e

EC M

EUROPEAN CONSORTIUM FOR MATHEMATICS IN INDUSTRY

28th ECMI Modelling Week
Final Report

19.07.2015—26.07.2015
Lisboa, Portugal

W TECNICO LISBOA R ST



Group 4

Shape analysis of an
axisymmetric drop

Author 1: Adrian Dominguez Vazquez
Universidad Carlos III de Madrid,
Awv. de la Universidad, 30, 28911 Leganés, Madrid, Spain

Author 2: Ivar Persson
Faculty of Engineering, Lund University,
Box 118, SE-221 00 Lund, Sweden

Author 3: Joana Vaz Baltazar
Instituto Superior Técnico, University of Lisbon,
1049-001 Lisboa, Portugal

Author 4: Radojka Ciganovié
Faculty of Natural Sciences and Mathematics, University of Novi Sad,
Trg Dositeja Obradoviéa 4, 21000 Novi Sad, Serbia

Author 5: Robby Rudat
Fak. Mathematik und Naturwissenschaften, Technische Universitdt
Dresden,
01062 Dresden, Germany

Instructor: Tihomir Ivanov
Faculty of Mathematics and Informatics, Sofia University
5 James Bourchier Blud., 1164 Sofia, Bulgaria



Abstract

The optimal parameters that better fit the Laplacian profile correspond-
ing to a given drop shape obtained from an image have been numerically
computed succesfully. Two types of drop are considered: a pendant drop,
subjected to the action of gravity only, and a rotating drop subjected to
both, gravitational and centrifugal forces. An image processing algorithm
is implemented to obtain the drop profile from a given image. Two numer-
ical methods are studied: a first order Explicit Euler method and a more
accurate fourth order Runge-Kutta method. According to the results, the
Runge-Kutta method needs a better initial guess, being the rates of con-
vergence of both methods identical. Ignoring the computational time, a
proposed procedure would be to use the Explicit Euler method to improve
a potentially bad initial guess and then use the Runge-Kutta method to
pinpoint the parameters closer to their real values.
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4.1 Introduction

The surface tension is a phenomenon caused by the cohesive forces among
liquid molecules. In the bulk of the liquid, each molecule is pulled equally
in every direction by neighboring liquid molecules, resulting in a net force
of zero. But at the surface the molecules do not have the same molecules
on all sides of them and therefore are pulled inwards. This creates some
internal pressure and forces liquid surfaces to contract to the minimal area.

Surface tension is this elastic tendency of liquids which makes them
acquire the least surface area possible. It is an important factor in the phe-
nomenon of capillarity. Capillary is the ability of a liquid to flow in narrow
spaces without the assistance of, and in opposition to, external forces like
gravity. It occurs because of intermolecular forces between the liquid and
surrounding solid surfaces: the combination of surface tension and adhesive
forces between the liquid and container act to lift the liquid.

Numerous methodologies have been developed for the measurement of
surface tension. Of these, axisymmetric drop shape analysis (ADSA) meth-
ods are considered to be the most powerful because of their accuracy, sim-
plicity, and versatility. They are also very suitable for automated computer
implementation by means of digital image analysis.

So, the goal of this project is to determine the surface tension of a drop
of a certain liquid when the shape of that drop is given.

First, we will present the mathematical model relating the surface tension
of a drop, subjected to the action of gravity and to rotation, with its shape.
This model will be numerically solved using two different methods (Explicit
Euler and Runge-Kutta). After that, when the drop’s shape is given, two
optimization algorithms (Newton-Gauss and Levenberg-Marquardt) will be
implemented in order to obtain the optimal value of certain parameters that
can be used to calculate the drop’s surface tension. At the end we will use a
photo of a drop and digitalize it to obtain a set of points that describes the
experimental profile we have. The results will be presented and discussed.
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4.2 Modelling the drop

In this section, we will follow an article by Rotenberg, Boruvka and Neumann
[6] in order to present the derivation of the model describing the non rotating
drop.

