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Introduction

Mechanical systems

Mechanical systems

@ Described via Lagrangian or Hamiltonian formulation

@ Built-in geometric properties (Manifold structure of
configuration space, symplecticity)

@ Built-in conservation laws due to symmetries (Noether
theorem)
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Introduction

Symplectic integrators

Why do we like symplectic integrators?
@ Good qualitative and quantitative behaviour.

@ Preserve flow properties (symplecticity, momenta...).

7




Introduction

Symplectic integrators

Why do we like symplectic integrators?
@ Good qualitative and quantitative behaviour.
@ Preserve flow properties (symplecticity, momenta...).

@ Energy not exactly preserved... [Ge & Marsden]




Introduction

Symplectic integrators

Why do we like symplectic integrators?
@ Good qualitative and quantitative behaviour.
@ Preserve flow properties (symplecticity, momenta...).
@ Energy not exactly preserved... [Ge & Marsden]

@ ... but good long-term energy behaviour.
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Introduction

Symplectic integrators

Why do we like symplectic integrators?

Good qualitative and quantitative behaviour.

@ Preserve flow properties (symplecticity, momenta...).
@ Energy not exactly preserved... [Ge & Marsden]
°

... but good long-term energy behaviour.

How come energy behaves so well?
Theorems ([Moser], [Benettin & Giorgilli], [Tang], [Murua]...)

warrant that symplectic integrators are integrating exactly some
existing Hamiltonian system that is close to the original one.
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| integrators
rs and optimal control

Variational integrators

Generating symplectic integrators easily

Variational integrators are always symplectic.

Idea ([Veselov], [Suris], [Marsden & West]...)

@ Substitute continuous state space with discrete one.
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Variational integrators B : .
e Variational i ators and optimal control

Generating symplectic integrators easily

Variational integrators are always symplectic.

Idea ([Veselov], [Suris], [Marsden & West]...)

@ Substitute continuous state space with discrete one.

a(t)  varied curves {a}  varied discrete curves
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| integrators
rs and optimal control

Variational integrators

Generating symplectic integrators easily

Variational integrators are always symplectic.

Idea ([Veselov], [Suris], [Marsden & West]...)

@ Substitute continuous state space with discrete one.

@ Build discrete analogue of Hamilton's principle.

@ Derive equations of motion and conservations from the
principle.

Discrete equations of motion = Difference equations (a.k.a. our
integrator).



High-order variational integrators

Variational integrators s . "
€ Variational integrators and optimal control

The starting point

Hamilton-Pontryagin action

(q,v,p): [0, T]CR — TQ® T*Q, sufficiently differentiable curve
and fixed boundary values g(0) = g., q(T) = g».

.
Tur(a, v,P)Z/O [L(q(2), v(2)) + (p(1), 4(t) — v(£))] dt

Dynamical equations

dq(t)

ot =0

d'[;(tt) = D]_L(Q(t), V(t))a
p(t) = D2L(q(t), v(t))




High-order variational integrators

Variational integrators s . "
€ Variational integrators and optimal control

Variationally partitioned Runge-Kutta integrators

Discrete Hamilton-Pontryagin action

N-1 s i s ]
(rdy =3 5 bt | L (s vz>+<PL,Qk,,"k—za,-jvz>
j=1

k=0 i=1

" <pk+1, 1 — Z b; VJ>

where (aj;, bj) coefficients of a Runge-Kutta (RK) method.




High-order variational integrators

Variational integrators s . "
e Variational integrators and optimal control

Discrete dynamics

Discrete dynamical equations: Symplectic partitioned RK methods

s s
Q41 =ak+hY_ bV, Dol(qks1, k1) = Dal(q, vi) + h > biDiL(Q,, V}),
=i i=1

Qi=aqc+hd> a;Vi,  Dal(Q}, Vi) = Dal(qe, vi) +h > 4;D1L(Qf, V),
j=1 j=1

where (3,']', [)J) satisfy b,'é,'j + Bjaj,- = b,'Bj and [),' = b;.

Here we have used the continuous relation p(t) = DyL(qg(t), v(t))
to relate px and pgy1 with vi and viyq.
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High-order variational integrators

Variational integrators B o o 7
8 Variational integrators and optimal control

Controlled mechanical systems

Controlled dynamics

Let f: TQ x U — T*Q define a mechanical forcing, U C R
control space.

dg(t) _
T v(t),

==L — DyL(q(t), v(t)) + F(q(t), v(t), u(t)),
p(t) = DaL(q(t), v(t))

(q,v,u): [0, T]CR — TQ x U. Controlled egs. of motion define
section of TT*Q x U, of the form (g, G(q,v), v, F(q, v, u), u).

v

11 /27



High-order variational integrators
Variational integrators and optimal control

Variational integrators

Action principle for optimal control

C:TRxU—-R

Hamilton-Pontryagin action

(qa p:gq,gpaﬂq,ﬂp, U) : [0’ T] CRSTT*Qa T*T*Q x U
sufficiently differentiable curve with fixed boundary values

