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One of the major unsolved problems of the Euler equations on a sphere is the long-time
behaviour of an inviscid fluid when a certain initial vorticity is given [4],[6]. The biggest chal-
lenge in understanding and simulating this system is due to the presence of an infinite number
of first integrals (Casimir functions), which however don’t provide complete integrability [7].
Moreover, the Hamiltonian nature of the equations suggests that much geometry is involved
in them. They are in fact a Lie–Poisson system on sdiff∗(S2) (the dual of the Lie algebra
of divergence free vector fields) [1]. Special solutions to the Euler equations come from the
fact that on sdiff∗(S2) there exist non trivial finite dimensional coadjoint orbits, called point
vortices [5]. However, this orbits have physical interest only when the sphere is non-rotating.
When this is not true the Euler equations become a coupled system of equations of a singular
field of point vortices and a smooth continuous background vorticity [3].

Starting from [2],[8], we present an approximation of the coupled model based on the
quantization of Kähler manifolds, which keeps the Hamiltonian Lie-Poisson structure of the
equations. Moreover, with the techniques of the geometric integration, we provide a Lie-
Poisson numerical scheme to solve the quantized model, preserving up to roundoff precision
the discrete Casimirs and, up to the order of the method, the Hamiltonian. The conservation
of the quantized first integrals provides a deep insight in the nature of the Euler equations
and a better qualitative simulation of them. Furthermore, our numerical scheme provides a
useful tool in studying the still unknown persistence of relative equilibria of point vortices
passing from a non-rotating to a rotating sphere.
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