ADSA methods are based on the numerical fit between the experimen-
tally obtained shapes of drops and the mathematical model given by the
classical Young-Laplace equation of capillarity. This equation describes the
mechanical equilibrium conditions for two homogeneous fluids separated by
an interface [5]:

Ap =2Ho, (4.1)

where H is the mean curvature of the interface, o is the surface tension and
Ap is the pressure difference across the interface.

The interface is described completely as a function of the coordinates z,
y and z. The graphical representation of the problem (the description of
the meridional section alone) can be seen in Fig. (4.1), which is a reduced
description of the system, due to its symmetry.

0 X Z
X
|

ds dz T ————= $
dx

Figure 4.1: Definition of the coordinate system: a) Profile of a sessile drop;
b) Profile of a pendant drop.

The Young-Laplace equation of capillarity can be written in the following
way, using the fact that the curvature of a surface can be obtained by the
inverse of the radius of the curvature, as shown in [6],

Ap=0 (1 " 1) , (42)

where R; and Ry are the two principle radii of curvature, see Fig. (4.1).

In the absence of external forces, other than gravity, the pressure differ-
ence is due to the effect of the hydrostatic pressures and is a linear function
of the elevation z, measured from the datum plane:
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Ap = Apo +Apg z, (4.3)

where Apg the pressure difference at a selected datum plane, Ap is the
difference in the densities of the two bulk phases and g is the gravitational
acceleration.

According to Fig. (4.1) the x axis is tangent to the curved interface and
normal to the axis of symmetry and the origin is placed at the apex. Thus,
we will have the following identities:

1
Apg = 2Hypo = 20—,

Ry
1 do
- -7 4.4
R T ds (4.4)
T s
Ry z’

where Ry is the radius of curvature at the origin (0,0), s is the arc length
measured from the origin and 6 is the turning angle measured between the
tangent to the interface at the point (z, z) and the datum plane.

Since Ry turns in the plane of the paper the identity for R; representing
the rate of change of the turning angle # with respect to the arc-length
parameter s, is true by definition. On the other hand, Rs rotates in a plane
perpendicular to the plane of the paper and about the axis of symmetry.

Substituting the first of these three equations in (4.3), and then using
the other two remaining equations in (4.2) we obtain:

1 df  sind
Ap=20— + A = — 4+ —. 4.5
p =205 +Apgz 0<d5+m> (4.5)
This equation can be rearranged to:
do 2 A iné
o _ 2 Apg_ sinf (4.6)

ds Ry o x
Besides this relation, we also need to define the relations for the merid-
ional curve. This can be represented in a parametric form

x=ux(s), z=z(s).

Again using Fig. (4.1) we get the differential identities:

d

d—i = cosb,

dz _ sinf 0
ds '

For the three differential equations (4.6), (4.7) we consider as initial
conditions
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So, the model relating the surface tension o of a drop subjected only to
gravity is given by this first-order differential system:

g 2 Apg sind

s R o T a

o= cosb, (48)
dz .

1= sind,

z(0) = 2(0) = 6(0) =0

Then, for given Ry and Ap, ¢ and g the complete shape of the curve can
be obtained.

If the drop is subjected to the action of gravity, as well as to rotation,
with angular velocity w, along the z axis, the problem will be similar and
we still can obtain the three last equations in (4.8), but the first equation
in (4.8) must have an extra term.

When the drop is rotating there exists the centrifugal force

fczcﬁxcﬁxﬁ

where & = (0,0,w) and 7= (z(s),0, 2(s)) = (z,0, 2).
Computing the cross vectors we get:

fo= (—w?2,0,0).

Since pressure is obtained as the quotient between a force and an area,
we need to compute the following integral:

T
1
/ Apwiudu = iApoﬁxQ.
0

Therefore, a new model is obtained:

LA w2 :
ﬁzi—l— sApw x2+Apgz_sm9
ds Ry o o T
dr _ cosf
ds (4.9)
d
d—z = sinf
z(0) = 2(0) =6(0) =0

The first equation in (4.9) has several parameters, namely Ry, Ap, w,
o and g. If we nondimensionalize the system we will reduce the number of
parameters, simplifying the resolution of such equation, and we will avoid
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the occurrence of significant errors due to the fact that the values of these
parameters are of very different orders.