(g(0), p(0)) = (ga; pa), (a(T),p(T)) = (b, Pb)-
T
Foip () Egs Epn fi iy ) = /0 [C(a(t),Eg(t), u(t))
+ ((1q(t), up(t)), (g(t) — &q(t), P(t) — &p(E)))] dt

evaluated over the mechanical section (g, G(q,v), v, F(q, v, u),
Mqa Mp7 U).
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High-order variational integrators

Variational integrators B o o 7
8 Variational integrators and optimal control

Optimal control

Necessary conditions for optimality (Dynamical equations)

fia + fsD1.G(q,v) = DyC(4, v, ) — 1D (g, v, ),
fipD2G(d,v) = DaC(, v, 1) — pipDaF (3, v, 1) — g
0= D3C(q,v,u) — pupD3F(q, v, u),
g=v,
D1G(q,v)q+ D2G(q,v)v = F(q, v, u).
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Variational integrators

Discrete optimal control

High-order variational integrators
Variational integrators and optimal control

Discrete Hamilton-Pontryagin action

N—1 s

Ta =33 hby {c (QL, vi, UL)

k=0 i=1

+ <Mb,k’

< DzL(QL,VL)—DzL(Qth)

h

Qf — ak : j qk+1 — J
=5 = z;afjvk +{ Haktt, ——— Z biVi
E

_Zav [DILqu 1)+ (@ Vi, k)]>

j=1

Do L(qk+1, Vk+1) — Dal(qk, vk)
Kop,k+15 n

~S b [DlL(Q{(, Vi) + F(Q, Vi, ui)] >}

Jj=1

Taking variations we find discrete necessary conditions for

optimality.
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Nonholonomic mechanics
Nonholonomic optimal control

Nonholonomic integrators and optimal control

The setting

Nonholonomic Lagrangian systems

(L, Q,N), where N C TQ constraint manifold. Locally described
by null-set of ® : TQ — R™, m = codimtgN.

Dynamical equations

Obtained via Chetaev's principle, not variational.

qg=v,

b= Dil(q,v) + (A Dad(q, V).
p = DyL(q,v),

0=9®(q,v).

where \ Lagrange multipliers.
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Nonholonomic mechanics
Nonholonomic optimal control

Nonholonomic integrators and optimal control

The setting (continued)

Nonholonomic controlled Lagrangian systems

(L, Q,N,f,U), where N C TQ constraint manifold. Locally
described by null-set of ® : TQ — R™, m = codim7q/N.

Dynamical equations
Obtained via Chetaev's + D’Alembert’s principle.

qg=yv,

,b - DlL(qa V) + <)‘a D2¢(qa V)> + f(qa v, U),
p=DyL(q,v),

0=®(q,v).

where \ Lagrange multipliers.
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Nonholonomic mechanics

.. . Nonholonomic optimal control
Nonholonomic integrators and optimal control P

From constrained to free and forced

Lagrange multipliers

If the system is regular, then it is possible to differentiate ® =0
w.r.t. t, substitute equations and solve for A, leading to

A(t) =1(g,v), or Xt)=I(q,v,u)

It ensures every initial condition on N remains on N. This
transforms the constrained system into a free forced system.

Controlled nonholonomic egs. of motion still define section of
TT*Q x U, of the form (q, G(q,v), v, F(q, v, u), u) with
F(q,v,u) = DiL(q,v) + (I(q, v, u), D2®(q,v)) + (g, v, u).
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Nonholonomic mechanics
Nonholonomic optimal control

Nonholonomic integrators and optimal control

Nonholonomic integrator

For Lobatto-type RK methods with (ajj, b;):

Nonholonomic integrator (finally on arxiv:1

s s

i1 =k +h Y bVi, DaL(aki1s vies) = Dal{ak, vi) + b > bi [DiL(@f, Vi) + (N, D2o(@f, V)],
i=1 i=1

. ’S . . . ’S . . . . .

Q= ak+hdayVl,  DaL(Q, Vi) = Dallan, vi) + h'>_ 8 [DiL(@), Vi) + (N, D2o(Q), VD)),
j=1 j=1
s

a = Q}, DaL(dh, vi) = DaL(ak, vi) + h'>_ 2y [DLL(@), Vi) + (N, D20(@), VD)),
j=1

0 = ®(qk, vi)-

Hamiltonian flow:
FL TQIy x A= TQ[y X A, (Gks Vis M) = (Gkt1s Vier 15 Akr1)s
with Ay = /\i, >\k+1 = /\i
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Nonholonomic mechanics

L . Nonholonomic optimal control
Nonholonomic integrators and optimal control P

Lagrange multipliers in the discrete setting

Here comes trouble!

o If Al — I(Q], V}, U}), constraint not preserved in general!
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L . Nonholonomic optimal control
Nonholonomic integrators and optimal control P
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Here comes trouble!
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Nonholonomic mechanics
Nonholonomic optimal control

Nonholonomic integrators and optimal control

Lagrange multipliers in the discrete setting

Here comes trouble!

o If Al — I(Q], V}, U}), constraint not preserved in general!
@ Cannot easily solve for {A}(}’ZQ, contrary to continuous case!

