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Abstract

If you take a bottle with water and turn it upside down, the water will
spill out. But as it spills, air comes in. A little bit of experimentation
shows that if the opening in the bottle is narrow enough, the air comes in
in bursts, bubble by bubble. This sometimes causes a periodic sound, the
characteristic “glug-glug” of the water coming out. The aim of the project
is to experiment with the system and then critically consider and possibly
improve, by incorporating the results of experimentation, existing models
for the process.
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11.1 Introduction

The glug-glug effect, in fluid dynamics, is the characteristic sound produced
by the alternation of a fluid coming out and air going in through an opening
of a container, when it is turned upside down. It is periodic, very distinctive
and accompanied by bubbles of air. It is also the subject of our work.
We consider an axisymmetrical bottle with one opening filled with water
being emptied while held static at 180° (opening down). We must take
into account the dimensions of the bottle and of the opening, the initial
quantity of water, initial pressures of water and air. We have analyzed
existing models, as well as suggesting a modelling framework of our own.
We obtain experimental results and use them to guide our intuition and as
a basis for evaluating theoretical models.

The structure of this document is as follows: the remainder of this section
is devoted to presenting the basics of fluid mechanics; in Section 11.2 we
present the experimental setup; in the following two sections we analyse the
models of Clanet [1] and Kohira [3], and finally in Section 11.5 we draw our
conclusions and make suggestions for further work.

Continuity equation

Regardless of the flow assumptions, a statement of the conservation of mass
is generally necessary. This is achieved through the mass continuity equation
1 given in its most general form as:

dp
. =0 11.1
LV (o) (11.1)
or, using the material derivative:
Dp
‘u) = 0. 11.2
o TPV -u)=0 (11.2)

Du __ Ou .
where 57 = 37 +u-Vu,

Navier-Stokes equations

The NavierStokes equations, named after Claude-Louis Navier and George
Gabriel Stokes, describes the motion of viscous fluid substances.

These equations are a special case of conservation of momentum. In a very
basic sense, they are derived from Newton’s second law, F' = ma which for
non-relativistic systems is accurate.

!See https://en.wikipedia.org/wiki/Continuity_equation
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The first assumption we need to make is that the fluid is continuous, which
is wrong since everything is made of discrete particles, but for anything
large enough, it’s a good assumption. By assuming this, we can transform

Newton’s second law into the Cauchy momentum equation :
0
p((;;—l-u-Vu):—V-P—l—Fb (11.3)

This equation is equivalent to Newton’s second law. The left-hand side is
mass times acceleration (taking into account the convective acceleration 3
and the right-hand side is the sum of the forces exerted on a point (the
divergence of the stress tensor V - P, i.e. how the stress field is changing,
and Fy is the sum of body forces like weight due to gravity or friction). At
this point, all we have done was to make one assumption and a little maths.
Note: we are also assuming an inertial frame of reference at the moment to
simplify the equation.

The key to the Navier-Stokes equations is that they assume a constitutive
equation *. A constitutive equation relates two quantities (in this case force
and velocity) for a given material.

The general expression for the Navier-Stokes equation is:

D 1

where u is the velocity of the fluid, P the total pressure acting on the system,
1 the viscosity coefficient and F', the forces acting over the fluid.

Air and Water

Air: As said above, we assumed air to act like an ideal gas, so the ideal gas
law® could be used, PV = nRT, where P is pressure, V is volume of air,
n the number of moles, R the ideal gas constant and T the temperature.
This is important for the study of the bubble formed upon the entrance of
air after surface tension breaks at the opening of the bottle. We assumed
pressure outside the bottle to be the atmospheric pressure.

Water: Water was considered as an inviscid, incompressible fluid, which
implies © = 1 and p to be constant in the Navier-Stokes equations, which
then leads to V -u = 0. The forces acting on the water are gravity, pressure
from the mass of water within the bottle and from the air (both inside and
outside the bottle).

2See https://en.wikipedia.org/wiki/Cauchy_momentum_equation

3See  https://en.wikipedia.org/wiki/Cauchy_momentum_equation\#Convective_
acceleration

1See https://en.wikipedia.org/wiki/Constitutive_equation

Ssee https://en.wikipedia.org/wiki/Ideal_gas_law
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11.2 Experiments

In this section, the experimental setup will be described.

