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Abstract

Forecasting stock price movements is not an easy task. The data is complex
and each set of prices for a stock may have dependencies, therefore financial
data may be better modelled as multidimensional data. In this report the
data has been considered as time series, multidimensional time series. Three
sets of data have been considered and modelled, that is, the stock prices of
Tech companies, the price of precious metals, and finally, the behavior of
the Portuguese inflation rate, consumption, unemployment rate and real
exchange rate.

We find that for the first data set, the movements are random after removing
trends and a multivariate modelling approach is not the best suited for
the problem. The second data set was more correlated and well suited for
multivariate modelling, however the predictions did not do well. The third
data was also well suited for multivariate modelling, and the final model was
able to predict the data well for the first time period but not so well for the
second, as the financial crisis was not taken into account in the data used
for modelling.
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10.1 Introduction

The aim of this project is to build a multivariate time series model to model
real financial data. A time series is an ordered sequence of values of a variable
at equally spaced time intervals, which is useful to see how a given variable
changes over time or how it changes compared to other variables over the
same time period. The idea is to find correlated variables and build a model
to predict the future behavior of those variables by using the dependencies
between them. We built three models for different data sets. First we
present a financial model to predict stock prices of Tech companies but which
turned out to be stochastic. Secondly, we show a model to predict the price
of some precious metals (gold, silver, palladium and platinum). The last
model aims to predict the behavior of several Portuguese macroeconomic
variables (inflation, consumption, unemployment and real exchange rate).
Finally, we discuss further work, especially regarding the two latter data
sets.

10.2 Theory

VAR(p) model in the multivariate case

The vector autoregression (VAR) model is one of the most successful, flexi-
ble, and easy to use models for the analysis of multivariate time series. It is
an extension of the univariate autoregressive model to dynamic multivariate
time series. The VAR model has proven to be especially useful for describing
the dynamic behavior of economic and financial time series as well as for
forecasting.

The model captures the relationship between different time series in time,
time series observations are available for variables of interest.

VAR models are a specific case of the more general VARMA models.
VARMA models for multivariate time series include the VAR structure
above along with moving average terms for each variable. More generally
yet, these are special cases of ARMAX models that allow for the addition of
other predictors that are outside the multivariate set of principal interest.

The structure is that each variable is a linear function of past lags of
itself and past lags of the other variables. In general, for a VAR(p) model,
the first p lags of each variable in the system would be used as regression
predictors for each variable.

Let
i
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denote an (n x 1) vector of n different time series variables.
The basic p-lag VAR(p) model has the form

Yi=c+1IIY; 1 +1LY, o+ -+ 1LY, p+e&, t=p,...,T,

where IT; are (nxn) coefficient matrices and ¢; is an (nx 1) unobservable zero
mean white noise vector process (uncorrelated or independent) with time
invariant covariance matrix . €; is Gaussian white noise, ¢, ~ N (0, Ile) Vt
and ¢ and €z are independent for s # t.

In economic time series, the white noise series is often thought of as
representing innovations, or shocks. That is, €; represents those aspects of
the time series of interest which could not have been predicted in advance.
In lag operator notation, the VAR(p) is written as

I(L)Y: = c+ e,
where II(L) = I, — 1z — - - - — IL,2P.
The VAR(p) is stable if the root of
det(I, — 1z — ... = II,2P) = 0,

lies outside the complex unit circle (have modulus greater than one),or,
equivalently, if the eigenvalues of the companion matrix

I, I, ... II,

I, 0 ... O
F= . . ;

0 0

0o o I, O

have modulus less than one.

Assuming that the process has been initialized in the infinite past, then a
stable VAR(p) process is stationary and ergodic with time invariant means,
variances, and autocovariances.

Parameter estimation

Given a sample of size T, y1,...,yr, and p presample vectors, y,_1, ..., %o,
the parameters can be estimated efficiently by ordinary least squares (OLS)
for each equation separately.

The VAR model should include all variables which the theory indicates
are relevant and we should choose the lag length which has a high likelihood
of capturing all of the dynamics. Once these values have been set, either a
general-to-specific search can be conducted or an information criteria (IC)



4 Mathematical modeling of financial data in many dimensions

can be used to select the appropriate lag length.
In the VAR case, the main information criteria are:

Akaike information criterion (AIC) is a measure of the relative qual-
ity of statistical models. Given a set of candidate models for the data, the
preferred model is the one with the minimum AIC value.