@ If solved, {/\;'(}7:2 must be a function of A\ = /\i too!

Solution

| \

. . . [ S .
Imposing variations on {/\L}iz2 appropriately.

N

Can also be done in the continuous case, but a priori might seem
overkill.
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Nonholonomic mechanics

L . Nonholonomic optimal control
Nonholonomic integrators and optimal control P

Treating multipliers as independent variables

Continuous Hamilton-Pontryagin action

.
Fur = [ [ctate) v(e).u(e)

+ ((ttqs 1) s (¢ — v, (G(q,v)) = F(q, v, u,N)))
+ (s A — I, v, u)>} dt

21/27



Nonholonomic mechanics

L . Nonholonomic optimal control
Nonholonomic integrators and optimal control P

Treating multipliers as independent variables (continued)

Necessary conditions for optimality (Dynamical equations)

fq + f1pD1G(q,v) = D1C(q, v, u) — pupD1F(q, v, u, \)—pxD1l(q, v, u),
fpD2G(q,v) = D2C(q, v,u) — ppDaF(q, v, u, \)—puxD2l(q, v, u) — pg,
0= D3C(q,v,u) — upD3F(q,v,u,\)—prDsl(q, v, u),
0= ix — 1pDaF(q, v, u, A),

q- = v7
D1G(q,v)g + D2G(q,v)V = F(q,v,u,\),
A=1(q,v,u).




Nonholonomic mechanics

L . Nonholonomic optimal control
Nonholonomic integrators and optimal control P

Treating multipliers as independent variables (continued)

Necessary conditions for optimality (Dynamical equations)

fq + f1pD1G(q,v) = D1C(q, v, u) — pupD1F(q, v, u, \)—pxD1l(q, v, u),
fpD2G(q,v) = D2C(q, v,u) — ppDaF(q, v, u, \)—puxD2l(q, v, u) — pg,
0= D3C(q,v,u) — upD3F(q, v, u, \)—u\D3l(q, v, u),
0= ix — 1pDaF(q, v, u, A),

q- = v7
D1G(q,v)g + D2G(q,v)V = F(q,v,u,\),
0= ®(q,v).

Only need derivatives of /(q, v, u). Equivalent to imposing
0N = Dil(q,v,u)dq+ Dal(q,v,u)dv + D3l(q, v, u)du.



Nonholonomic mechanics

L . Nonholonomic optimal control
Nonholonomic integrators and optimal control P

Lagrange multipliers in the discrete setting

Discrete Lagrange multiplier variations

Casting nonholonomic integrator in the form

F(x,y) =0,

where x = (qk7 Vik, Aka U}](-7 ceey Ui)r y = (qk+17 Vk+17)\k+17/\i7
...,/\7{71,...), then

8y = — (D2F(x,y)) !t DiF(x, y)éx

We get {6/\};}7:2 in terms of §qy, Ok, Sk, {6U,’;}f:1.
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Nonholonomic mechanics

L . Nonholonomic optimal control
Nonholonomic integrators and optimal control P

Discrete nonholonomic optimal control

Discrete Hamilton-Pontryagin action

Tq =
N—1 s

Z hb; [c (Qhs Vi, Ui) + <M51k, il

<M - Dy L(Qy, VL);DZL(qky Vi) _ Xs: [DlL(Qi, Vi) + f(Qi’ , U/) +N Dz‘b(Qi, Vk)}>

j=1

s
k j k+17qk
—E a,'jvf(>+<y‘q,k+1, E bVJ>
=

Do L(qk+1, Vk+1) — Dal(qk, vk)
h

+ <up kt1s Zb [DlL(QL,VJ)JrF(QL,Vi, /) + N, Dﬂ(@'k,vk)}ﬂ

Jj=1

Imposition of variations of Lagrange multipliers

S -
(6Ta6ca) + > > hbi <M}'\!k,6Af< — RP'Sqi — R 0vic — RidXe — Rg”cSU{(>

k=0 i=2 j=1
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Nonholonomic mechanics

L . Nonholonomic optimal control
Nonholonomic integrators and optimal control P

Discrete nonholonomic optimal control |l

Closing the system

Resulting necessary conditions system must be supplemented with

D2L(qi vi)) = D2L(qi, vk)
+ 0> ay [ DiL(Q), VE) + F(Q), Vi, U)) + N.Dao(@f, VD)
j=1
q = Qk
0 = (g, vi)-

25 /27



Nonholonomic mechanics
Nonholonomic optimal control

Nonholonomic integrators and optimal control

Example: Nonholonomic controlled particle

Q=R
U =R?
L(g,v :l(vf—kvz—i-vzz)
5 y
d(q,v) = v, — yvy

f(q,v,u) = utdx + v’dy + yu'dz

)
)
)
)zl(u%+u§).

C(q,v,u 5

26
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Nonholonomic mechanics
Nonholonomic optimal control

Nonholonomic integrators and optimal control

THANKS FOR YOUR
ATTENTION!
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