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Abstract

In paper industry, paper sheets are dried through a chain of paper dryers.
The sheets roll through spinning cans at a very high speed. The initial
goal of this project was to understand the profile of the temperature on the
surface of the paper. Due to the complexity of such a problem, we had to
simplify it. Therefore, in this work, we aim at solve the heat equation for
the temperature inside an industrial paper dryer. Since the temperature
distribution depends on the velocity of the air, we first have to solve the
Navier-Stokes for the velocity of the air. After having our models set up,
we use the Finite Element Method to find an approximate solution for the
temperature. Finally, we present a graph of the temperature profile on the
bottom of a chain of 7 paper dryers as well as some further considerations
on how the the model could be improved.



2 Modelling Drying in Paper Production

1.1 Introduction

Between July 19 and July 26 2015, the Department of Mathematics of the
IST-UL and the Department of Mathematics of the University of Coimbra
organised the ECMI-Modelling Week 2015. The aim of this week was to
model a real world problem and simulate.

The present work is the final report of the project group entitled Mod-
elling drying in paper production. This project was proposed by Professor
Gonçalo Pena, CMUC, Universidade de Coimbra. In this project, we aimed
at developing and simulating a partial differential equations model for the
drying of paper soaked in water or resin inside a drying tunnel. In order
to achieve this result, we divided this work in 4 main section: a model for
the temperature inside each dryer, a description of the numerical method
used to solve the given model, the numerical results obtained from the im-
plementation of this method and finally the main conclusions that one can
take from these results.

We start with section 1.2. Here, we derive a model that describes both
the temperature of the air inside the chain of seven dryers, denoted by T ,
and the velocity of this same air, denoted by u. The temperature T is mod-
elled using the heat equation. However, the temperature depends on the
velocity u thus, to solve the heat equation we first need to derive u. This
will be done using the Navier-Stokes equations. It is reasonable to assume
that an industrial dryer is turned on along the day for 24/7, i.e., heated up
continuously. In practical terms, this means that the Therefore, we assume
the steady state. This is an important feature of our model. Moreover, we
have also considered the density to be constant. These two assumptions
simplify our model substantially, while keep it accurate. Finally, the deriva-
tion of the Navier-Stokes equations becomes easier to handle if derived for
Newtonian fluids. Since we are interested in the velocity of the air, a Newto-
nian fluid, this is enough for our purposes. Lastly, a variational formulation
of our problem will also be presented, as it is essential for the numerical
method.

Since both the heat and Navier-Stokes equations cannot be solved ex-
plicitly, we have to find a numerical approximation for the solution. To do
do we introduce the Finite Element Method (FEM) in section 1.3. Here we
start by discretizing our domain, which is of course the dryer. Then, using
the variational formulations of previous sections and interpolating T and u
linearly, we end up with a system of linear equations for the vector β of the
coefficients of the linear combination. Both the discretization, the interpo-
lation and the computation of β are done by the program FreeFem++. The
code used for this implementation can be found in the appendix.

In paper industry, a drying tunnel is composed of several paper dryers
(or paper ovens) align in a chain and connected by small junctions. In
this project we consider 7 dryers, that will be our domain Ω. The paper
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rolls over several dryer cans that spin, passing through the dryers at a very
high speed. The temperature in each dryer is crucial in order to obtain a
certain type of paper sheets. This temperature is set independently in each
dryer by a heat source (named HS in the equation), positioned in the top
center of each dryer and it is supposed to be higher in the middle ovens,
decreasing as approaching the extremities of the chain. Each dryer is also
built with isolated walls, so the inside air is independent of the outside. We
also consider a fan placed on the top of each dryer in the same place as the
heat source. Finally, we call Γ ⊆ Ω the two connections between the first
and last junctions of the chain, and the outside air.

With the set up from above, in section 1.4 we find two figures. The first
represents the temperature profile in the chain of dryers, while the second
one the temperature profile on the bottom of this same chain.