The second term in the equation has dimension m™!, so we can nondi-
mensionalize it by multiplying it with an arbitrary length R ([R] = m).
We define the following new variables:

From here we obtain:

ds = Rds', dx = Rdx’, dz = RdZ'.

We have to do the following calculations:

g db o 2 3Apw? . Apg, ,  sinf
b - _ 2 R RS —
*ds ~ Rds " s Ry o (Rz)”+ o (RZ) (Rzx')
= i@ :2LR+MR3'$/2+ ﬂR%’f y
ds’ Ry o o x/
.dﬁ_Rdx’_dx’_ 9
ds ~ Rds _ds'
. d _ 7Rdz’ = d—Z, = sinf
ds Rds' ds'
Now, let us introduce the following notation:
1A 2R3 2
b= 1 d—or o= 222 ap = BP9
Ry o o

Using these identities and writing the equations denoting the variables for

notational simplicity with x, z and s, instead of 2/, 2’ and s’ we can rewrite
the model (4.9):

. .
d0 =2d+ Qz? + Bz — sinf

ds T

dzx

— = cost

ds (4.10)
% = sind

ds

z(0) = 2(0) =6(0) =0
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4.3 Numerical Methods

Solving the ODE system

An Explicit Euler method (EE) and a fourth order Runge-Kutta method
(RK4), see [1] have been implemented to get the solution of the system of
ordinary differential equations (4.10) corresponding to the Young-Laplace
equation of capillarity for an axisymmetric drop. These two methods give
acceptable results with an affordable computational time. Implicit methods
have not been considered due to the larger computational time required.

Explicit Euler (EE) method

The most simple numerical method for solving ordinary differential equa-
tions is the Euler method. Discretizing the ODE system (4.10) with the EE
method, we obtain

Tp4+1 — Tn

As = cos O,
% — sinen, (411)
0 -0 in 6
il Tn =2d + Bz, + Qa2 — iy

As Tn

Fourth order Runge-Kutta (RK4) method

The next method we have used is the explicit fourth order Runge-Kutta
method, which is actually a generalization of the Euler method. The equa-
tions describing the RK4 method are

kl — f(sn)yn)a

h h
k2 :f <sn+27yn+2kl>a

h h
ks = n o In —k )
3 f<3 ~|—2y+22)

k‘4:f(8n+h,yn+h/~c3),

h
Ynt1 = Yn + g(kl + 2ko + 2k3 + k), (4.12)

with s, and y,, standing for the independent variable (s) and the depen-
dent variables (0, z, z) respectively, and where

inf
f= (2d + Q2%+ By — %, Cosﬁ,sinﬁ) . (4.13)
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Practical estimation of the rate of convergence

The estimation of the rate of convergence is based on the assumption that
c changes slowly when we change the step-size h.
Let us now look at these three equations:

u(zx) = yp, + ch®,

u(;v):yg+c<g>a,
u(m):yz—l—c(Z)a,

where yp, () is the numerical solution obtained with a given method using
a step h, and yp,/o(7) and yj,/4(z) are the numerical solution given for the
same method for h/2 and h/4.

If we subtract second equation from the first, and also third one from
the second, we will obtain

h

(0%
0=yp+ch® —yn -l-c()
2 2

he. N

Now we have
Yny2(®) — yn(z)

yh/4(33) - yh/Q(x)

and from there we obtain the convergence rate «

o = logy (

Optimization methods

yh/Z(m) — yn(7)
yh/4($) - yh/z(ﬁ)

) . (4.14)

In order to find the set of parameters corresponding to the Laplacian profile
that better fits the given experimental shape of the drop, an optimization
problem has to be solved. First, we will define the objective function which
gives the error between the theoretical and the experimental profiles.