Bayesian information criterion (BIC) is a criterion for model se-
lection among a finite set of models. The model with the lowest BIC is
preferred; it is based, in part, on the likelihood function and it is closely
related to the Akaike information criterion (AIC).

Hannan — Quinn information criterion (HQC) is a criterion for
model selection. It is an alternative to the Akaike information criterion
(AIC) and the Bayesian information criterion (BIC).

The lag length should be chosen to minimize one of these criteria, and
the BIC will always choose a (weakly) smaller model than the HQC which
in turn will select a (weakly) smaller model than the AIC.

Random Walk

A random walk is a mathematical formalization of a path that consists of a
succession of random steps. Often, the walk is in discrete time, and indexed
by the natural numbers, as in Xy, X7, Xo,.... However, some walks take
their steps at random times, and in that case the position X; is defined
for the continuum of times ¢ > 0. Specific cases or limits of random walks
include the Levy flight. Random walks are related to the diffusion models
and are a fundamental topic in discussions of Markov processes.

In economics, the "random walk hypothesis” is used to model shares
prices and other factors. Empirical studies found some deviations from this
theoretical model, especially in short term and long term correlations.

10.3 A financial model

The data used for this project has been gathered from Yahoo Finance. We
started with 50 tech companies listed on NASDAQ from [5], and eliminated
the companies that did not have data for the entire period we are considering,
leaving 46 to be used. The chosen period is five years long and goes from
01/01/2010 to 31/12/2014 and the data is the adjusted daily closing prices.
For this part of the data preparation we have used first Matlab to get the
data from Yahoo and build a matrix with the stocks and the dates, and then
we used R to analyse the data. In R we transformed the data into a time
series object with the function ts.
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After that we used the built-in R function acf to create a correlation
matrix for all of the stocks and plotted the results. The acf function, which
stands for Auto-Correlation Function, computes the correlation between
each stock and the other stocks. We did this because we wished to use
data that is highly correlated, in order to make a better model for fore-
casting future prices. In fact, the results showed that they were all highly
correlated. However, by looking at the plotted time series we noticed they
all had a clear trend so we decided to remove it by differencing the data.
Then we filtered the correlation matrix by choosing the stocks with the high-
est absolute values of correlation (higher that 0.65) and also imposing the
condition that the smallest values of the correlation should be above 0.05.
This gave us 5 stocks, which are shown in Table 10.1. The plotted values

Companies | MA PAYX AMAT ADP TXN

Table 10.1: The final set of companies.

can be seen on Figure 10.1.
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Figure 10.1: Stock values

Then we computed the acf again but this time there was almost no
correlation.

Still, for simplicity first we tried to model the future behavior of just two
of the company stocks. Our choice fell on MA and PAYX and what follows
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are the results for the autocorrelation of the two time series. On Figures
10.2 and 10.3 are shown the results before and after detrending the data.
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Figure 10.2: Autocorrelation plots for MA and PAYX before detrending
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Figure 10.3: Autocorrelation plots for MA and PAYX after detrending

As there was no autocorrelation whatsoever (except at lag 0) we concluded
that the behavior of the detrended series is completely random and should
be modelled with a stochastic process.

We estimated the empirical cumulative distribution function and the
empirical probability density function in order to try to find the distribution
that the stocks follow. A plot of the empirical PDF of the ASML stock is
shown and from it can be inferred that the distribution is actually a mixture
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of one-dimensional normal distributions. The same thing is generally true
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Figure 10.4: A density function for ASML stock.

for all the data we used and can be explored to make future predictions.
Alas the natural choice for the task is a random walk model with drift. We
used the built-in function rwf in R to make forecasts. The results for the
ASML stock price are shown in Figure 10.5 below.

10.4 Modelling the Price of Precious Metals
The Data

Historically one of the most important (especially in times of economic down-
turn) commodities traded on the stock exchange are the precious metals. As
such the behavior of their price is often an object of statistical modelling.
In what follows we shall present an attempt at modelling the price of Gold,
Silver, Palladium and Platinum on the NYSE using a VAR model and thus
exploiting the relationship between their values.

We have collected data for the prices of those metals in US Dollars on the
New York Stock Exchange from the beginning of 1995 till the middle of July
2015. For the actual modelling though we shall pick up only the data from
2010 to 2015 which contains about 1000 observations of the closing price for

the commodity. The data was obtained from [6] and a plot can be seen on
Figure 10.6.

