators

Why do we like symplectic integrators?

Good qualitative and quantitative behaviour.

Preserve flow properties (symplecticity, momenta...).

Energy not exactly preserved... [Ge & Marsden]

... but good long-term energy behaviour.

How come energy behaves so well?

Theorems ([Moser], [Benettin & Giorgilli], [Tang], [Murua]...)
warrant that symplectic integrators are integrating exactly some
existing Hamiltonian system that is close to the original one.

188 VI. Symplectic Integration of Hamiltonian Systems
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Fig. 3.1. Area preservation of numerical methods for the pendulum; same initial sets as in
Fig. 2.2; first order methods (left column): h = π/4; second order methods (right column):
h = π/3; dashed: exact flow

Example 3.2. We consider the pendulum problem of Example 2.5 with the same
initial sets as in Fig. 2.2. We apply six different numerical methods to this problem:
the explicit Euler method (I.1.5), the symplectic Euler method (I.1.9), and the im-
plicit Euler method (I.1.6), as well as the second order method of Runge (II.1.3)
(the right one), the Störmer–Verlet scheme (I.1.17), and the implicit midpoint rule
(I.1.7). For two sets of initial values (p0, q0) we compute several steps with step size
h = π/4 for the first order methods, and h = π/3 for the second order methods.
One clearly observes in Fig. 3.1 that the explicit Euler, the implicit Euler and the
second order explicit method of Runge are not symplectic (not area preserving). We
shall prove below that the other methods are symplectic. A different proof of their
symplecticity (using generating functions) will be given in Sect. VI.5.

In the following we show the symplecticity of various numerical methods from
Chapters I and II when they are applied to the Hamiltonian system in the vari-
ables y = (p, q),

ṗ = −Hq(p, q)

q̇ = Hp(p, q)
or equivalently ẏ = J−1∇H(y),

where Hp and Hq denote the column vectors of partial derivatives of the Hamil-
tonian H(p, q) with respect to p and q, respectively.
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Variational integrators and optimal control

Generating symplectic integrators easily

Variational integrators are always symplectic.

Idea ([Veselov], [Suris], [Marsden & West]...)

Substitute continuous state space with discrete one.

Build discrete analogue of Hamilton’s principle.

Derive equations of motion and conservations from the
principle.

2.2. Lagrangian Dynamics 21

q1 q2

q(t) varied curves

Fig. 2.3.: Variations of the trajectory q(t).
takes different values for different paths q(t). Hamilton’s principle states that this integral
takes a critical point for the physical path.
To make calculations tractable let us not consider all possible paths from q(t1) to q(t2)
but a family in which each path is determined by a parameter ε. This family shall contain
the actual, physical path for ε = 0. Each path is a function of time, labelled by ε,

qε(t) ≡ q(t, ε) with fixed ε. (2.93)

The function qε(t) shall be differentiable for both, t at fixed ε and ε at fixed t, such that
mixed partial derivatives can be exchanged

∂2qε
∂t ∂ε

= ∂2qε
∂ε∂t

. (2.94)

All paths shall start at q(t1) and end at q(t2), such that

qε(t1) = q0(t1) = q(t1) ≡ q1

qε(t2) = q0(t2) = q(t2) ≡ q2
(2.95)

or
∂qε
∂ε

(t1) = ∂qε
∂ε

(t2) = 0. (2.96)

One example of such a family, often considered exclusively in classical mechanics text-
books, is

qε(t) = q(t) + ε δq. (2.97)

This, however, requires that q(t) takes values in a linear space, an assumption that gen-
erally cannot be made in the geometric framework on manifolds. Therefore we consider
more general transformations of the form (2.93). The action integral is given by

A[qε] = t2∫
t1

L(qε(t), q̇ε(t))dt, (2.98)

and has different values for different ε. Hamilton’s principle of stationary action states
that for each one-parameter family qε that fulfils the above conditions (2.94 - 2.96), q is
a critical point of the action iff

54 3. Variational Integrators

q0 qN

{qk} varied discrete curves

Fig. 3.1.: Variations of the discrete trajectory {qk}Nk=0.

