
European Consortium for Mathematics in Industry

28th ECMI Modelling Week
Final Report

19.07.2015—26.07.2015
Lisboa, Portugal

Group 5

Patient-specific blood flow
modelling

Anastasiia Bozhok
Grenoble INP (ENSIMAG)

Gaetano Formato
Lappeenranta University of Technology

Christoph Sadée
University College Dublin

Milena Mandic
University of Novi Sad

Pavel Iliev
University of Sofia

Janvier Ukwizagira
Lappeenranta University of Technology

Instructor: Dr. Jorge Tiago
CEMAT, IST-ULisboa

2

Abstract

The purpose of this work is to develop a 2D mathematical model of blood
flow and to forecast some cardiovascular diseases behavior such as aneurysms
and stenosis. In order to complete our model, we should consider the vari-
ability in design and size of cardiovascular systems between individuals.

We compute a blood flow model based on Stokes and Navier-Stokes equa-
tions. Furthermore, we would like to simulate the behaviour of aneurysms
and stenosis in the cardiovascular system by using the model made up. Our
primary interests are in the mechanical properties of the system, which will
be the principal target of the models discussed in this paper.

Finally, we would like to minimize the misfit between the computed blood
flow and the real cross-sections data of specific patients by controlling the
choice of the inflow boundary conditions.

2 Patient-specific blood flow modelling

5.1 Introduction

Medical images allow us to obtain good representations of blood vessels,
even in pathological cases. However concerning the dynamics of the blood
itself, medical images can only give us some sparse velocity measurements.
Medical doctors would make a good use of accurate blood flow simulations
in predicting either the evolution of certain pathologies, or the effect of
some therapies. Our project consists in finding a model which allows one to
reconstruct the blood flow in the complete domain by using the information
obtained from the velocity measurements.

We have largely ignored the enormous and medically very important
subject of cardiovascular pharmacology. Drug delivery and action is un-
doubtedly influenced by haemodynamics but little is known about these
interactions.

5.2 Cardiovascular system and diseases

The cardiovascular system (Fig. 5.1) is composed of the heart, which pumps
the blood through the body and a network of blood vessels which transport
blood to the body and drain it from the body tissues to the heart. All parts
of the system work together, but will be considered individually. Blood is
ejected from the heart in discrete pulses under relatively high pressure into
the main arteries (at a lower pressure in the pulmonary circulation than
in the systemic circulation) where it flows through a network of branching
arteries of decreasing size to the arterioles and then the capillaries where
it delivers oxygen and nutrients to the tissues and removes carbon dioxide.
Blood is collected from the capillaries through merging venues and returns
to the heart at low pressure through a network of veins.

The most common diseases, affecting the cardiovascular system are aneu-
rysm’s (Fig. 5.3) and stenosis’ (Fig. 5.2).

A stenosis is an obstruction of blood flow caused by the development of
plaque of atherosclerosis.

An aneurysm is a gradual dilation of an arterial segment over a period of
years. The aneurysm wall stretches and becomes thinner and weaker than
normal arterial walls. This phenomenon could cause the rupture of the vein
wall, causing massive haemorrhage, which is often lethal.

5.3 Model

Assumptions

In order to develop a 2D mathematical model for blood flow, we fix some
assumptions:

28th ECMI Modelling Week 3

Figure 5.1: A sketch of the cardiovascular system.

1) Blood is modeled as homogeneous fluid flow .

2) We consider in our simulation the stationary case. Therefore the pul-
satile nature of blood is neglected .

3) The temperature is constant at 37 ◦C.

4) Blood is assumed to be a Newtonian fluid wirh constant viscosity equal
to 3.5 mPa · s .

5) Blood density is considered to be constant 1.06 · 10 3 Kg/m3 .

6) We assume the non-slip boundary at the artery wall, that is, the ve-
locity is set to be zero in every direction.

7) The Reynolds number for blood is 100 – 400. This corresponds to a
non turbulent motion.

8) We consider blood to be an incompressible fluid. From the mass con-
servation equation, we get:

∇ · u(x; y) = 0

where u is the 2D velocity field of the fluid.

4 Patient-specific blood flow modelling

Figure 5.2: Stenosis development Figure 5.3: Aneurism development

Figure 5.4: Steady state solution to non-stress Stokes problem with Dirichlet
boundary condition on one boarder.