Due to the complexity of the main goal, and the short amount of time the
team had to work on it, it was not possible to reach a solution for the main
problem. This was mainly because the model that describes the moisture of
the paper along the dryers is a formidable problem to understand and model
in three days. Given that we hadn’t had any such model by the third day,
we decided it would be worth to simplify the problem in order to understand
the underlying physics, even if the obtained model was oversimplified. This
is discussed on a conclusion part, in section 1.5 Due to the high velocity of
the paper, we assume that the impact of the paper on the air is negligible.

All the students involved in this project would like to congratulate the
outstanding week the ECMI, the Department of Mathematics of the IST-
UL and the Department of Mathematics of the University of Coimbra has
provided to us. Also, we would like to acknowledge Professor Gonçalo Pena
for his guidance and support throughout all the project.
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1.2 Modelling

Heat Equation

In paper industry, a drying tunnel is composed of several paper dryers (or
paper ovens) align in a chain and connected by small junctions. In this
project we consider 7 dryers. The paper rolls over several dryer cans that
spin, passing through the dryers at a very high speed. The temperature
in each dryer is crucial in order to obtain a certain type of paper sheets.
This temperature is set independently in each dryer by an heat source, but
preferable, it is higher in the middle ovens, decreasing as approaching the
extremities of the chain. Each dryer is also built with isolated walls, so the
inside air is independent of the outsides. We also consider a fan placed on
the top of each dryer in the same place as the heat source. Furthermore we
assumed that the temperature of the connections to the outside of the ovens
to have the temperature outside (approximately 300 K). We know that the
diffusion coefficient depends on the temperature but to simplify the problem
we set it to the diffusion coefficient of air under standard conditions.

We consider the seven ovens connected to each other as our domain Ω.
The heat source (HS) and the fan are placed at the top center of each oven.
Moreover, to set up initial conditions to solve our problems, we define Γ ⊂ Ω
as the two connections of the ovens to the outside.

The law of the temperature in the ovens is given by the heat equation:

∂T

∂t
− α∆T = −∇ · (Tv) (1.1)

where the boundary conditions are,


T = THS on the heat source (HS)

−(α∇T + Tv).n = 0 on the wall of the dryers
T = Toutside on the connections to the outside(Γ)

T : Ω→ R temperature of the air, K

v : Ω→ R2 velocity of the air,m/s

α : diffusion coefficient of air, 1.9× 10−5m2/s

t : time,s

There are two different types of flows in our model: the convective flow
and the diffusion flow. This two different flows are represented by two dif-
ferent terms in 1.1

Recall that the sheets of paper roll through a chain of 7 dryers, joint
by small junctions. Due to the fan, there is a convective flow of heat in
our oven. The convective flow is the inflow and outflow of heated particles
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of an arbitrary domain. This is represented by −∇ · (Tv). Furthermore
the temperature distribution changes with time. This is the diffusion flow,
represented by the term α∆T . Of course the T evolves in time, and the
variation of temperature in time will be equal to the sum of both flows.
Hence, we have 1.1.

This equation is deduced by a balance made over the heat. The law
conversion of energy tells us there is no way that either energy is produced
or it gets lost in closed domain. So if there is a change of energy in some
domain then there has to go some energy flow outside. In our case we
neglected all energy flow except the heat flux. The heat flux represents the
flux of heat from a place with higher temperature to one with a lower one
and it also depends on the velocity of the particles which leaves or enter our
domain.

The temperature dynamics is controlled by two phenomena :

• Heat has to be harmonized and heat is directed where the temperature
is the lowest. This transport term is given by the vector jdiffusion =
−k∇T ,with k as the specific thermal conductivity of our fluid(air),it
corresponds to the Fourier Law.

• Temperature is moving through the movement of the air particles. It
is given by the vector : jconvective = CvTv.