Problem description and its physical dependence

Recall that our problem consists of the emptying of a cylindrical tank filled
of liquid into the atmosphere. As an initial condition of the problem, we
assume the tank is half-full of an incompressible fluid and the remaining
space of the tank is full of gas, a compressible fluid.

Emptying is carried through a small hole at the bottom of the tank. The hole
is small enough so that the flow is not dominated by significant counterflow
of the two liquids. For a diagram, please see Figure 11.3.

In the general problem, we would like to compute two quantities. The first
one is the total emptying time,T,. The other one is the period of a cycle, T'.
The cycle is compounded of the emptying of some liquid and the generation
of one bubble of gas. Our problem involves a number of parameters.

These parameters are of two kinds. On the one hand, we have geometric
parameters, GP = (L, D, d, zp, z;). On the other hand, we have phys-
ical characteristics of the system. PC = (g, Py, pa, Pws Vas Vw, 05 B)-
Specifically, we have:

e [, total height of the tank.

e D, diameter of the tank.

e d, diameter of the opening of the tank

e 2y, initial height of the liquid fluid.

e z;, instantaneous height of the liquid.

e g, gravity.

e Py, initial pressure of the gas.

® p,, gas density.

® py, liquid density.

® 1,, gas kinematic viscosity.

e 1, liquid kinematic viscosity.

e o, surface tension between both fluids.
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e 3, gas compressibility constant.

Thus

T, = F(GP,PC)

T = G(GP, PC) (11.5)

Experiment restrictions

During the experiments, we have made a number of restrictions of the
physics of the problem.

Our choice for the liquid is water. For gas, we have chosen air and the initial
pressure for air is the atmospheric pressure at atmospheric temperature.

We are interested in an oscillating solution of the problem. If the initial
height of water is close to the total height of the tank, the mass of the air
is not sufficient to create an oscillating solution. In that case the problem
only has a stationary solution, an equilibrium between the force exerted by
the weight of water column and the force that comes from the integral of
surface tension. A similar lack of a periodic solution has been observed when
a quite small diameter of the hole of the tank is made.

In the opposite case, if we make a rather wide hole at the bottom of the
tank, bubble generation will occur at the same time as the water discharge.
So this case does not have a oscillating solution. The range of diameters
where we have a oscillation solution is between d € [6, 16]mm.

Our experiment was carried out with a bottle hall full of water with a small
hole at the bottom of the bottle. The bottle was fixed with an improvised
harness, see figure 11.1.

Results and conclusions

With the bottle half-full, and with the diameter of the opening chosen ju-
diciously, we obtain the required oscillatory solution. Our ability to video
experiments and to slow the video down, also allows us to make some novel
observations. We will discuss them in 11.5. In brief, the mechanistic pic-
ture used by [1] and [3] though generally sound, is not necessarily absolutely
correct.

Next, we want to present and criticise the approaches available in the liter-
ature.
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Figure 11.1: Photography of our experiment

Figure 11.2: Experiment in progress
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11.3 The Clanet-Searby Model

Introduction

The common experience of the emptying of a vertical bottle initially full of
liquid, surrounded by air, and submitted to an acceleration due to gravity,
reveals that the liquid flows out of the bottle through an alternating suc-
cession of jets of liquid and admissions of air bubbles. This oscillatory path
back to the equilibrium is referred to by the onomatopoeic glug-glug and is
characterized by the period of the oscillations T". This oscillatory behaviour
starts at the opening and continues until the bottle is empty, that is all
along the emptying time 7,. The life of the bottle can thus be characterized
by the ratio T, /T.

To understand the physical laws governing the existence of this system, we
first reduce the problem to the emptying of a vertical cylinder of diameter Dy
and length L, closed at the top and open at the bottom through a circular
thin-walled hole of diameter d, on the axis of the cylinder (figure 11.3). The
cylinder being initially filled with a liquid. At ¢ = 0 we open the hole d
and look for the laws governing both T, and 7" as a function of the interface
location z;. The study is performed in the low-viscosity limit.