Mathematical model for blood flow

In order to obtain patient specific blood flow from measurements we have
to define a model for the blood flow. Under the assumptions that have been
discussed in the previous chapter the for steady blood flow is expressed by
the steady Navier-Stokes equations. Any type of flow is generally described
by Navier-Stokes equation (PDE). The assumptions are used to adjust the
PDE to fit our model. The first two equation in (5.1) correspond to linear
momentum and mass conservation respectively. Here u denotes the velocity
field, p is the pressure, ρ and µ are density and viscosity of the blood. We
assume that Ω represents the fluid domain, and the boundaries of Ω consist
of ΓWall, which represents the inside wall of the artery and two artificial
boundaries ΓIn and ΓOut. ΓIn corresponds to the border of inlet flow and
ΓOut to the border of outlet flow of the considered section of the artery.
We consider Dirichlet boundary condition on ΓIn and Neumann boundary
condition on ΓOut and no-slip Dirichlet boundary condition on ΓWall.

28th ECMI Modelling Week 5



ρ(u · ∇u)−∇ ·T(u, p) = 0 on Ω

∇ · u = 0 on Ω

u = 0 on ΓWall

n ·T = 0 on ΓOut

u = c on ΓIn

(5.1)

Using the Cauchy stress principle

T(u, p) = −pI + 2µD(u) (5.2)

where

D(u) =
5u +5uT

2
(5.3)

and when ∇ · u = 0, it can be shown that

div(D(u)) = ∆u (5.4)

hence, the first equation in (5.1) takes the form:

ρ(u · ∇u)− µ∆u +∇pI = 0 on Ω (5.5)

We use this system to predict the behaviour of the velocity magnitudes
and pressure in the artery for cases of stenosis and aneurusm. The function
c, defining the inlet flow is set to be a parabolic function for simulations,
while in reality it depends on patient specific blood flow, it’s importance
will be discussed later.

Weak Formulation

To obtain a weak formulation of the system of differential equations (5.1)
we define the function spaces

S = {u ∈ [H1(Ω)], | u = c on ΓIn, u = 0 on ΓWall} (5.6)

V = {u ∈ [H1(Ω)], | u = 0 on ΓIn ∪ ΓWall} (5.7)

The weak form of (5.1) is to find u ∈ S and p ∈ Q, (Q = L2(Ω)) such that
for every v ∈ V and q ∈ Q∫

Ω
ρ(u ·∇u) ·vdx+

∫
Ω
µ∇u : ∇vdx−

∫
Ω
p∇·vdx−

∫
Ω
q∇·udx = 0 (5.8)

This expression is obtained by multiplying the two governing equations in
(5.1) by test functions v and q, respectively, integrating over the domain
Ω and subtracting one equation from the other. Because the integral is a
linear functional it can be further simplified to the form∫

Ω
[ρ(u · ∇u) · v + µ∇u : ∇v − p∇ · v − q∇ · u] = 0 (5.9)

6 Patient-specific blood flow modelling

We denote this problem (WP). Obtaining the weak form of the system (5.1)
is a key part in the present study. Solving (WP) form leads to weaker restric-
tions for the smoothness of the solution than solving directly the differential
form (5.1). We define finite dimensional subspaces Vh ⊂ V and Qh ⊂ Q and
take finite dimensional approximations uh ∈ Vh and ph ∈ Qh:

uh =

Nu∑
j=1

ujφj , φj ∈ Vh (5.10)

ph =

Np∑
l=1

plψl , ψl ∈ Qh (5.11)

We use finite element spaces Vh and Qh corresponding to the Taylor-Hood
elements (P2,P1). One method for numerically solving (5.9) is by replacing
u and q in (5.9) with their finite approximations (5.10) and (5.11) and obtain
a discrete system. But since the expression in the integral is non-linear the
discrete system is not going to be a linear system of equations. In the present
study the numerical algorithm that we use to solve the weak form of (5.1)
is an iterative method based on the Newton method that we will discuss
in details in the next chapter. This method allows us to solve a non-linear
problem that models the blood flow and hence to solve the optimization
problem.