Thus, the heat flux is given by: jQ = jdiffusion+jconvective = −k∇T+CvTv.
Where Cv is the calorific capacity of the air,which is assumed to be constant.
The heat flow is a continuous variable, and it’s continuous at the interface
between the ovens.
By using the conservation law inside the field for the heat Q, we get :

∂Q

∂t
+∇ · (jQ) = 0.

Where Q = CvT +Q0

By rewriting this expression in terms of the temperature, we get the
expression (1.1:

0 =
∂(CvT +Q0)

∂t
+∇ · (−k∇T + CvTv) = Cv

∂T

∂t
− k∆T + Cv∇ · (Tv)

Moreover, dividing by Cv and taking α = k
Cv

0 =
∂T

∂t
− α∆T + div(Tv)

Recall that in order to solve the heat equation for the velocity, one must
first solve Navier-Stokes equations. To do so, we need to set the boundary
conditions for the Navier-Stokes equation. Firstly, no particle can pass the
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walls of the dryers. Recall that, if a particle is creating friction on a steady
object, than it won’t move while is touching it; this is known as rubbing.
Since the particles of the air are rubbing the walls of the dryer, the velocity
u on the walls is set to zero. Moreover, we also assume the fan to be placed
at the same point as the heat source, blowing the air inside with a constant
velocity. Therefore the velocity on the heat source is set to be constant.
Lastly, consider the very first and last oven of our chain and assume no
change of velocity in the junctions to the outside.

In order to solve this system using the Finite Element Method, we need
the weak formulation of our model is:

Find T ∈ V which solves:


∫

Ω
(−k∇T + Tu) · ∇w −

∫
HS∪Γ

w(−k∇T + Tu) · n = 0 ∀w ∈ V1

Dirichlet condition on HS

Dirichlet condition on Γ

Where V1 = {f ∈ V | f = Ts on HS and f = TΓ on Γ} i.e. the set of
functions of V that satisfy the Dirichlet boundary conditions.

Navier-Stokes Equations

The Navier-Stokes’ equations describes the behavior of a fluid. The air that
is being simulated here has a very low viscosity, a physical property of the
fluid which represent the internal resistance against flow. This might be a
problem though even the slightest speed of a particle in the dryer will make
the temperature distribution totally homogeneous.

For a Newtonian fluid, such as the air, the Navier-Stoke’s Equations are

{
ρ∂u

∂t − µ∆u + ρ(u · ∇)u +∇p = ρg
∇ · u = 0

where,
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u : Ω→ R2 velocity of the air,m/s (1.2)

p : Ω→ R pressure of the air,Pa (1.3)

ρ : density of the air, 1.225kg/m3 (1.4)

µ : kinematic viscosity, 1.7 · 10−5Pa (1.5)

t : time,s (1.6)

g : body force (gravity),m/s2 (1.7)

(1.8)

Using Newtons s law of momentum and the law of conservation of mo-
mentum, we obtain that the change of momentum I(t) over time on an
arbitrary domain ω(t) is equal to the external forces which means:

d

dt
I(t) = F (ω(t)) ,with I(t) =

∫
ω(t)

ρ(x, t)u(x, t)dx (1.9)

where I(t) is the momentum and F (ω(t)) is the force in ω(t).
It is well know that forces are the sum of the distinct forces, the body

forces, such as gravity, and surface forces, like rubbing, for instance. Indeed,
taking σ as the Cauchy stress tensor,

F (ω(t)) = Fb(ω(t)) + Fs(ω(t)) (1.10)

where

Fb(ω(t)) :=

∫
ω(t)

ρ(x, t)g(x, t)dx

Fs(ω(t)) :=

∫
∂ω(t)

σ(x, t).ndsx

Integrating Fs by parts we obtain∫
∂ω(t)

σ(x, t).ndsx =

∫
ω(t)
∇ · σ(x, t)dx (1.11)

By combining 1.9,1.10 and 1.11 we obtain

d

dt

∫
ω(t)

ρ(x, t)u(x, t)dx =

∫
ω(t)

ρ(x, t)g(x, t) +∇ · σ(x, t)dx

Recall Reynold’s transport theorem. Using this result in the above equa-
tion yields