In this section, we follow the approach of C. Clanet and G. Searby [1].
In particular, we show that the periodicity of motion is only obtained if a
drastic and unjustified simplification is made.

0
Dy
L
d
v

Figure 11.3: Experimental set-up and orientation of axes
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On the long time scale T,

To model the dynamics of the liquid interface on the long time scale T;, we
assume that the long and short time scales are decoupled, T, /T > 1, so that
on the long time scale the emptying phenomenon appears as continuous.
Using the constraint of constant volume and some known laws about the
velocity of bubbles it can be shown that

TN2L<DO>5/2
‘T VgDo \ d '

This time is independent of the liquid properties (density, viscosity and
surface tension with the surrounding air) and for a given diameter of hole
d, it increases with the volume of the bottle oc D3L.

On the short time scale T

As for the short time scale, experimentally it can be shown that the physical
origin of the oscillations of the glug-glug lies in the compressibility of the
surrounding gas. Using a spring-mass analogy, it can be demonstrated that,
letting z; the mean position of the interface, the period T is equal to

L Zi Zi
T=on— = [Z(1-2 11.6
o L( L), (11.6)

where -y is the isoentropic expansion factor, Py the atmospheric pressure and
p the density of the liquid.

The continuous equations

We now derive in the low-viscosity limit the equations that govern the os-
cillations. In particular, the latter are decomposed into two phases: the
outflow of the liquid and the admission of a new bubble without liquid flow.
Since the emptying time T is large compared to the period T, we assume
that, during the whole period, the mean position Zz; of the interface is con-
stant. Thus the actual interface location z; is decomposed into a fixed part
z; and a time-dependent part Z; i.e. z;(t) = Z; + Z(t). To describe the
motion of the liquid in the tube during the whole cycle we use the Euler’s

equation

ou 1
— Uu=-- ) 11.7
Y +V pr—i—g (11.7)
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Projecting (11.7) onto a streamline and integrating between two points A
and B, respectively located on the upper interface and the exit of the tube,
we obtain:

Bou 1 1
——dl+ - (Ug —U3) = ——(Pp— Pa) + g(L — ) (11.8)
A 8t 2 1%

Assuming an isoentropic transformation, the right-hand side of (11.8) can
be linearized to yield
1 Py . Z; 1
——(Pp—P L—2z)=— A=A+ X—=])(1+—-]|, (119
-t (7)) oo
where A = pgL/Fy. Let F(\, z;) the expression in square brackets of (11.9).
During the outflow it can be deduced that

1 1[(Do\* . ]:
;3= =5 (2] -1

while the acceleration term in (11.8) can be approximated

B 2
ou D d\|: _ =
B Edl% [L—th\ﬂdo(l—QDO)]zi = (L—zi+$)zi,
where « is a constant. The Euler equation (11.7) during the outflow can
thus be written

. 1[(Do\* 1 7P

L-z+2%+-|(22) —1|2+ 22570 z)=0  (11.10)
2 d PZ;

During the entry of the bubble into the tube (i.e. the inflow), the nonlin-

ear term disappears and the dynamics of the interface is described by the

equation

1. Py _
- 55+ %ZiF()\, %) = 0. (11.11)
Since we look for small oscillations around the equilibrium, in both equa-
tions (11.10)-(11.11) we retain only the linear terms. The dynamics of the

interface during the whole cycle is thus described by the system

= YPo F(\ %) 1 -
; =0, 1112
AV )L 1—an/L+ ZJL° (11.12)

Zit 752 -
pL? Zz /L 1-—%/L
where the first equation describes the outflow Z; > 0 and the second the in-
flow z; < 0 (cf. the orientation of the axes in figure 11.3). This linearization
of the problem enables to find an analytical expression of the period T of
the oscillations, that is compatible with the period given by the spring-mass
analogy (11.6).

(L — Zz)éz

=0, (11.13)
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Criticism
In the previous analysis there are some points which aren’t completely right.

The authors obtain (11.12) by neglecting the nonlinear term of the equation
(11.10). But the expression in brackets

;[(?)4 _ 1] (11.14)

is very large because Dy > d. For instance, if we take Dy = 78.9 mm and
d = 10 mm we obtain in (11.14) more than 1937.