The generalised velocities will usually be discretised by simple finite-difference expres-
sions1, i.e.

q̇ ≈ qk+1 − qk
h

for t ∈ [tk, tk+1]. (3.3)

The quadrature (3.1) is most often realised by either the trapezoidal rule

Ltr
d (qk, qk+1) = h2 L(qk, qk+1 − qk

h
) + h2 L(qk+1,

qk+1 − qk
h

) (3.4)

or the midpoint rule

Lmp
d (qk, qk+1) = hL(qk + qk+1

2 ,
qk+1 − qk

h
). (3.5)

The configuration manifold of the discrete theory is still Q, but the discrete state space
is Q×Q instead of TQ, such that the discrete Lagrangian Ld is a function

Ld ∶ Q ×Q → R. (3.6)

3.1.1. Discrete Action Principle
The discrete trajectories qd = {qk}Nk=0 are required to satisfy a discrete version of Hamilton’s
principle of least action

δAd[qd] = δ N−1∑
k=0

Ld(qk, qk+1) = 0. (3.7)

The variation of the action is

δAd[qd] = N−1∑
k=0

[D1Ld(qk, qk+1) ⋅ δqk +D2Ld(qk, qk+1) ⋅ δqk+1] (3.8)

where Di denotes the derivative with respect to to the ith argument. What follows
corresponds to a discrete integration by parts, i.e., a reordering of the summation. The

1 In the first term of the trapezoidal rule (3.4), this corresponds to a forward finite-difference, in the
second term to a backward finite-difference, and in the midpoint rule (3.5) to a centred finite-difference.

Discrete equations of motion = Difference equations (a.k.a. our
integrator).

7 / 27
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The generalised velocities will usually be discretised by simple finite-difference expres-
sions1, i.e.

q̇ ≈ qk+1 − qk
h

for t ∈ [tk, tk+1]. (3.3)

The quadrature (3.1) is most often realised by either the trapezoidal rule

Ltr
d (qk, qk+1) = h2 L(qk, qk+1 − qk

h
) + h2 L(qk+1,

qk+1 − qk
h

) (3.4)

or the midpoint rule

Lmp
d (qk, qk+1) = hL(qk + qk+1

2 ,
qk+1 − qk

h
). (3.5)

The configuration manifold of the discrete theory is still Q, but the discrete state space
is Q×Q instead of TQ, such that the discrete Lagrangian Ld is a function

Ld ∶ Q ×Q → R. (3.6)

3.1.1. Discrete Action Principle
The discrete trajectories qd = {qk}Nk=0 are required to satisfy a discrete version of Hamilton’s
principle of least action

δAd[qd] = δ N−1∑
k=0

Ld(qk, qk+1) = 0. (3.7)

The variation of the action is

δAd[qd] = N−1∑
k=0

[D1Ld(qk, qk+1) ⋅ δqk +D2Ld(qk, qk+1) ⋅ δqk+1] (3.8)

where Di denotes the derivative with respect to to the ith argument. What follows
corresponds to a discrete integration by parts, i.e., a reordering of the summation. The

1 In the first term of the trapezoidal rule (3.4), this corresponds to a forward finite-difference, in the
second term to a backward finite-difference, and in the midpoint rule (3.5) to a centred finite-difference.

Discrete equations of motion = Difference equations (a.k.a. our
integrator).
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takes different values for different paths q(t). Hamilton’s principle states that this integral
takes a critical point for the physical path.
To make calculations tractable let us not consider all possible paths from q(t1) to q(t2)
but a family in which each path is determined by a parameter ε. This family shall contain
the actual, physical path for ε = 0. Each path is a function of time, labelled by ε,

qε(t) ≡ q(t, ε) with fixed ε. (2.93)

The function qε(t) shall be differentiable for both, t at fixed ε and ε at fixed t, such that
mixed partial derivatives can be exchanged

∂2qε
∂t ∂ε

= ∂2qε
∂ε∂t

. (2.94)

All paths shall start at q(t1) and end at q(t2), such that

qε(t1) = q0(t1) = q(t1) ≡ q1

qε(t2) = q0(t2) = q(t2) ≡ q2
(2.95)

or
∂qε
∂ε

(t1) = ∂qε
∂ε

(t2) = 0. (2.96)

One example of such a family, often considered exclusively in classical mechanics text-
books, is

qε(t) = q(t) + ε δq. (2.97)

This, however, requires that q(t) takes values in a linear space, an assumption that gen-
erally cannot be made in the geometric framework on manifolds. Therefore we consider
more general transformations of the form (2.93). The action integral is given by

A[qε] = t2∫
t1

L(qε(t), q̇ε(t))dt, (2.98)

and has different values for different ε. Hamilton’s principle of stationary action states
that for each one-parameter family qε that fulfils the above conditions (2.94 - 2.96), q is
a critical point of the action iff
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The starting point

Hamilton-Pontryagin action

(q, v , p) : [0,T ] ⊂ R→ TQ ⊕T ∗Q, sufficiently differentiable curve
and fixed boundary values q(0) = qa, q(T ) = qb.