5.4 The Newton Method

The numerical algorithm that we use to solve (5.9) is based on the classical
Newton’s method for solving non-linear equations based on Taylor series
expansion. Let

F (u, p) =

∫
Ω

[v · ρ(u · ∇u) + µ∇v · ∇u −∇v · pI − q∇ · u] (5.12)

The problem can be formulated as: find (u,p) such that F (u, p) = 0. This
is a non-linear problem and for the formulation of the numerical algorithm
that we use to solve it we define the Gateaux derivative of F for all the
directions (δu, δp) as

F ′(u, p).(δu, δp) =
δF

δu
(u, p).(δu) +

δF

δp
(u, p).(δp) (5.13)

where
δF

δu
(u, p).(δu) = lim

ε→0

F (u + εδu, p)− F (u, p)

ε
(5.14)

and
δF

δp
(u, p).(δp) = lim

ε→0

F (u, p+ εδp)− F (u, p)

ε
(5.15)

28th ECMI Modelling Week 7

Therefore the Gateaux derivative of (5.12) takes the form

F ′(u, p).(δu, δp) =

∫
Ω

[v · ρ(δu · ∇u) + v · ρ(u · ∇δu) + µ∇v · ∇δu − q∇ · δu −∇v · δpI]

(5.16)
The Newton algorithm can be formulated as the following iterative process

1. Choose (u0, p0) ∈ (V, Q)

2. For i=1 . . . n

(a) Solve F ′(ui, pi).(wi, qi) = F (ui, pi)

(b) (ui+1, pi+1) = (ui, pi)− (wi, qi)

Break when ||(wi, qi)|| < ε

For the initial guess (u0, p0) we use the solution obtained from solving the
weak form of the linear Stokes equations:∫

Ω
[µ∇u : ∇v − p∇ · v − q∇ · u] = 0 (5.17)

Then for each following step we solve linear problem for (wi, qi). In order to
solve (5.17) the linear problem for each step we use finite elements method
in the subspaces (Vh, Qh), defined in the previous chapter.

5.5 Time dependent Stokes Equation

Consider the following time dependent Stokes equation:

ρ
∂u

∂t
− µ∇2u +∇pI = 0 (5.18)

This is a simplified version of Navier-Stokes equation, neglecting u · ∇u.
The time derivative can be discretized using the Crank-Nicolson scheme:

ρ

τ

(
un+1 − un

)
+

1

2

(
−µ∇2un+1 +∇pn+1I

)
+

1

2

(
−µ∇2un +∇pnI

)
= 0

(5.19)
The same is done for ∇ · u = 0

1

2
∇ · un+1 +

1

2
∇ · un = 0 (5.20)

The next step is to derive the weak form:

∫ [
ρ

τ

(
un+1 − un

)
+

1

2

(
−µ∇2un+1 +∇pn+1I

)
+

1

2

(
−µ∇2un +∇pnI

)]
·vdΩ

−
∫ [

1

2
∇ · un+1 +

1

2
∇ · un

]
· qdΩ = 0 (5.21)

8 Patient-specific blood flow modelling

Note that the following holds:∫
Ω

v∇2un+1dΩ =

[
�������
∫

Γ
u∇v · v̂dΓ−

∫
Ω
∇u · ∇vdΩ

]
(5.22)

Hence applying Equation (5.22) to Equation (5.21) and grouping n + 1
and n terms together yields:

∫
ρ

τ
un+1 · v +

1

2
µ∇un+1 · ∇v − 1

2
pn+1∇ · v − 1

2
q∇ · un+1dΩ +∫

−ρ
τ

un · v +
1

2
µ∇un · ∇v − 1

2
pn∇ · v − 1

2
q∇ · undΩ = 0 (5.23)

Equation (5.23) is now the final version which can be numerically solved
using FreeFEM++.

5.6 Results

We would like to investigate the behaviour of the velocity magnitude and
the blood pressure for stenosis and aneurysm. As stated before, we use
parabolic function c for the Dirichlet boundary condition at the inlet flow
and it’s magnitude c is determined from the relation c = <µ/ρl, where l is
the diameter of the artery. Figures 5.5 and 5.6 show plots of the velocity
magnitude and pressure respectively for four different values of Reynolds
numbers for domain Ω that resembles the case of stenosis (the direction of
the blood flow is from left to right). By increasing the Reynolds number,
the magnitude of the velocity field increases and the pressure in the region
where the artery is narrow decreases. One can see from (Fig. 5.5 (c) and
(d)) that regions close to the boundary after the stenosis have lower velocity
magnitudes.

From the pressure plots one can conclude that higher velocities of the
blood leads to bigger pressure drops and hence the affected part of the vessel
can be narrowed even more. Furthermore, the magnitude of these pressure
drops is not linearly dependent of the velocity of the inlet flow.