Definition of the error function

Suppose that (X, Z,)"=M is a set of experimentally points that describe
the meridional section of an interface and (zy, 2x)¥=Y is a set of points from
a calculated Laplacian curve. For each point of the experimental profile
of the drop we search for the nearest point from the calculated Laplacian

curve. The objective function to minimize is then defined as
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l\')\»i
M:

E(d,Q, B) [(zn(d, 2, B) — X)? + (2a(d, Q, B) — Zp,)?] . (4.15)

m=1

where (2, z,), Vn € {1, ..., N} is the nearest point from the Laplacian curve
to each experimental point. The optimum set of parameters (dopt, Qopt, Bopt)
must then verify

oOF

a0

oOF

7= 4.16
o = 0. (4.16)
OF

a8 = ©

Newton-Gauss algorithm

The first algorithm considered to solve the optimization problem is the
Newton-Gauss (NG) algorithm, see [2]. This method yields the following
system of linear equations to be solved iteratively,

e ) 0’E 0’FE Ad OE

od? 0doY  9doB dd

9’E 0’E 9’E _ _ | oE

9doQ 992 000B AR = 0 (4.17)

?E  _9’E 2°E AB OFE

ddoB  999B  0B2 / (d},...By) k oB

with,

Ad dgy1 — dg
AQ | =] Qi — (4.18)
AB), Bjt+1 — By,

The iterative process starts with an initial guess (dy, o, By) and stops
when the correction (Ad, AQ, AB)* is below a given tolerance.

The second derivatives of the error function are computed numerically
using second order divided differences, given by the following general ex-
pression for a function g : R — R, a certain variable x and a step h:

0%9 _ gz +h) —2g(x) + g(z — h)
o0x? h2
Thus, for instance, the second derivative of the error function for the
variable d is given by

(4.19)
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O*E _ E(d+h,Q,B) —2E(d,Q, B) + E(d— h,Q,B)
od? h?
For B and ) will be similar.

The cross derivatives are approximated, for a function g : R — R, a
certain variable z and a step h, using the formula

(4.20)

%9 g(x+ he,y+ hy) — glx+ he,y) — g(z,y + hy) + g(z,y)
_ (4.21)
0xdy ha, hy

where x and y stands for general independent variables and h, h; and h,
the steps considered for each of the variables, respectively.
2
Thus, for example, for ) constant 8%—8% will be equal to

O’E  E(d+hg, B+ hy) — E(d+hq,Q,B) — E(d,Q, B+ hg) + E(d,Q, B)

0doB ha, hp
(4.22)

The other cross derivatives will be similar.

Levenberg-Marquardt algorithm

One of the most used optimization algorithm is Levenberg-Marquardt (LM).
Our aim is to minimize error function, which is given with (4.15). If we put

err(zn(d, Q, B), 2,(d,Q, B)) = [(24(d, 2, B) — Xm)* + (2n(d, Q, B) — Z1n)?]
(4.23)
then we resolve our problem with the folowing sheme:

(dps1, Qoi1, Buy1) = (dny Qny Bn) + (JTJT + X5 1)L err(xCalc, 2Calc),

(4.24)
where A > 0, [ is identity matrix and J is Jacobian from r, that is
J=Ar= (g o o) (4.25)

Obtaining the initial guess

The iterative methods presented above for solving the optimization problem
need an initial guess (dp, o, Bp) in order to start the optimization process.
This guess must be computed from the given experimental data. In order
to do that, we find a polynomial that fits a set of points {x1,...xp} from
the experimental profile of the drop including its apex, which corresponds
to the origin of the coordinate system. Since the drop is axisymmetric,this
polynomial only have even terms, as for example,



28th ECMI Modelling Week 11

p(z) = az* 4 ba?. (4.26)

Using this polynomial, we can define an objective function to optimize
in order to get the initial guess by considering the right hand side of the
first equation in (4.10). The objective function is then defined as,

L

(I)(d,Q,B) :Z(g(d,Q,B,xl,,el,Zl) _yl)z (427)
=1

where z; and 0; are computed using the fitted polynomial,

2 = p(x1), (4.28)
ot () ()

9(d,Q, B, xy, 0, z;) is the right hand side of the first equation in (4.10) eval-
uated in x;, z; and #; and the values y; are defined as,

do df dx 1 d’*p(x;
W= = o = 3 (2) (4.30)
ds|z  dx|z, ds |z 1 <dp(xl)> dx
+ dx
The problem to be solved is then,
0P
= —_0
od ’
0P
— =0 4.31
=0 (4.31)
0P
22 -0
0B ’
which leads to the following linear system of equations,
L4 Li2e] Y22 Ad Y2 [yz + %]
Zlel 27 Zlel 3”? Zlel aiz AQ | =- ZZL:I af [yl + %} (4'32)
Zlel 2z ZZL:I iz Zlel o (dio 0%, Br) ABJ, Zlel 2 [yl + %]