JHP(q, v , p) =

∫ T

0
[L(q(t), v(t)) + 〈p(t), q̇(t)− v(t)〉] dt

Dynamical equations

dq(t)

dt
= v(t),

dp(t)

dt
= D1L(q(t), v(t)),

p(t) = D2L(q(t), v(t))
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Variationally partitioned Runge-Kutta integrators

Discrete Hamilton-Pontryagin action

(JHP)d =
N−1∑
k=0

s∑
i=1

hbi

L (Q i
k ,V

i
k

)
+

〈
P i
k ,

Q i
k − qk
h

−
s∑

j=1

aijV
j
k

〉

+

〈
pk+1,

qk+1 − qk
h

−
s∑

j=1

bjV
j
k

〉
where (aij , bj) coefficients of a Runge-Kutta (RK) method.
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Discrete dynamics

Discrete dynamical equations: Symplectic partitioned RK methods

qk+1 = qk + h
s∑

j=1

bjV
j
k , D2L(qk+1, vk+1) = D2L(qk , vk ) + h

s∑
i=1

b̂jD1L(Q j
k ,V

j
k ),

Q i
k = qk + h

s∑
j=1

aijV
j
k , D2L(Q i

k ,V
i
k ) = D2L(qk , vk ) + h

s∑
j=1

âijD1L(Q j
k ,V

j
k ),

where (âij , b̂j ) satisfy bi âij + b̂jaji = bi b̂j and b̂i = bi .

Here we have used the continuous relation p(t) = D2L(q(t), v(t))
to relate pk and pk+1 with vk and vk+1.
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Controlled mechanical systems

Controlled dynamics

Let f : TQ × U → T ∗Q define a mechanical forcing, U ⊂ Rk

control space.

dq(t)

dt
= v(t),

dp(t)

dt
= D1L(q(t), v(t)) + f (q(t), v(t), u(t)),

p(t) = D2L(q(t), v(t))

(q, v , u) : [0,T ] ⊂ R→ TQ × U. Controlled eqs. of motion define
section of TT ∗Q × U, of the form (q,G (q, v), v ,F (q, v , u), u).
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Action principle for optimal control

Cost function

C : TQ × U → R

Hamilton-Pontryagin action

(q, p, ξq, ξp, µq, µp, u) : [0,T ] ⊂ R→ TT ∗Q ⊕ T ∗T ∗Q × U
sufficiently differentiable curve with fixed boundary values
(q(0), p(0)) = (qa, pa), (q(T ), p(T )) = (qb, pb).

JHP(q, p, ξq, ξp, µq, µp, u) =

∫ T

0
[C (q(t), ξq(t), u(t))

+ 〈(µq(t), µp(t)) , (q̇(t)− ξq(t), ṗ(t)− ξp(t))〉] dt

evaluated over the mechanical section (q,G (q, v), v ,F (q, v , u),
µq, µp, u).
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Optimal control

Necessary conditions for optimality (Dynamical equations)

µ̇q + µ̇pD1G (q, v) = D1C (q, v , u)− µpD1F (q, v , u),

µ̇pD2G (q, v) = D2C (q, v , u)− µpD2F (q, v , u)− µq,
0 = D3C (q, v , u)− µpD3F (q, v , u),

q̇ = v ,

D1G (q, v)q̇ + D2G (q, v)v̇ = F (q, v , u).
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Discrete optimal control

Discrete Hamilton-Pontryagin action

Jd =

N−1∑
k=0

s∑
i=1

hbi

C (Q i
k , V

i
k ,U

i
k

)