As for the entire cycle, it is governed by the system of equations (11.12)-
(11.13). But each equation characterizes a simple harmonic oscillator too,
which has by its nature periodic solutions.

Making simulations in Matlab with the complete system (11.10)-(11.11),
we have never found any periodic solutions. In figure 11.4 we report the
phase plane, with the physical parameters in caption. We recognize two
different behaviours. In the lower half-plane the orbits are semi-elliptic,
due to equation (11.11), while in the upper one they are curves that start
and end in points which aren’t symmetric. With this behaviour the orbit
collapses towards the origin.

So, on the one hand if we keep the nonlinear term, we don’t find periodic
solutions and the glug-glug regime doesn’t begin; on the other hand if we
neglect that term, we find periodic solutions but the deletion of that term
is not allowed.

0.4

03 4

02

01

<01

-0.2 —

03k 4

-0.4

Figure 11.4: Phase plane; Dy = 86 mm, d = 14 mm, L = 300 mm
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11.4 The Kohira Model

In this section, we re-derive the model of the Japanese physicists Kohira et.
al [3] without linearization in order to see if we obtain different results.

This model considers (plastic or glass) axisymmetric bottle nearly full of
water and with some volume V' of air inside. The bottle will be always in
the position showed in Figure 11.4.

. D A
i) L4
K
Y
A
L
H
Y. Y.
A
{‘r Pair
il

Figure 11.5: System scheme.

Where:

e D is the diameter of the circular base of the bottle.

d is the diameter of opening of the bottle.

[ is the length of the bottle’s neck.

L is the length of bottle’s body.

H is the distance between the base and the upper part of the bottle’s
neck.

P, which we will refer to as P,, is the pressure of the air that is
outside the bottle.

P is the pressure of the amount of air that is inside the bottle.

First we will analyse the downflow of water finding the equations that de-
scribe the process. After this we do the same with the upflow of air bubbles.

The assumptions made are essentially the following:
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e The fluid we are working with (water) is assumed to be incompressible,

which implies that

this condition also implies (as a consequence of the divergence theo-

rem) that

e We assume an isothermal process.

e We assume air to be an ideal gas.

After this assumptions are made, the Navier-Stokes equation (11.4) for the
velocity of water (resp. air) during the downflow (resp. overflow) acquires
the following form:

ou
P = U V - P+ sgn(u)pg (11.15)
where 7 is a coefficient that takes into account the viscosity of the fluid so
this term corresponds to a frictional force. We will use w and v,, instead of
f and u for water, and a, v, when we study air. We also have taken the
upper direction as positive.

Phase 1: downflow of water.

As Kohira et al. did in [3], we consider the differential equation for the
average velocity of water coming out, v,, = v, (t), which is derived from
Navier-Stokes equations:

dvy, P, —pgH — P

Py = vt ] Pg (11.16)

where the pgH /I term is due to the water that is above the bottle’s neck, g
is the gravity and p is the density of water. The assumption that air is an
ideal gas give us the relation between P and V:

PV = NkgT (11.17)

where N is the number of molecules of air, kg (= 1.38065 X 10*23%) the
Boltzmann constant and 7" the temperature of the air.

We now want to write the parameters v, dc’l’—;“ and H as functions of the

pressure P:

In this case, because there is no inflow or outflow of air during the downflow
of water, IV remains constant. Moreover, if we also assume 1" to be constant,
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then we have that NkpT = PV is constant. By differentiating equation
(11.17) with respect to time we have

d AV dP AV VdP
_ Ypyy=p® LT _e_rar
0= PVI=P otV = — =54

and using equation (11.17) we obtain

_dV _ NksT dP
dt P2 dt

(11.18)

Now continuity equation (conservation of mass) gives us the relation Ajv; =
Asvy between two points, 1 and 2, that are in the same stream line of the
fluid, where v; are velocities and A; are sections (in our case horizontal
sections of the bottle). So we have

(d>2 NkgT dP
m Vy = —_—

2 P2 dt

which gives us a relation between v,, and the pressure P and P:

. QQN@TiEB_ﬂL
v T P2adt | P2

d

P (11.19)

where we have defined § := (%)2 NEsT for simplicity.