∫
ω(t)

∂(ρu)

∂t
(x, t) +∇ · (ρu.uT )(x, t)dx =

∫
ω(t)

ρ(x, t)g(x, t) +∇ · σ(x, t)dx



8 Modelling Drying in Paper Production

Because this is true for any domain ω(t), thus

∂(ρu)

∂t
+∇ · (ρu.uT ) = ρg +∇ · σ (1.12)

Now we look for a tensor σ that represents how a body is transformed
when force is applied on it. For newtonian fluids holds that:

σ = −p.I + τ , with τ = λ(∇ · u).I + 2µε (1.13)

Here, τ is the shear stress tensor. In our case, this force is the pressure on
the boundary. Notice also that we consider no additional forces. Also, air
is a newtonian fluid, so this assumption is reasonable for your problem.

Moreover, take λ = −2
3µ and ε = 1

2(∇u+∇uT ). Applying the divergence
to 1.13 we obtain

∇ · σ = −∇p+ δu∇ · τ

Thereby,

∇ · σ = −∇p+ µ∆u+
1

3
∇(∇ · u)

Finally, plugging this equation in 1.12 we get

∂(ρu)

∂t
+∇ · (ρu.uT ) = ρg + +µ∆u+

1

3
∇(∇ · u)−∇p (1.14)

Now we use the law of conversion of mass

∇ · (ρu) +
∂(ρ)

∂t
= 0 (1.15)

Since the density is constant, from 1.15 we get

∇ · u = 0

Notice that ρ · ∇ · (u · uT ) = ρ(u · ∇)u. Using this and 1.14 we derive the
uncompromisable Navier-Stokes’ Equations.

ρ
∂(u)

∂t
+ ρ(u · ∇)u = ρg + µ∆u−∇p

and

∇ · u = 0

Similarly to the heat equation, in order to solve the this system numer-
ically one need the vibrational form of the problem.

Find (u, p)∈ V ×Q which solves:
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

µ

ρ

∫
Ω
∇u : ∇v +

∫
Ω

(u · ∇u) · v −
∫

Ω
p ∇ · v −

∫
∂Ω\Γ

(∇u v) · n = 0 ∀v ∈ V

−
∫

Ω q ∇ · u = 0 ∀q ∈ Q
Dirichlet condition on the Heat Sources and the wall

Neumann condition on the connections with the outside (first and last oven)
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1.3 Numerical Methods

Now we have to solve the problem of finding a function f ∈ V = H1(Ω) which
solves the heat equation and satisfies the initial conditions. In general, we
won’t find an exact solution, so we have to approximate it. We chose to use
the Finite Element Method.
The idea of this method is to split the domain Ω using a partition made up
of polygons (in general triangles), to choose a ”simple” space P of functions
defined on T and to approximate the solution of the problem with a function
whose restriction to every element of the partition is an element of P.
A Finite Element is a tern (T,P,Σ) where:

• T is the polygon chosen for the partition Th. In general the partition
is chosen so that every element has a maximum diameter h;

• P is the n-dimensional function space defined on T with values in R.
In general, the space of polynomials of degree k is chosen;

• Σ is the set of degree of freedom, i.e. the set of linear functions
Σi : P→ R, ∀i = 1, ..., n, that satisfy:

∀p ∈ P, ∀i ∈ {1, 2, ..., n} ∃!ci s.t. Σi(p) = ci

and are useful to identify unequivocally a function in T.

Once we have chosen the finite element, we can construct a finite dimen-
sional space of continuous functions defined on Ω with real values, whose
restrictions to a polygon of the partition are functions of P.

Sk,0
h = {f ∈ C0 s.t. f |T ∈ P ∀T ∈ Th}

Finally, we define Vh := {f ∈ Sk,0
h satisfying the initial conditions}

Clearly Vh ∈ V , and has finite dimension, so we can look for an approxi-
mated solution uh ∈ Vh of the problem.