These are the equations for the most general case. The equations can be
changed to fit allready known parameters. For example, 2 = 0 leads to

Shod Sk vE Ad T2 w2
0 1 0 AQ| =-— 0 (4.33)

L L 2 L 2 L sin 6,
Yl 2a Yl mia Yl (di, %, Br) ABJ DI [yl + le]
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In order to get a better estimation of the initial guess, specially for
pendant drops, this process is split into two steps. In the first step, the
objective is to obtain d. {2 and B are set to zero and the polynomial is fitted
using a set of points located around the apex. Once d is obtained, it is fixed
for the second step and €2 and B are computed by fitting the polynomial to
a wider part of the drop shape.

Image processing

In the sections before all calculations were based on a given curve, but in the
basic problem was to do the calculations based on a given picture. To close
the gap between the picture and the curve, a picture-processing algorithm
was implemented. This algorithm imports a given picture like picture 4.2
and converts it into a grey scaling picture, which is saved as a matrix with
the size of the resolution of the picture.

200 -

400 -

600 1

800

1000 +

1200 +

1400 +

1600 + r

1800 + r

T T T T
500 1000 1500 2000 2500

Figure 4.2: Picture of a pendant drop.

Given a threshold value, that matrix is converted to a binary matrix,
dividing the values under and above the threshold. Also an a algorithm is
implemented to fix the reflections on the drop, to get an black and white
picture like in picture 4.3 .

In the end the algorithm is crawling around the drop, collecting the
indices of the pixel on the border. To get an even shape only every j pixel
is taken, where j is a number depending on the resolution of the picture.
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2001
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800
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1200
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1600 L
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200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Figure 4.3: Binary black and white picture

13

Given the wide of the tube the indices are finally transformed into the needed

coordinates.
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4.4 Numerical Results

The numerical results were obtained by functions implemented in Matlab.

Solving the ODE system

EE and RK4 methods were tested for two sets of values for the model pa-
rameters:

1. Pendant drop: 2 =0, d = 2.0644and B = —2.4;

2. Rotating drop: 2 = —1.873, d = 1.504438 and B = 0.

The shape, (z, z), of the drop obtained from both methods was pratically
the same, as it can be seen in Fig. (4.4).

Figure 4.4: Shape obtained from EE and RK4.

The convergence rates of two methods were estimated using eq. (4.14),
and are represented in Fig. (4.5) and (4.6).

Convergence rates for x and z axis Convergence rates for x and z axis

+  x-coordinates
+_ z-coordinates

o
©

b4
®

)
N
<.

Rate of convergence, alpha
Rate of convergence, alpha
o

o
>

b
23

-4
- x-coordinates
+ z-coordinates

0 50 100 150 200 250 0 50 100 150 200 250
Indice of points Indice of points

Figure 4.5: Rate of convergence of EE and RK4, respectively, for the pendant
drop.

The rates of convergence are very similar, though it was expected that
RK would have 4th order convergence.
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g
Rate of convergence, alpha

L L L W L L L L _ L L L L L L L L
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
Indice of points Indice of points

Figure 4.6: Rate of convergence of EE and RK4, respectively, for the rotating
drop.

Optimization methods

We were given several sets of experimental data, which we used as input for
NG and LM algorithms. Here we just present the results for the two sets
corresponding to the pendant and rotating drops mentioned.

The initial values selected for the experimental data set of the pendant
drop were 2 =0, d =2 and B = —2.3, and for the rotating drop they were
Q= —-1.85d = 1.5 and B = 0. These values were very close to the real
ones.

For these initial values, the values obtained for €2, d and B, which mini-
mized the error function (4.15), are indicated in the following tables.