Now we simulate two different rates of stenosis. Figure 5.7 compares the
magnitudes of the velocity fields for two cases: diameter of stenosis = 0.4l
(on the left side) and diameter of stenosis = 0.3l (on the right side). We see
that in the case where the stenosis is more narrow the velocity magnitude
is greater. Again there can be seen regions after the stenosis with lesser
velocity magnitudes and they are much bigger in the second case.

On (Fig. 5.8), the pressures for the cases from (Fig. 5.7) are compared
in the same order. We see that in the second case the magnitudes of the
pressure drops in the narrowed part are precisely two times more than in
the first case. In the current study we do not model the artery as an elastic

28th ECMI Modelling Week 9

(a) < = 100 (b) < = 200

(c) < = 300 (d) < = 400

Figure 5.5: Blood flow velocity magnitude for different Reynolds numbers.

(a) < = 100 (b) < = 200

(c) < = 300 (d) < = 400

Figure 5.6: Blood flow pressure for different Reynolds numbers.

body, but we can conclude that once there is a region where the artery is
narrow there are pressure drops and therefore the risk of the affected part
getting even more narrow.

Let us now investigate in more detail, the behaviour of the blood flow
after the stenosis. In (Fig. 5.8) the x coordinate of the velocity field u
for one of the previous cases is shown. We have previously seen that after
the stenosis there are isolated regions with comparably smaller velocities.
From (Fig. 5.8) one can see that, in these regions, the x coordinate of u
is negative. This means that we observe regions where the blood flows in
a direction opposite to the direction of the general blood flow. This is an
indication of the formation of vortices and we can conclude that in a non-
ideal case turbulent behavior of the blood flow after the stenosis can be
observed.

All of the previous results are obtained fot the case of rotational sym-

10 Patient-specific blood flow modelling

Figure 5.7: Blood flow velocity magnitude for different rates of stenosis.

Figure 5.8: Blood flow pressure for different rates of stenosis.

metry, now let’s consider the case when there is a shift between the upper
and the lower narrowings. Figure 5.10 shows the blood flow velocity mag-
nitude for a simulated non-symmetrical case of stenosis. One can see from
the figure that the behaviour of the blood flow with this slight shift changes
considerably. Since in reality there is always non-symmetry it is important
to be able to obtain results for such cases. In all simulations for the case of
stenosis the numerical algorithm based on the Newton method shows fast
convergence.

Lastly, we simulate the blood flow for a domain that resembles the other
pathological case we are interested in investigating - the case of aneurysm.
Plot for the blood flow velocity magnitude is shown in Figure 5.11. The
domain in this case consists of one boundary ΓIn in the lower right corner
of the figure with Dirichlet boundary condition and two boundaries ΓOut in
the lower left and upper right corners with Neumann boundary conditions.
One can see that in this domain, the blood flow has complex behaviour,
however fast convergence of the numerical algorithm was again observed.

Time dependent Stokes Equation

A time varying source was placed on the lower boundary in order to simulate
the pulsating blood flow into the artery. This is basically a time dependent
Dirichlet boundary. The boundaries are described as follows:

n ·T = 0 on ΓOut

u = A sin2(wt)

The evolution of the solution can be seen in Figure 5.12

28th ECMI Modelling Week 11

Figure 5.9: x coordinate of the velocity field.

Figure 5.10: Blood flow velocity magnitude for non-symmetryc case of steno-
sis.

5.7 The Observation Error Minimization

Problem Motivation

In practice, patient-specific simulations of the aneurysms and stenosises can
be constructed by using computational fluid dynamic techniques and image-
based vascular models through segmentation of medical images from MRI
(magnetic resonance imaging) or CTA (computed tomography angiography)
(Fig. 5.13).

Moreover, some imaging techniques, mainly MRI-based, allow not only
to obtain the geometry of the computational domain but also to measure
velocity of the blood along cross-sections of the domain (Fig. 5.14). We
want to use the velocity data from those extra observations to set a model
and obtain a numerical simulation which can be considered reliable.

It is clear that the impact of the choice of the boundary conditions on
simulation can be highly important in matters of reliability. Therefore,

12 Patient-specific blood flow modelling

Figure 5.11: Blood flow velocity magnitude in case of aneurysm.

Figure 5.12: Pulsating in-flow of blood

we consider a control of the velocity values at the inflow initial Dirichlet
boundary of the approximated computational domain.