From the plots it is quite obvious that the data doesn’t have a constant
expectation over time and even a constant variance. Since the VAR model
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Forecasts from Random walk with drift
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Figure 10.5: Random Walk Model for the ASML stock.
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Figure 10.6: The time series from 2010 to 2015.

has stationarity as one of its main assumptions we can apply a transforma-
tion to the data (basically employing an integrated model). We difference
the data once and these are the time series we shall work with from now on.
It’s worth mentioning that the data does not exhibit any seasonal effects.

As the price of gold (and respectively all other precious metals under con-
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sideration) is highly influenced by the value of the US Dollar compared to
other world currencies it seemed natural to try and incorporate that value
into the model in some way. Overall though this turned out to be of almost
no use as it did not improve the strength of our model in any meaningful

way while introducing yet another set of parameters. For

the sake of sim-

plicity this idea was abandoned and we proceed to model only the prices of

the four metals.

Model Selection

On Figure 10.7 the autocorrelation plots for the four time series can be

observed.
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Figure 10.7: The time series from 2010 to 2015.

After applying the Dickey-Fuller test the following results were obtained:
The low p-values suggest that the data is now stationary. The observed

P-value | Test statistic

Gold Price 0.01 -11.262
Silver Price 0.01 -10.531
Palladium Price 0.01 -11.106
Platinum Price 0.01 -10.461

Table 10.2: Dickey - Fuller Test
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results suggest that a two-lag VAR model is suitable.

Using the VARselect function from the vars package in R we can optimize
the model selection based on four criteria. The following suggestions were
given based on each criterion:

Criterion ‘ Suggested Lag

AIC 2
HQ P
SC 1
FPE p

Table 10.3: Information Criteria

which once again confirms the output of the ACF plots.

The Model

We can write explicitly the form of the selected model:

Gold; cl Gold;_1 Gold;_o €t

Silvery | e I Silver;_q Silver;_o sg
Palladium; | | c3 i Palladium_q 2 Palladiumg_s 553
Platinumy Cy Platinum;_q Platinum;_o (4

where II; and Ils are 4 x 4 matrices. Using the VAR function from the vars
package in R we can fit a model to the data. The function uses ordinary
least squares for fitting. The coefficient matrices of the model are as follows

0.02
0.00
0.17 |’
—0.34

C =

—0.14 13.83 —0.18 0.06
0.00 —0.15 0.00 0.00

=1 000 817 —004 0.03]
—0.01 14.61 —0.12 0.03
~0.06 3.66 0.13 —0.07
0.00 0.02 0.00 0.00

My =

0.00 1.70 0.00 0.00 |’
0.02 291 0.02 0.01

where the coefficients significant at the 95% level are marked with red.
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Predictions

The predictions are made with the predict function from the vars package.
The last five observations from the data were removed so that they can be
used for testing the model. The plots of the predicted vs. real values can
be seen on 10.8.
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Figure 10.8: Predicted Values for five days in the future.

From the graphics above we can conclude that the model did not perform
well in all of the cases and that prediction for more than two days into the
future is a worthless endeavour (which is a drawback of the VAR model
since the values tend to go to a constant value very fast).

10.5 A macro-economical analysis of Portugal

The Data

The goal is to build a model to forecast 4 macroeconomic variables for
Portugal, based on time series with 1 year as frequency, from 1984 and up
until 2009, as we have not been able to find a longer dataset. The variables
we have chosen are the inflation rate, the consumer consumption in total,
the real effective exchange rate, and the unemployment rate. The time series
are plotted in Figure 10.9.

We see the scales are quite different, especially is the consumption large
as it is the only non-rate series, therefore we start by normalising the data
respectively to the series to be able to compare the rates and the consump-
tion.

To see if they are correlated enough for us to be able to build and multi-
variate time series model, we compute the auto-correlation(acf) for the set.
The acf can be seen in Figure 10.10.
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Economical times series
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Figure 10.9: The time series from 1984 to 20009.

Looking at 10.10 we notice that exchange rate, consumption and inflation
are highly correlated, clearly showing some pattern. Therefore we continue
the modelling process.

Macroeconomic Model Analysis

The Var Model assumes stationarity, thus we test this assumption using the
Dickey-Fuller Test on each series individually. We looked at the p-value and
the compared the test-statistic with the critical values. We can observe the
results in the tables below (Table 10.4 and Table 10.5).