T

By differentiating with respect to time equation (11.19) we obtain dg—f as a
function of P, P and P:

dvy _gfd (1\dP 1 &P
dt T ldt \P2) dt = P? dt?
_g| 22 (4PN Lap
TIP3\ de P2 d¢?
so we obtain '
dvy, B [ p?
=L p_2— 11.2
= L (P-oF) (120

Finally we search for an expression of H as a function of P and its derivatives.
AsV = (L — H)A, where A is the area of the base of the bottle, we have
V

H=L-—
(2)°m

and using equation (11.17) we obtain

2\? NkgT 1
H=L- (= = 11.21
<D) T~ P ( )
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Now using equations (11.19), (11.20) and (11.21), replacing them in equation
(11.16) and reordering terms, we obtain the following differential equation
for the pressure P:

p? Y 1 5
P-92-— 1+ ™p, — p
5, s

2
RO ERTOR

To achieve a non-dimensionalized and normalized description, firstly we
write equation (11.22) in terms of z = P% obtaining

(11.22)

w.  Pi
—~ 2— + 7— @+ maf”
b op g . N\ (11.23)
B \lp l 1 \D

. 2
Now we rescale the variable ¢ by \/%t — t, g% — jt, ?;R — dtQ to

obtain the non-dimensionalized equation we wanted:

e i = (- (11)) - (5)
x—2—+— -+ —gll+—)|Jzo—|= ) =0
x  pl\yg 9,06 Jofes l D

(11.24)

. 2 P2
Defining A; := (%) , Ao = % (% — (1—|— %)), Az = gTa,B and Ay :=

7?“’ \/g (all positive constants if we use realistic values for all the parameters),

we can write equation (11.24) as

22
F— 25 4 Ayi + Asa® — Asa® — Ajz =0 (11.25)
Xz

Phase 2: upflow of air.

As we had for the downflow of water, now the equation for the average
velocity of air coming up is:

dvg P, —pgH — P

pﬁ = —YqUq t+ ] + pg (11'26)

The term pg corresponds to the floating force as air exists in the water.

In this case we have that V is constant because of the incompressibility of
water, but now N is changing as air molecules come into the bottle. By
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differentiating equation (11.17) with respect to time, we have

dV dP dN dP kT dN
pdV — ket — &8 _FBL AN 11.2
TV =Ty at — V dt (11.27)
From the conservation law for air,
AN d\?
—_— = — 11.2
g = PaTO <2> Vg ( 8)

where p, is the molecule number density of the air and o is the volume
fraction of the bubble to the bottle.

As we did in the previous subsection, we search for expressions of H, v, and
dsta as functions of P and its derivatives. For H equation (11.21) is still
valid, but now what is constant is the volume V', not N, so that using the
ideal gas relation (11.17) we obtain a new expression for H:

H=1I-— (Z)Q‘; (11.29)

Now using equations 11.27 and 11.28 we have that

dP kT (d>2
= —_ Ua

dat v T2
obtaining
14 2\*dP  dP
— 2) = 11.30
Ya = kT paro (d) at 't (11.30)
where 1 = W (%)2. Finally differentiating equation 11.26 with respect

to time, we obtain the equation for d;’t“:
dv, d?P

Plugging equations 11.29, 11.30 and 11.31 into equation 11.26 and reordering
terms, we obtain the following differential equation for the pressure:

d27P Yo dP 1

2 pdt | pnl

P, g 2\’ VY g
e J - (Z2) = g
lpn+ln( <D> 7r>+77

(11.32)
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To achieve a non-dimensionalized and normalized description, firstly we
write equation (11.32) in terms of z = P% obtaining

o Aade 1
a2  p dt = pnl

1 g 2\?V q
N L—(Z2) =
[lpn+lnPa< <D> 7T>+Pa77

. 2 2
Now we rescale the variable ¢ by \/%t — t, %% — %, %j? — j? to

(11.33)
=0

obtain the non-dimensionalized equation we wanted:

e . [1d 1 1|1 2\?V

—f+1 Ly s L - (2) D)+ 2

dt p\gdt png g |lpn Ink D) =« Pan
(11.34)

; — Ja 1 11 g 2\2V g |
Defining Bs := e By = g and By := g {W + InPs (L — (5) ;) + Pal
(all positive constants if we use realistic values for all the parameters), we

can write equation (11.34) as

2 d
£+Bgd—f+32x—31 =0 (11.35)

which is clearly a linear differential equation with constant coefficients.