The associated optimization problem aims to minimize the misfit be-
tween the given cross-sections velocity data and the computed solution, thus,
reducing the uncertainty associated to the reconstructed domain.

Problem Formulation

We first simplify the problem discussed in the previous chapters from the
case of Navier-Stokes equations to the case of 2D Stokes equation by cause
of the limited time allotted in the context of the conference. This simpli-
fication reduces both the running time of error minimization program and
implementation difficulties. However, the same theory could be applied as
well to a more general model based on Navier-Stokes equations.

The weak form of the corresponding Stokes model is to find u ∈ Su and
p ∈ L2(Ω), such that∫

Ω
[µ∇u : ∇v − p∇ · v − q∇ · u] dx = 0 (5.24)

28th ECMI Modelling Week 13

Figure 5.13: Segmentation from Medical Image. Blood through a brain
artery with an aneurysm. Image from CTA.

Figure 5.14: The Geometry and the velocity of the matter captured by 3D
MRI.

We denote this problem (WPS).

We expect to know the velocity cross-sections data in some internal ob-
servation lines that are parallel to ΓIn. We denote the union of such lines
as ΩObs.

Our goal is to find a vector of the initial Dirichlet boundary condition
on ΓIn such that a given objective function J , which depends on u, p is
minimized.

Thus, the error minimization problem can be formulated as follows:

Minimize J(u, p, c)
c ∈ Aad

subject to (WPS)
(5.25)

where
c is the control parameter, consisting of the unknown velocity profiles at
Dirichlet boundary ΓIn,
Aad is the admissible function space for the control function and

14 Patient-specific blood flow modelling

J is the considered cost functional such that:

J(u, p, c) = ||u(c)− uObs||L2(ΩObs) + α||∇u(c)||2L2(ΓIn) (5.26)

The first term of the cost functional J is responsible for minimizing the
misfit between the observation data and the computed solution.

The second term is a regularization term that is included in the min-
imization in order to ensure smoothness of the solution at the controlled
boundary ΓIn. α is a free parameter that needs to be tuned empirically.

The reason to introduce this additional penalization information is that
the problem of fitting the observation data is known to be ill-posed and gen-
erally requires some form of regularization. In this work, we use Tikhonov
regularization which is essentially a trade-off between fitting the data and
smoothness of the solution at the controlled boundary.

Discretization and Algorithm

To discretize the governing equations (WPS), we apply a finite element dis-
cretization. We choose a triangulation of the domain and the discretization
of the functional spaces. We use linear finite elements for the velocities and
the pressure and replace the functions by their approximations similarly to
the case of Navier-Stokes equations. We also discretize the cost function
5.26.

The discretized optimization problem may now be written as

Minimize Ĵh(c)
subject to c ∈ Aad

(5.27)

with

Ĵh(c) = Jh(uh(c), ph(c),xh(c), c) (5.28)

Here, the velocities and pressure, uh(c) and ph(c), are implicit functions of
the control vector c ∈ Aad ⊂ R2. These implicit functions are defined as the
solution of the discretized version of the Stokes problem (WPS) with c as
Dirichlet boundary condition. This is referred to as the black-box or nested
analysis and design (NAND) approach.

In (5.25), the velocities and pressures as well as the control vector are
optimization variables. This is referred to as the all-at-once or simultaneous
analysis and design (SAND) approach.

SAND formulations combined with sequential quadratic programming
(SQP) methods is a very good approach, however, they require more im-
plementation efforts than the gradient-free method CMAES that we use to
solve the error minimization problem (5.27).

CMAES (Covariance Matrix Adaptation Evolution Strategy) is an a
derivative free optimizer implementing an evolutionary algorithm. This al-
gorithm works with a normal multivariate distribution in the parameters

28th ECMI Modelling Week 15

space and try to adapt its covariance matrix using the information provided
by the successive function evaluations. Although gradient-based methods
are usually faster than the CMAES, we have chosen the latter because it is
a convenient tool provided by FreeFem++.

On the whole, the algorithm to perform our optimization problem is
given as following steps:

Algorithm 1: Blood flow modeling with observation error minimiza-
tion

1: Get the observation data uobs (from a simulation).
2: Initialize c randomly on Dirichlet boundary ΓIn.
3: While stopping criteria not satisfied:

(a) Solve no-stress Stokes problem (WPS) with c fixed as a Dirichlet
boundary condition.
(b) Evaluate the cost functional J(c), measuring the misfit between
the solution obtained above and observation data.
(c) Perform an optimization step by updating c. CMAES optimizer
is used in the current work.