+

〈
Mi

Q,k ,
Q i
k − qk

h
−

s∑
j=1

aijV
j
k

〉
+

〈
µq,k+1,

qk+1 − qk

h
−

s∑
j=1

bjV
j
k

〉

+

〈
Mi

P,k ,
D2L(Q i

k , V
i
k )− D2L(qk , vk )

h
−

s∑
j=1

âij

[
D1L(Q

j
k
, V

j
k

) + f (Q
j
k
, V

j
k
,U

j
k

)
]〉

+

〈
µp,k+1,

D2L(qk+1, vk+1)− D2L(qk , vk )

h
−

s∑
j=1

b̂j

[
D1L(Q

j
k
, V

j
k

) + f (Q
j
k
, V

j
k
,U

j
k

)
]〉

Taking variations we find discrete necessary conditions for
optimality.
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The setting

Nonholonomic Lagrangian systems

(L,Q,N), where N ⊂ TQ constraint manifold. Locally described
by null-set of Φ : TQ → Rm, m = codimTQN.

Dynamical equations

Obtained via Chetaev’s principle, not variational.

q̇ = v ,

ṗ = D1L(q, v) + 〈λ,D2Φ(q, v)〉 ,
p = D2L(q, v),

0 = Φ(q, v).

where λ Lagrange multipliers.
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The setting (continued)

Nonholonomic controlled Lagrangian systems

(L,Q,N, f ,U), where N ⊂ TQ constraint manifold. Locally
described by null-set of Φ : TQ → Rm, m = codimTQN.

Dynamical equations

Obtained via Chetaev’s + D’Alembert’s principle.

q̇ = v ,

ṗ = D1L(q, v) + 〈λ,D2Φ(q, v)〉+ f (q, v , u),

p = D2L(q, v),

0 = Φ(q, v).

where λ Lagrange multipliers.
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From constrained to free and forced

Lagrange multipliers

If the system is regular, then it is possible to differentiate Φ = 0
w.r.t. t, substitute equations and solve for λ, leading to

λ(t) = l(q, v), or λ(t) = l(q, v , u)

It ensures every initial condition on N remains on N. This
transforms the constrained system into a free forced system.

Controlled nonholonomic eqs. of motion still define section of
TT ∗Q × U, of the form (q,G (q, v), v ,F (q, v , u), u) with
F (q, v , u) = D1L(q, v) + 〈l(q, v , u),D2Φ(q, v)〉+ f (q, v , u).
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Nonholonomic integrator

For Lobatto-type RK methods with (aij , bj):

Nonholonomic integrator (finally on arxiv:1810.10926)

qk+1 = qk + h
s∑

i=1

biV
i
k ,D2L(qk+1, vk+1) = D2L(qk , vk ) + h

s∑
i=1

b̂i

[
D1L(Q

j
k
, V

j
k

) +
〈

Λ
j
k
,D2Φ(Q

j
k
, V

j
k

)
〉]
,

Q i
k = qk + h

s∑
j=1

aijV
j
k
, D2L(Q i

k , V
i
k ) = D2L(qk , vk ) + h

s∑
j=1

âij

[
D1L(Q

j
k
, V

j
k

) +
〈

Λ
j
k
,D2Φ(Q

j
k
, V

j
k

)
〉]
,

qik = Q i
k , D2L(qik , v

i
k ) = D2L(qk , vk ) + h

s∑
j=1

aij

[
D1L(Q

j
k
, V

j
k

) +
〈

Λ
j
k
,D2Φ(Q

j
k
, V

j
k

)
〉]
,

0 = Φ(qik , v
i
k ).

Hamiltonian flow:
FΛ
Ld

: TQ|N × Λ→ TQ|N × Λ, (qk , vk , λk) 7→ (qk+1, vk+1, λk+1),

with λk = Λ1
k , λk+1 = Λs

k .
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Lagrange multipliers in the discrete setting

Here comes trouble!

If Λi
k 7→ l(Q i

k ,V
i
k ,U

i
k), constraint not preserved in general!

Cannot easily solve for
{

Λi
k

}s
i=2

, contrary to continuous case!

If solved,
{

Λi
k

}s
i=2

must be a function of λk = Λ1
k too!

Solution

Imposing variations on
{

Λi
k

}s
i=2

appropriately.