For our project we chose P as the space of polynomials of degree 1 for the
temperature in the heat equation and for the pressure in the Navier-Stokes
equation, and the polynomials of degree 2 for the velocity in the Navier-
Stokes equation.
Regarding the variational formulation of our problems, we can rewrite them
for the discrete cases, in particular:

For the heat equation, we look for a solution T̃ ∈ Vh of the heat problem
which satisfies:

∫
Ω

(−k∇T + Tu) · ∇w −
∫
HS∪Γ

w(−k∇T + Tu) · n = 0 ∀w ∈ Vh

Dirichlet condition on HS

Dirichlet condition on Γ
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Thanks to the finite dimension of Vh, we can take a basis of the space
{φ1, φ2, ..., φn}, write T as a linear combination of φi and check if the first
equation is satisfied ∀φj , j = {1, 2, ..., n}. Using the linearity of the integral
and the gradient, the first equation becomes:

n∑
i=1

βi

∫
Ω

(−k∇φi + φiu) · ∇φj = 0 ∀φj , j = {1, 2, ..., n}

Finally, defining a matrix Φ = [Φij ], Φij =
∫

Ω(−k∇φi + φiu) · ∇φj it turns
out that the problem can be seen as a problem of linear algebra:

Φ · β = 0,

and the solution we now look for is the vector β of the coefficients of the
linear combination of φi which identifies out T.

For the Navier Stokes equation, we look for a solution (u, p) ∈ Vh ×Qh

which satisfies:

µ

ρ

∫
Ω
∇u : ∇v +

∫
Ω

(u · ∇u) · v −
∫

Ω
p ∇ · v −

∫
∂Ω\Γ

(∇u v) · n = 0 ∀v ∈ Vh

−
∫

Ω q ∇ · u = 0 ∀q ∈ Qh

Dirichlet condition on the Heat Sources and the wall

Neumann condition on the connections with the outside (first and last oven)

Since this equation is not linear, some iteratives methods should be used to
implement it, and we’re not going to examine them in depth in this work.
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1.4 Numerical Results

The plot below illustrates the steady case temperature distribution of seven
dryers connected with different temperature in each one of them. Notation:
the white lines that are present in the picture are the trajectory path of the
particles. It is also clear that there are two thermal bridges at the ends of
the connected dryer and that the air is flowing in that direction. There is
also some circulation of air at the top corners of each individual dryer.

Figure 1.1: Temperature profile inside the chain of dryers. The wait lines
represent the movement of a particle of air.

This second picture illustrates how the temperature profile at the bottom
of the connected dryer looks like. Here the two thermal bridges mentioned
above are also present, the two dips at the ends of the dryer represent this.
The blue line represents the result of having a small fan incorporated in
the dryer, to make the temperature distribution more homogeneous. The
difference of the temperature distribution between the blue and the red line
is very clear. Even though there are no walls to illustrate the different dryers,
it is easily seen where the different dryers begin and ends.

Figure 1.2: Temperature on the bottom of the chain of dryers.
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1.5 Conclusions

Given the temperature of the dryers, the model simulates the profile of the
velocity and temperature of the air. This is done in the steady case, meaning
that there is no time dependency, and the temperature at the bottom of the
dryers is extracted.

The model has no time dependency because it is interesting to investigate
the distribution of the air in the steady case. There will not occur any paper
drying in the oven when it is cold or during it is being heated up. That is
why the model is in steady case or preheated mode as it can be expressed
in a bit less formal way.

As seen in the model, the density and the viscosity is set to constant, also
the gravity was neglected because of the Buoyancy. This is done because
of simplicity. To get a more accurate model, the density should depend on
the temperature of the air. The viscosity of the air is dependent on the
temperature, though it is between: (1.12− 15.1) · 10−4ft2/s. So it does not
affect that much and was therefore set as a constant for simplicity.