For the purpose of simplifying implementation, we performed the error
minimization analyses by assuming the considered part of cardiovascular
system to be rectangular.

Observation Data

In the context of the current work, the real observation data obtained from
MRI were not available, instead, we simulated the velocity data on obser-
vation lines by running the solver of the Stokes problem (WPS) with an
inclined parabola as an initial Dirichlet boundary condition c.

The formula for this parabola is given by:

u|ΓIn
=

(
−1

2
(−y2 + l2) cos

(
π

6

)
;

1

2
(−y2 + l2) sin

(
π

6

))
with l – rectangular domain height.

The result of this simulation at observation lines (the solution u|Ω(Obs))
was afterwards saved and referred as the observation data. This procedure
provides the first step of the Algorithm (Alg. 1). The magnitude plot of the
obtained simulated data is shown on the (Fig. 5.15).

Although data sets obtained by real medical imaging technique often
contain noise and artifacts caused by signal degradation, those potential
errors are out of the scope of the current work.

16 Patient-specific blood flow modelling

Figure 5.15: The simulated solution reffered as the observation data.

Figure 5.16: The solution obtained with an initial randomized Dirichlet
boundary condition c.

Optimization Procedure and Results

The optimization procedure is started by a random initialization of the
Dirichlet boundary control parameter c, which is the second step of the
Algorithm (Alg. 1). The result of running the solver of the Stokes problem
with such an initialization is shown in (Fig. 5.16).

In order to evaluate the minimal error solution obtained from a proposed
optimal control algorithm, we compare this solution with a simulated data
referred here as a ground truth solution uSim.

For a numerical evaluation, three types of errors are introduced:

• Error over the whole domain:

εΩ =
||uSim − u||L2(Ω)

||uSim||L2(Ω)

• Error on the inflow (control) boundary

εΓIn
=
||uSim − u||L2(ΓIn)

||uSim||L2(ΓIn)

28th ECMI Modelling Week 17

• Error on the observation lines

εΩObs
=

∑
i ||uSim − u||L2(ΓObsi

)∑
i ||uSim||L2(ΓObsi

)
, where ∪i ΓObsi = ΩObs

As it was mentioned above, the free parameter α, responsible for the
weight of the regularization term, is needed to be tuned empirically. The
influence of the choice of α on the error values is demonstrated in the Table
below (Fig. 5.17).

εΩ εΓIn
εΩObs

α = 0 2.94 0.125 0.005
α = 10−3 0.43 0.034 0.004
α = 10−2 0.286 0.050 0.002
α = 10−1 2.072 0.616 0.058

Figure 5.17: Error values with different reguarization weight parameter α.
Number of iterations 500 for all the cases. Number of fitness evalutions
7000.

In the case of small α or α = 0 the solution at the inflow boundary
is not smooth enough and, even though the error on the observation lines
may be small, the error over the whole domain shows that the computed
optimized solution is far away from the simulated solution. The velocity
magnitude plots for α = 0 and α = 10−3 are shown on the (Fig. 5.18)
and (Fig. 5.19). Empirically obtained optimal regularization term weight is
α = 10−2 which is confirmed by the smallest errors, producing the following
values: εΩ = 0.286, εΓIn

= 0.050, εΩObs=0.002 The velocity magnitude plots
for α = 10−1 and α = 10−2 are shown on the (Fig. 5.20) and (Fig. 5.21).

5.8 Conclusions

In the current work we have presented a 2D mathematical model based on
the Navier-Stokes equations for steady state blood flow inside a segment
of an artery. We proposed an iterative numerical method for obtaining a
solution of the non-linear problem, based on the Newton method. Further-
more we have investigated the behavior of the blood flow for simulated cases
of the two most common cardiovascular diseases - aneurysm and stenosis.
We have shown that the numerical method we use allows us to obtain re-
sults for non-symmetric cases resembling the case of stenosis and also for
complex domain that resembles the case of aneurysm. Also we have formu-
lated a minimization problem for the recovery of boundary conditions from
given cross-sections measurements. However, due to time limitations the
optimization problem was based on the simplified case of a Stokes flow. A

18 Patient-specific blood flow modelling

Figure 5.18: Minimization with no regularization term imposed (α = 0).

Figure 5.19: Minimization with small-weight regularization term (α =
10−3).