Can also be done in the continuous case, but a priori might seem
overkill.
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Treating multipliers as independent variables

Continuous Hamilton-Pontryagin action

JHP =

∫ T

0

[
C (q(t), v(t), u(t))

+ 〈(µq, µp) , (q̇ − v , (G (q, v))˙− F (q, v , u, λ))〉
+ 〈µλ, λ− l(q, v , u)〉

]
dt
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Treating multipliers as independent variables (continued)

Necessary conditions for optimality (Dynamical equations)

µ̇q + µ̇pD1G(q, v) = D1C(q, v , u)− µpD1F (q, v , u, λ)−µλD1l(q, v , u),

µ̇pD2G(q, v) = D2C(q, v , u)− µpD2F (q, v , u, λ)−µλD2l(q, v , u)− µq ,
0 = D3C(q, v , u)− µpD3F (q, v , u, λ)−µλD3l(q, v , u),

0 = µλ − µpD4F (q, v , u, λ),

q̇ = v ,

D1G(q, v)q̇ + D2G(q, v)v̇ = F (q, v , u, λ),

λ = l(q, v , u).

Only need derivatives of l(q, v , u). Equivalent to imposing
δλ = D1l(q, v , u)δq + D2l(q, v , u)δv + D3l(q, v , u)δu.
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Lagrange multipliers in the discrete setting

Discrete Lagrange multiplier variations

Casting nonholonomic integrator in the form

F(x , y) = 0,

where x = (qk , vk , λk ,U
1
k , ...,U

s
k), y = (qk+1, vk+1, λk+1,Λ

2
k , ...

...,Λs−1
k , ...), then

δy = − (D2F(x , y))−1 D1F(x , y)δx

We get
{
δΛi

k

}s
i=2

in terms of δqk , δvk , δλk ,
{
δU i

k

}s
i=1

.
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Discrete nonholonomic optimal control

Discrete Hamilton-Pontryagin action

Jd =

N−1∑
k=0

s∑
i=1

hbi

C (Q i
k , V

i
k ,U

i
k

)
+

〈
Mi

Q,k ,
Q i
k − qk

h
−

s∑
j=1

aijV
j
k

〉
+

〈
µq,k+1,

qk+1 − qk

h
−

s∑
j=1

bjV
j
k

〉

+

〈
Mi

P,k ,
D2L(Q i

k , V
i
k )− D2L(qk , vk )

h
−

s∑
j=1

âij

[
D1L(Q

j
k
, V

j
k

) + f (Q
j
k
, V

j
k
,U

j
k

) + Λ
j
k
D2Φ(Q

j
k
, V

j
k

)
]〉

+

〈
µp,k+1,

D2L(qk+1, vk+1)− D2L(qk , vk )

h
−

s∑
j=1

b̂j

[
D1L(Q

j
k
, V

j
k

) + f (Q
j
k
, V

j
k
,U

j
k

) + Λ
j
k
D2Φ(Q

j
k
, V

j
k

)
]〉

Imposition of variations of Lagrange multipliers

〈δJd , δcd 〉+

N−1∑
k=0

s∑
i=2

hbi

〈
Mi

Λ,k , δΛi
k − Rq,i

k δqk − Rv,i
k δvk − R i

kδλk −
s∑

j=1

RU j ,i
k δU j

k

〉
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Discrete nonholonomic optimal control II

Closing the system

Resulting necessary conditions system must be supplemented with

D2L(qik , v
i
k) = D2L(qk , vk)

+ h
s∑

j=1

aij
[
D1L(Q j

k ,V
j
k) + f (Q j

k ,V
j
k ,U

j
k) + Λj

kD2Φ(Q j
k ,V

j
k)
]
,

qik = Q i
k ,

0 = Φ(qik , v
i
k).
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Example: Nonholonomic controlled particle

Q = R3

U = R2

L(q, v) =
1

2

(
v2
x + v2

y + v2
z

)
Φ(q, v) = vz − yvx

f (q, v , u) = u1dx + u2dy + yu1dz

C (q, v , u) =
1

2

(
u2

1 + u2
2

)
.
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THANKS FOR YOUR
ATTENTION!

27 / 27


	Introduction
	Variational integrators
	High-order variational integrators
	Variational integrators and optimal control

	Nonholonomic integrators and optimal control
	Nonholonomic mechanics
	Nonholonomic optimal control