The Navier-Stokes equations were never used in the final results. Though
there was a lot of time spent on this equation, it had to be a part of the
paper. As explained above, both the density and the viscosity were put as
constants. This meant that the compressible Navier-Stokes equations could
not be used, which is a very good model to simulate fluid, but our problem
gets much more complicated. So the incompressible Navier-Stokes equations
were used instead. Even though the compressible Navier-Stokes were used
instead of the incompressible Navier-Stokes, an approximate solution could
not be calculated. A reason for this could be that there is no proof there
exist a stationary solution, but even the time dependent problem was nu-
merically unstable. Refining the mesh helped, but the numerical error was
still dominant.

A very important part of the boundary conditions, on the Stokes equa-
tion, of a dryer is the air extraction of humid air which was neglected. The
problem with the boundary condition was that it has to be a closed system.
So the moisture had to go somewhere, and because it’s a closed system, it
could not just vanish.

This model’s purpose was to model the temperature distribution in a
dryer. Although this was completed, the intend of it, was to use it for
a real problem. An attempt to model the drying process of a paper that
went through the oven was made. The problem was that there were a lot
of physics behind the actual drying process that was not fully understood.
And that is why only the temperature profile of the dryers bottom and the
temperature distribution of the air was simulated and plotted.

Overall the model simulates the temperature distribution and the tem-
perature profile quite good and the result seems plausible with the approx-
imations in mind.
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.1 FreeFem++ Implementation Code

load "iovtk"

int[int] fforder =[1,1];

int[int] fforder2=[1,1,1];

int Omega=1;

int Gamma=2;

int HS1=3;

int HS2=4;

int HS3=5;

int HS4=6;

int HS5=7;

int HS6=8;

int HS7=9;

int Time=5;

func NN=[N.x, N.y];

real $k=1.9*10^(-5.)$;

real dt=0.2;

real high=2;

real length=3.25;

real lengthheatsource=0.5;

real xcon=0.1;

real ycon=0.1;

int meshmultip=3;

real s=1.3;

real Miu=0.1861*10^(-4.);

real gamma= 1;

int M=32;

//func v=[0,00.*y/2*(x-length+xcon-s)*(x-length+xcon

-s-lengthheatsource)]*(x<length+xcon-s)*

(x>length+xcon-s-lengthheatsource)*(y<high);

real deltaA=(length+2*xcon)/M;

border Omega0(t=0,7*length+14*xcon){x=t ;y=0; label=Omega;};

border Omega00(t=0,ycon){x=7*length+14*xcon ;y=t; label=Gamma;};

border Omega71(t=0,xcon){x=7*length+14*xcon-t ;y=ycon; label=Omega;};

border Omega72(t=ycon,high){x=7*length+13*xcon ;y=t; label=Omega;};

border Omega73(t=0,s){x=7*length+13*xcon-t ;y=high; label=Omega;};

border Omega74(t=0,lengthheatsource)

{x=7*length+13*xcon-s-t ;y=high; label=HS7;};

border Omega75(t=0,length-s-lengthheatsource)

{x=7*length+13*xcon-s-lengthheatsource-t ;y=high; label=Omega;};
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border Omega76(t=0,high-ycon){x=6*length+13*xcon ;

y=high-t; label=Omega;};

border Omega61(t=0,2*xcon){x=6*length+13*xcon-t ;y=ycon; label=Omega;};

border Omega62(t=ycon,high){x=6*length+11*xcon ;y=t; label=Omega;};

border Omega63(t=0,s){x=6*length+11*xcon-t ;y=high; label=Omega;};

border Omega64(t=0,lengthheatsource)

{x=6*length+11*xcon-s-t ;y=high; label=HS6;};

border Omega65(t=0,length-s-lengthheatsource)

{x=6*length+11*xcon-s-lengthheatsource-t ;

y=high; label=Omega;};

border Omega66(t=0,high-ycon)