‘ ‘ 1pct ‘ opct ‘ 10pct ‘
| taul | -2.66 | -1.95 [ -1.6 |

Table 10.4: Critical values of the DF test statistics

The results show that, based on the p-value we cannot reject the null-
hypothesis of non-stationarity only for the consumption , but by looking at
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Figure 10.10: The acf for the four time series.

‘ P-value ‘ Test statistics

Inflation rate
Consumption

REER

Unemployment rate

0.0003
0.5439
0.0068
0.0153

-4.3533
-1.0759
-3.5671
-1.7194

Table 10.5: Results from a Dickey fuller test on each times series

13

the test statistic we cannot reject the null hypothesis for all the variables.

In this sense, we decided to remove the trend by differentiating the data. In
Figure 10.11 we can see a plot of the differentiated time-series. We now see
the series look more stationary.

After the differentiation we computed the acf function again and ob-
served that the correlation pattern that was present before removing the
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Economical times series scaled and differenced
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Figure 10.11: The time series from 1984 to 2009 differentiated.

trend is gone, but there were still some dependencies, specially between the
exchange rate and the inflation rate and also between the inflation rate and
the unemployment rate. Figure 10.12 shows the acf plot.

After checking the model assumptions we used the built-in function in
R, VARselect{vars}, to find the optimal number of lags for the model. By
looking at the AIC criteria, we decided to build a model with 4 lags.

We then used the VAR function, from the package "vars”, in R, to
compute the VAR model. Table 10.6 shows the results for the fitted model.

Inflation Consumption REER Unempl.

Adj. R? P-val Adj. R? P-val Adj. R? P-val Adj. R? P-val AIC
M1  0.5572 0.1864  0.1838 0.4458  0.2187 0.4221  0.2946 0.3695 -106.38

Table 10.6: Model 1: Differentiated once and lag 4, adjusted R squared
values, p-values and the AIC for the model.

As the p-values of each variable all are very high, we conclude that none
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Figure 10.12: The acf for the four differeniated time series.

of them is significant, so we decided to try to differentiate only some of
the variables instead of all of them. So, next we only differentiated the
inflation rate, the effective exchange rate and the consumption and let the
unemployment rate unchanged.

Inflation Consumption REER Unempl.
Adj. R*> P-val Adj. R* P-val Adj. R* P-val Adj. R> P-val AIC
M2 05165 0.2139  0.1794 0.4488  0.3255 0.3477  0.7871 0.0535 -119.88

Table 10.7: Model 2: Inflation, consumption and unemployment are differ-
entiated and lag 4.

With this new approach the model was still not significant we see in
Table 10.7, we then tried to use 2 lags instead of 4, because with 2 lags,
although the model in general had a higher AIC than the second model,
individually, the sub models were significant, except for the consumption.
The results are presented in Table 10.8. We choose the later model which

Inflation Consumption REER Unempl.
Adj. R* P-val Adj. R? P-val Adj. R? P-val Adj. R? P-val AIC
M3  0.6555 0.0016  0.2371 0.1491  0.4357 0.0301 0.82 2.265e-5 -67.869

Table 10.8: Model 3: Inflation, consumption and unemployment are differ-
enced and lag 2.
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consists of
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t

where IT; and TI, are 4 x 4 matrices and ¢ < N(0,1). To check the model’s
validity, we look at the residuals from the model. The residuals are plotted
with plus/minus 1 standard deviation in Figure 10.13. They look rather

Residuals for model 3
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Figure 10.13: The residual plot of the chosen model.

random, but to be certain we can perform a test of randomness of sign
changes for the residual. Ideally we want the probability of the residuals
being positive or negative to be equal. We assume as written in equation
(6.104, [4])
1

Number of sign changes € B <N -1, 2) ,
where N is the number of residuals. For large values of N the binomial
distribution can be approximated with a normal distribution such that we
get

1 N—-1 N-1
Number of sign changes € B (N -1, 2) ~ N (2, 4) .

We can use the binom.test in R, where the Hy test is that half of the trials are

positive. The p-values, probability and confidence interval is seen in Table
10.9. For all submodels we get a p-value larger than 0.05 which is the critical
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number. Since it is larger than 0.05 we cannot reject the null hypothesis.
From the output we also get the 95 % confidence interval, which is the 95
% CI for where the true probability for success lies. We get a probability of
success on 0.5 and 0.6. This probability lies within the confidence interval
and is therefore accepted. We notice it is close to the 0.5 that we assumed.