PHASE 1 + PHASE 2 mathematical description

Suppose we have our bottle prepared to carry out the experiment but with
the hole covered. At the time fy = 0 state variables of our system take
the initial values Py = P(tp), Vo = V(to) and Ny = N(tg). At time ty we
open the hole and a drop of water begins to form. For a time ¢; system
will be in the first phase, so that the equation that governs the system is
(11.24), where t; is defined as the minimum ¢ > 0 such that io(t) = 0 . For
t € [to, t1] we have N(t) = N(tp) because during the outflowing of water N
remains constant, while P and V' are variable. For ¢ € [to, 1] we have that
P(t) = Pyzo(t).

At the time t; the equation that describes our system, which is in the second
phase, is equation (11.34), with initial conditions N; = N(t;) = N(tg) =
Ny, P, = P(t1) = xo(t1)P, and V4 = V(1) is determined by the relation
PyVo = P1Vi. Until a certain minimum time to > 0 such that @;(t2) = 0

SHere z0(t) is the solution of equation (11.24) with the initial conditions (Po, Py =
0, Vo, No) for t € [0,t1], so o(0) = Py P, and z0(0) =0
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T ie. for t € [t1,t1 + t2], we have V() = V(t;) because during the upflow
of air, volume is considered to be constant, and N, P are now variable. In
fact, now P(t) = Pa:vl(t — tl) fort € [tl,tl + tz].

At the time t1+to the formation of a new drop of water starts, so we are again
in the first phase. Now for a certain interval of time [t] + t2,t1 + to + 3]
the equation (11.24) and initial conditions P, = P(t1 + t2) = z1(t2)Pa,
Vo =V(t1+t2) = V(t1) = Vi, Na = N(t1 +1t2)® will give us a solution xa(t),
for ¢ € [0,¢3] and t3 the minimum ¢ > 0 satisfying @2(¢3) = 0, which will
determinate P(t)/P, for t € [ty + ta,t1 + t2 + t3].

We can repeat this process until the bottle has emptied, in a particular
time t,,, to define a function X (t) = %5) that describes the evolution of the
pressure during all time:

(L‘()(t), t e [to,tl]
X(t) = : LA for1<i<n-— 1.
() J,‘i<t—z;»:1tj>, t e Zt]’,zt]’ -
=1  j=1

On the one hand, z;(t) for i € 2Z, i < n, is the solution of equation (11.24)

taking x(0) = % and (0) = 0 as initial conditions and setting 8 := (3; with

Bi = (3)* kT where Ny = N [ > "#; | and P, =P [ >, | foralli >0

j=0 5=0
even. So x;(t), t € [0,t;], solves the following Cauchy problem

2 v [l p2 IP, (P L d\?
By — 250 4 2 Sgy g — a<a— <1+)>x2—(> T =
A T A 7 ! o \p)

On the other hand, z;(t) for i ¢ 2Z, i < n, is the solution of equation (11.34)

taking again z(0) = %’;"), #(0) = 0 as initial conditions and now replacing V'
by V;, so that this time we have to redefine n := n; with n; = kBT‘;iam (%)2,

where V; =V th and P; is defined as we did for i € 2Z. Now z;(t),
j=0

"Here z1(t) is the solution of equation (11.34) with the initial conditions (P, P =
0, V1, Ny) for t € [0,t2], so £1(0) = Py P,, ©1(0) = 0 and z1(0) = zo(t1).
8Now we can determine No using the relation PoVa = PoVi = NaokpgT
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t € [0,t;], solves the following Cauchy problem

. I 1 11 g < 2 >2 v g
{L‘Z’—i—i —-T; + €T; — — + L—-|—= — | + =0,
p\Ng g g [lpm ke < D) m ) Pani

P
SUZ(O) = Fa, 131(0) = 0

To build algorithmically our solution X (¢) we need at each step the values
for P;, N; and V;. We can determine them as follows:

e For i =0, Ny, Vy and Py are determined empirically.

e Fori € 27,1 > 2, we have that P; = x;—1(t;), V; = Vi—1, and N; = kpg‘%

e For i ¢ 27, i > 1, we have that P, = z;_1(t;), Vi = P"%Y’”

i = Nz—l'

and

We leave the numerical implementation of the above construction for future
work.