Figure 5.20: Minimization with big-weight regularization term (α = 0.1).

Figure 5.21: Minimization with α = 0.01.

28th ECMI Modelling Week 19

numerical algorithm for the minimization problem was also proposed and
simulations were performed. Results from the carried simulations led us to
a conclusion that the minimization algorithm allows us to recover simulated
data with a sufficient error from only two cross-section measurements. For
future work one should consider a 3D model for the blood flow without
the assumption of the blood being a Newtonian fluid and a minimization
problem for Navier-Stokes flow.

Bibliography

[1] Abraham, F and Behr, M. Shape optimization in steady blood flow:
A numerical study of non-newtonian effects. In Computer Methods in
Biomechanics and Biomedical Engineering, Vol.8, 127–137. 2005.

[2] author, U. Tikhonov regularization. https://en.wikipedia.org/

wiki/Tikhonov_regularization.

[3] Formaggia, L; Quarteroni, A and Veneziani, A. Cardiovascular
Mathematics: Modeling and simulation of the circulatory system, vol-
ume 1. Springer Science & Business Media, 2010.

[4] Hansen, N. The cma evolution strategy: A tutorial 2011.

[5] Hecht, F. New development in freefem++. J Numer Math 20(3-4),
251–265, 2012. ISSN 1570-2820.

[6] Tiago, J; Gambaruto, A and Sequeira, A. Patient-specific blood
flow simulations: setting dirichlet boundary conditions for minimal er-
ror with respect to measured data. Mathematical Modelling of Natural
Phenomena 9(06), 98–116, 2014.

.1 Code

Navier-Stokes Stenosis.edp

1 // Stationary incompressible Navier -Stokes Equation

with Newton method.

2

3 // build the Mesh

4 real L = 0.020, l = 0.004;

5 real l2=l/2;

6

7 real ag =0.0010 , bg=L/4 , cg=0.001 , shiftparam = 0*

L/40;

8 real numb = 40;

9

20

https://en.wikipedia.org/wiki/Tikhonov_regularization
https://en.wikipedia.org/wiki/Tikhonov_regularization

28th ECMI Modelling Week 21

10 border gamma1(tt=0,L) { x=tt ; y=-l2+ag*exp(- ((

(tt-L/2 + bg + shiftparam)^2)/(2*cg^2))); label

=1; }

11 border gamma4(tt=-l2 ,l2) { x=L ; y=tt; label =3; }

12 border gamma2(tt=L,0) { x=tt ; y=l2 -ag*exp(- (((

tt-L/2 + bg)^2)/(2*cg^2))); label =1; }

13 border gamma3(tt=l2 ,-l2) { x=0 ; y=tt; label =2; }

14

15 mesh Th=buildmesh(gamma1(numb *3)+gamma2(numb *3)+

gamma3(numb)+gamma4(numb));

16 plot(Th);

17

18

19 // macro operators

20 macro Grad(u1,u2) [dx(u1),dy(u1), dx(u2),dy(u2)]//

21 macro UgradV(u1,u2,v1,v2) [[u1,u2]’*[dx(v1),dy(v1)]

, [u1,u2]’*[dx(v2),dy(v2)]]//

22 macro div(u1,u2) (dx(u1)+dy(u2))//

23

24

25 // FE Space

26 fespace Xh(Th ,P2);fespace Mh(Th ,P1);

27 Xh u1,u2,v1,v2 ,du1 ,du2 ,u1p ,u2p;

28 Mh p,q,dp,pp;

29

30 Xh psi , phi;

31

32 real c ; // velocity of in flow

33 Xh vel , vor;

34

35 // Physical properties

36 real mu = 0.0035 , rho = 1060;

37 real Vmean;

38 real Re = 200;

39 c = Re*mu/(rho*l);

40

41 // Initial guess for (u1 , u2) with B.C.