Parameter | Lower bound | Upper bound | Probability | P-value
of success

Infl. 0.2719578 0.7280422 0.5 1

Cons. 0.3605426 0.8088099 0.6 0.5034

REER 0.3605426 0.8088099 0.6 0.5034

Unem 0.3605426 0.8088099 0.6 0.5034

Table 10.9: Result of test for sign change using N.

From the residual analysis we conclude that the residuals are random
and the assumptions about this are kept.
The final model coefficients are

0.18

| o5

“T | -os9|"
—0.83
0.84 213 —0.13 0.04

m,_ | 005 006 001 —o01
~0.82 572 011 —0.04]|’
~0.01 —501 —0.04 1.19
~0.35 393 011 —0.06

| 004 —012 003 002
0.76 051 —0.63 005 |’
~0.04 11.08 020 —0.35

where the numbers in red are significant at a 95%-level.

Predicting

When the model has been validated a prediction can be made. We have
used the predict function in the ”vars” package in R. We remove the last
two observations from the data to use as a ”test” set, leaving us with only
23 observations for predicting. The prediction and a 95% confidence interval
can be seen in Figure 10.14.

We notice that the model predicts the inflation rate, the consumption
and the unemployment rate are predicted quite well for the first period.
The second prediction is only close for the inflation rate. We predict for the



18 Mathematical modeling of financial data in many dimensions

infl cons
o
_ [
£ g °
o
0
=)
[
T T T T T T T T T T T T T
2004 2006 2008 2004 2006 2008
Time Time
reer unem
Te}
v — 7 _--
“ - , - - e - ~ -
[0 o ~
- 2 == ]
0 0 7
™ T T T T T ‘T T T T T T T
2004 2006 2008 2004 2006 2008
Time Time

Figure 10.14: The predictions of the chosen model.

years 2008 and 2009, which is when the financial crisis of 2008 starts having
and impact on the economies around the world. The model is not advanced
enough to model a crisis, and unfortunately we did not have data for more
recent year to model the recovery.

10.6 Further Work

Transforming the Data

Let {X:}renugoy be a time series taking values in R. In particular we will
want to apply the subsequent construction to one of the financial time series
appearing in the report. The basic idea behind the construction is to model
the movement of the price regardless of the amount by which it changes (i.e.
just whether it moves up or down). From the given series we can construct
a new one taking values in {—1,1} as follows:

-1 Zf X1 > Xy
}/t =
I oif Xi1 <Xy

Additionally we can define Yy = 1, although it is nonessential. Later on
we can define Yy as —1 or 1 with probability % Our approach is to model
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1Y Henuqoy instead of {X¢}enugoy-

The Poisson Process and the Telegraphic Process

Let N; be a Poisson process with intensity A. An appropriate model for Y;
is something in the lines of (—1)Vt. Now the parameter A is what remains
to be estimated from the data. Having done that we can build a model of
the stock price and make predictions employing a monte carlo simulation.

If we already have an estimate of the parameter A we can consider as a
very crude approximation to the stock price at time t given by the following

process
t]
Zy=v- Z (_1)Ni7
i=0
where v is the amount by which the value of the time series changes (in our
case v = 1). Further we can consider the stochastic process

At = AQ(Mt + O'Zt).

The parameters g and o can be estimated based on our knowledge of Z;
at certain points in time using OLS. This process can be used as a suitable
model for the stock price.

Estimation of the Parameter )\

According to [2] such an estimate can be obtained explicitly.

Let {X;}]_, be the n available observations (we shall assume observations
equidistant in time). Let mg = % o1 (Xi—Xi—1) be the quadratic variation
of the series up to time n. Then the following estimator can be considered

_ ‘ U2 1— 6—2>\A
A = argminy {mg 5 (A — 2)\> } ,

where v is the constant amount with which the price moves and A is the
step size (in our case 1 day). Using a numerical procedure we can get an
approximation to the real value of A which can subsequently be used in the
models discussed.
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10.7 Appendix

Packages and functions used in R

Package | Function

ts

MTS diff
act

fUnitRoots | urdfTest
VARselect

vars VAR
predict

Table 10: Packages and functions used.
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