Pendant drop
NG EE NGRK LM EE LM RK

Q 0 0 0 0
d 2.0584  2.0642  2.003699  2.040388
B -2.4208  -2.3997 -2.300573 -2.308510

time (s) | 0.14195 04637  0.9774  1.2538

Rotating drop
NG EE NG RK LM EE LM RK
Q -1.8932  -1.8747 -1.849561 -1.850084
d 1.5099  1.5048  1.499807 1.499031
B 0 0 0 0
time (s) | 0.18803 0.82283 1.8028 3.0245

From these results we can easily conclude that the computational time
for the RK method is considerably longer than the one for the EE method,
with both NG and LM algorithms.

Fig. (4.7)-(4.10) represent the shape of the drop for these values.
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Newton-Gauss algorithm with 1st order Explicit Euler Newton-Gauss algorithm with 4th order Runge-Kutta

z axis

Calculated
Given 0.2

Calculated

Given

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x axis x axis

Figure 4.7: Comparing the shape obtained by NG with EE and RK4, re-
spectively, for the pendant drop, with tolerance 0.01.

Newton-Gauss algorithm with 1st order Explicit Euler Newton-Gauss algorithm with 4th order Runge-Kutta

Calculated Calculated

Given

Given

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x axis x axis

Figure 4.8: Comparing the shape obtained by NG with EE and RK4, re-
spectively, for the rotating drop, with tolerance 0.0001.

In Fig. (4.10) for EE, the computational time for the experiment with
tolerance equal to 0.0001 was considerably bigger than the time for the
experiment with tolerance equal to 0.01, so only the last is presented.

Obtaining the initial guess

The implemented basic version of the initial guess algorithm gives mixed
results. If the initial guess was good enough was depending on the algorithm
that was using it and the part of the drop that was used to obtain the guess.

For the different algorithms and the given theoretical curves, there was
no real system to be seen if it was converging with the initial guess or not,
but for every curve there was at least one algorithm that was converging.

But for the part of the curve it seemed that it was depending on the
type of drop that was given. For pendant drops it gave better results to use
a bigger part of the drop, where for rotating drops the results with smaller
parts of the curve were better.

For the curve obtained from the image processing the basic version didn’t
give a satisfying result. But with the two step version, it was possible to
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Levenberg-Marquardt algorithm with 1st order Explicit Euler Levenberg-Marquardt algorithm with 4th order Runge-Kutta
25 T T T T 25 T T T T

Given Given
Calculated Calculated

x axis x axis

Figure 4.9: Comparing the shape obtained by LM with EE and RK4, re-
spectively, for the pendant drop, with tolerance 0.01.

Levenberg-Marquardt algorithm with 1st order Explicit Euler Levenberg-Marquardt algorithm with 4th order Runge-Kutta
3

Given
Calculated

Given
Calculated

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x axis x axis

Figure 4.10: Comparing the shape obtained by LM with EE and RK4,
respectively, for the rotating drop, with tolerances 0.01 and 0.0001, respec-
tively.

obtain an initial guess, which was good enough, that the following algorithm
were converging and approximating the curve very well.

Image Processing Algorithm

The image-processing-algorithm implemented during the project, success-
fully obtained the curve from the given picture. But for a good result a high
resolution picture is needed. If the resolution is too low, the curve will be
not smooth or you will obtain not enough points for a satisfying result. For
example the figure 4.2 with a resolution of 2560x1920 gives a curve with 226
points and with a resolution 1280x960 it gives a curve with 282 points (see
Fig. (4.11)).
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Figure 4.11: Comparing the shape obtained from high and low resolution
picture, respectively.

4.5 Conclusions

The optimal parameters that better fit the Laplacian profile corresponding
to a given drop shape have been computed successfully.

As we can see in the results all methods produce results that are reason-
ably good with initial conditions that are good enough. We have assessed
the stability and the computational times of both methods. The Explicit
Fuler method is more stable than the Runge-Kutta method and it converges
without the need of a so accurate initial guess in comparison to the Runge-
Kutta method. Even though the rates of convergence for the Explicit Euler
and the Runge-Kutta method are the same, the latter produces more accu-
rate results. Ignoring the computational time, a proposed procedure would
be to use the Explicit Euler to improve a potentially bad initial guess and
then use the Runge-Kutta to pinpoint the parameters closer to their real
values.
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