Criticisms

e This model considers 2 phases. First we have a ”big drop of water”
coming out and immediately after it has come out, a bubble of air
starts forming. This is not exactly what we observed in the experi-
ments; we will comment on that below, but note that there is not a
total axial symmetry.

e There is no mechanism in this model for the upward motion of the
liquid-gas interface, which is observed when a bubble of gas enters the
bottle.

11.5 Conclusions

The results of our experiments helped us to understand the dynamics of the
exchange between water and air. We observed that on the whole water and
air do not share the same space at the same moment. First, water comes out
and then air comes in the bottle, never in the same time but with the same
duration, so we have a periodic situation. The fact that air and water do not
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share the same space at the same moment has two important consequences.
The first is we must use a specific model for each situation. That’s why
we use different equations if water comes out or air comes in. The second
is that when air comes in the bottle, the total volume increases even if air
is very compressible so we must observe periodically the same rising of the
level of water corresponding at the volume of air which comes in the bottle.

With the Clanet model, we are able to observe at the short scale, the rising of
the level of water due to the air. That’s a good point for this model, because
we have got a good precision at the short scale, to model the formation of
bubbles and to make simulations on a little number of periods. But with this
model and with the long scale, we have did such approximations which have
lost the periodicity of the model. That’s why nothing can make the proof
that it’s a good model at the long scale even if we are able to choose some
parameters to get simulations very close with experimentations. But this
model presents the other advantage to be easy to derive and to implement
which were very useful to make simulations during the ECMI Modelling
Week.

With the Kohira model, we keep the periodicity so that’s interesting to look
at the long scale of time. The model converges to a periodic solution which
represents the characteristic duration between two formation of bubbles.
But now, with this model we can’t get a good description at the short scale
because we can’t observe the rising of level of water. So there is a lack of
description at the short scale but nothing can make the proof that this lack
is a too big error of approximation at the long scale. So if the Clanet model
is interesting to describe the dynamics at the short scale of time, the Kohira
model is more interesting to describe the dynamics at the long scale. But
during the week, we didn’t have the time to make simulations.

The future works could be to make simulations with the Kohira model and
compare with Clanet model. We could also derive a model which preserves
all aspects of that we have observed with the experiments. Another point
is to understand if it’s a good approximation to consider a uniform level
of water in space at the short scale and at the long scale. To study this
aspect, an interesting work could be to make simulations (for instance by
finite elements on a mesh in space of a bottle) with a two phase model in
keeping the Navier-Stokes equations for water and Euler equations for air
and to see the differences of the evolution of the level of water with the
Clanet model and the Kohira model.

The models that we have considered do not answer a number of questions.
For example. it is not clear what actually stops the water to continue flowing
out once it starts flowing. It is not clear either (see Figure 2 in [3]) what kind
of transition is it from no-flow to oscillatory flow, or from oscillatory flow
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to fully developed (catastrophic) counterflow. One possibility, for which we
have experimental evidence, is that the transition between oscillatory flow
and counterflow is actually a gradual one. That is, it is not inconsistent
with the experimental evidence that there is some counterflow of air during
the outflow of water. Such a situation would also explain what is it that
stops water from flowing at some stage: the air that enters is trapped at
the bottom of the bottle, but when enough of it has entered, it reorganises
itself into a spherical cap bubble (such as is considered in [2]), and as it
does so, it plugs the opening of the bottle preventing water from flowing
out. Then the spherical cap bubble rises, and when it has detached itself
from the opening, the water flows again. To see how realistic this alternative
mechanical picture is, better experiments are required.
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