{x=5*length+11*xcon ;y=high-t; label=Omega;};

border Omega51(t=0,2*xcon){x=5*length+11*xcon-t ;y=ycon; label=Omega;};

border Omega52(t=ycon,high){x=5*length+9*xcon ;y=t; label=Omega;};

border Omega53(t=0,s){x=5*length+9*xcon-t ;y=high; label=Omega;};

border Omega54(t=0,lengthheatsource)

{x=5*length+9*xcon-s-t ;y=high; label=HS5;};

border Omega55(t=0,length-s-lengthheatsource)

{x=5*length+9*xcon-s-lengthheatsource-t ;

y=high; label=Omega;};

border Omega56(t=0,high-ycon){x=4*length+9*xcon ;y=high-t; label=Omega;};

border Omega41(t=0,2*xcon){x=4*length+9*xcon-t ;y=ycon; label=Omega;};

border Omega42(t=ycon,high){x=4*length+7*xcon ;y=t; label=Omega;};

border Omega43(t=0,s){x=4*length+7*xcon-t ;y=high; label=Omega;};

border Omega44(t=0,lengthheatsource){x=4*length+7*xcon-s-t ;y=high; label=HS4;};

border Omega45(t=0,length-s-lengthheatsource)

{x=4*length+7*xcon-s-lengthheatsource-t ;

y=high; label=Omega;};

border Omega46(t=0,high-ycon){x=3*length+7*xcon ;y=high-t; label=Omega;};

border Omega31(t=0,2*xcon){x=3*length+7*xcon-t ;y=ycon; label=Omega;};

border Omega32(t=ycon,high){x=3*length+5*xcon ;y=t; label=Omega;};

border Omega33(t=0,s){x=3*length+5*xcon-t ;y=high; label=Omega;};

border Omega34(t=0,lengthheatsource){x=3*length+5*xcon-s-t ;y=high; label=HS3;};

border Omega35(t=0,length-s-lengthheatsource)

{x=3*length+5*xcon-s-lengthheatsource-t ;

y=high; label=Omega;};

border Omega36(t=0,high-ycon){x=2*length+5*xcon ;y=high-t; label=Omega;};

border Omega21(t=0,2*xcon){x=2*length+5*xcon-t ;y=ycon; label=Omega;};

border Omega22(t=ycon,high){x=2*length+3*xcon ;y=t; label=Omega;};
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border Omega23(t=0,s){x=2*length+3*xcon-t ;y=high; label=Omega;};

border Omega24(t=0,lengthheatsource){x=2*length+3*xcon-s-t ;

y=high; label=HS2;};

border Omega25(t=0,length-s-lengthheatsource)

{x=2*length+3*xcon-s-lengthheatsource-t ;y=high; label=Omega;};

border Omega26(t=0,high-ycon){x=1*length+3*xcon ;y=high-t; label=Omega;};

border Omega11(t=0,2*xcon){x=1*length+3*xcon-t ;y=ycon; label=Omega;};

border Omega12(t=ycon,high){x=1*length+1*xcon ;y=t; label=Omega;};

border Omega13(t=0,s){x=1*length+1*xcon-t ;y=high; label=Omega;};

border Omega14(t=0,lengthheatsource)

{x=1*length+1*xcon-s-t ;y=high; label=HS1;};

border Omega15(t=0,length-s-lengthheatsource)

{x=1*length+1*xcon-s-lengthheatsource-t ;y=high; label=Omega;};

border Omega16(t=0,high-ycon){x=1*xcon ;y=high-t; label=Omega;};

border Omega01(t=0,xcon){x=xcon-t ;y=ycon; label=Omega;};

border Omega000(t=0,ycon){x=0 ;y=ycon-t; label=Gamma;};

//border HSource(t=0,0.5){x=1-t;y=high; label=Gamma1;};

mesh Th = buildmesh(Omega0(M*meshmultip)+Omega00(2*meshmultip)+

Omega71(2*meshmultip)+Omega72(15*meshmultip)+

Omega73(6*meshmultip)+Omega74(5*meshmultip)+Omega75(5*meshmultip)+

Omega76(8*meshmultip)+

Omega61(2*meshmultip)+Omega62(15*meshmultip)+

Omega63(6*meshmultip)+Omega64(5*meshmultip)+Omega65(5*meshmultip)+

Omega66(8*meshmultip)+

Omega51(2*meshmultip)+Omega52(15*meshmultip)+

Omega53(6*meshmultip)+Omega54(5*meshmultip)+Omega55(5*meshmultip)+

Omega56(8*meshmultip)+

Omega41(2*meshmultip)+Omega42(15*meshmultip)+

Omega43(6*meshmultip)+Omega44(5*meshmultip)+Omega45(5*meshmultip)+

Omega46(8*meshmultip)+

Omega31(2*meshmultip)+Omega32(15*meshmultip)+

Omega33(6*meshmultip)+Omega34(5*meshmultip)+Omega35(5*meshmultip)+

Omega36(8*meshmultip)+

Omega21(2*meshmultip)+Omega22(15*meshmultip)+

Omega23(6*meshmultip)+Omega24(5*meshmultip)+Omega25(5*meshmultip)+

Omega26(8*meshmultip)+

Omega11(2*meshmultip)+Omega12(15*meshmultip)+

Omega13(6*meshmultip)+Omega14(5*meshmultip)+Omega15(5*meshmultip)+

Omega16(8*meshmultip)+

Omega01(2*meshmultip)+Omega000(2*meshmultip));

fespace Vh(Th,P1);

fespace Vh2(Th,P2);
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Vh T, phi ,p,phi3;

Vh2 v1,v2,phi21,phi22;

func v=[v1,v2];

func phi2=[phi21,phi22];

macro Grad(u) [dx(u),dy(u)] //

macro div(u,v) (dx(u)+dy(v))//

macro gradgrad(u1,u2,v1,v2) (dx(u1)*dx(v1)+dy(u1)*dy(v1)+

dx(u2)*dx(v2)+dy(u2)*dy(v2))//

solve Stokes(v1,v2,p,phi21,phi22,phi3,solver=UMFPACK)=

int2d(Th)(Miu*gradgrad(v1,v2,phi21,phi22)-p*div(phi21,phi22)-

phi3*div(v1,v2))+

//int1d(Th,Omega1,Omega3,Omega4,Omega51,Omega52,Omega53,Omega6,Omega7)

(Miu*(Grad(v1)*phi21+Grad(v2)*phi22)’*NN-

p*phi21’*N.x-p*phi22’*N.y)+

on(HS1,v2=-0.000001,v1=0.)+

on(HS2,v2=-0.000001,v1=0.)+

on(HS3,v2=-0.000001,v1=0.)+

on(HS4,v2=-0.000001,v1=0.)+

on(HS5,v2=-0.000001,v1=0.)+

on(HS6,v2=-0.000001,v1=0.)+

on(HS7,v2=-0.000001,v1=0.)+

on(Omega,v1=0.,v2=0.);

solve thermic1(T,phi,solver=UMFPACK)=

int2d(Th)((k*Grad(T)’*Grad(phi))-T*v’*Grad(phi))

-int1d(Th, Gamma)(k*phi*Grad(T)’*NN)

+int1d(Th, Gamma)(phi*T*v’*NN)

+ intalledges(Th)( gamma*(lenEdge^2)*abs(v’*NN)*

( jump(dx(T))*jump(dx(phi))+

jump(dy(T))*jump(dy(phi))))

+on(HS1, T=418.15)

+on(HS2, T=414.15)

+on(HS3, T=428.15)

+on(HS4, T=423.15)

+on(HS5, T=414.15)

+on(HS6, T=403.15)

+on(HS7, T=393.15)

+on(Gamma, T=300.15);

savevtk("temperature.vtk",Th,T,dataname="Temperature",order=fforder);

plot(T,fill=120,value=1,nbiso=80);

savevtk("speedx.vtk", Th, v1, v2, order=fforder2, dataname="vx vy", bin=true );