42 solve Stokes ([u1,u2,p],[v1,v2,q],solver=UMFPACK) =

43 int2d(Th)(mu*(Grad(u1,u2)’*Grad(v1,v2))

44 - div(u1 ,u2)*q - div(v1 ,v2)*p

45)

46 + on(1,u1=0,u2=0)

47 + on(2,u1=(-c*(y^2)+c*(l2^2))/(l2^2),u2=0);

48

49 //plot([u1 ,u2]);

50

51

52 solve streamlines(psi ,phi) =

53 int2d(Th)(dx(psi)*dx(phi) + dy(psi)*dy(phi))

22 Patient-specific blood flow modelling

54 + int2d(Th)(-phi*(dy(u1)-dx(u2)))

55 // + on(1,psi =0)

56 // + on(2,psi =0)

57 // + on(3,psi =0)

58 ;

59

60 plot(psi ,wait =1);

61

62 vel = sqrt(u1^2+u2^2);

63 plot(vel , fill=1, value =1);

64 plot([u1 ,u2]);

65

66

67 // stop test for Newton

68 real eps=1e-6;

69

70 verbosity = 2;

71

72 int n;

73 real err =0;

74 for(n=0;n<20;n++) // Newton Loop

75 {

76 solve Oseen([du1 ,du2 ,dp],[v1,v2,q]) =

77 int2d(Th) (mu*(Grad(du1 ,du2)’*Grad(v1,v2)

)

78 + rho*UgradV(du1 ,du2 , u1, u2)’*[v1

,v2]

79 + rho*UgradV(u1, u2,du1 ,du2)’*[v1

,v2]

80 - div(du1 ,du2)*q - div(v1 ,v2)*dp

81 - 1e-8*dp*q // stabilization term

82)

83 - int2d(Th) (mu*(Grad(u1 ,u2)’*Grad(v1 ,v2))

84 + rho*UgradV(u1,u2, u1, u2)’*[v1,

v2]

85 - div(u1,u2)*q - div(v1 ,v2)*p

86 - 1e-8*p*q

87)

88 + on(1,du1=0,du2=0)

89 + on(2, du1=0, du2=0)

90 ;

91

92 u1[] -= du1 [];

93 u2[] -= du2 [];

94 p[] -= dp[];

95 real Lu1=u1[]. linfty , Lu2 = u2[]. linfty , Lp = p

[]. linfty;

96 err= du1 []. linfty/Lu1 + du2[]. linfty/Lu2 + dp[].

linfty/Lp;

28th ECMI Modelling Week 23

97

98 cout << n << " err = " << err << endl;

99 if(err < eps) break; // converge

100 if(n>3 && err > 10.) {

101 cout << " not converge " << endl;

102 break;

103 } // Blowup ?

104

105 // plot([u1,u2]);

106 }

107

108 streamlines;

109 plot(cmm="streamlines", psi ,wait =1);

110

111 vel = sqrt(u1^2+u2^2);

112 plot(cmm=" [velocity magnitude]", vel , fill=1, value

=1);

113 //plot([u1 ,u2]);

114 plot (cmm="p" ,p, fill=1, value =1);

115

116 vor = abs(dx(u2)-dy(u1));

117 plot (cmm="vortex" ,vor , fill=1, value =1);

118

119 Xh u1n = u1 / vel;

120 Xh u2n = u2 / vel;

121

122 plot(cmm=" [u1n ,u2n]", [u1n ,u2n]);

Time-dependent Stokes equation.edp

1 border f1(t=8.277579470048165 ,3.122414148982325){x=t

;y=0.002358371815112*t^5 -

2 0.065655720087747*t^4 + 0.729627361800546*t^3 -

4.08197654392561*t^2 + 11.856566776041069*t -

3 11.709295757087336; label =1;}

4 border f2(t=0.859452741468984 , -0.981740566055334){x=

(0.341400771151288^(1./2.))*cos(t) +

7.952959033840158; y=

5 (0.341400771151288^(1./2.))*sin(t)

+4.461148557368587; label =1;}

6 border f3(t=0.529128582979014 ,2*pi

-1.952566680840888) {x=((1.281091616344505) ^(1./2.)

)*cos(t)+8.756105018206105; y =

7 ((1.281091616344505) ^(1./2.))*sin(t) +

5.954110697006632; label =1;}

8 border f5(t=12.880766163863337 ,11.008092762240402){x

=t;y= -2.1851851851852*t + 27.97381491146139; label

24 Patient-specific blood flow modelling

=1;}

9 border f6(t=4 ,11.41942696370471){x=t;y

=0.000141915629507*t^7 - 0.007078659134381*t^6 +

0.14697826936389*t^5 -

10 1.653476604852379*t^4 + 10.936743462092085*t^3 -

42.81088073494685*t^2 +

11 92.93661032718971*t - 86.13879673351471; label =1;}

12 border f7(t=11.265838454747 ,9.733174187725922){x=t;

y= 1.863904540127596*t^2 -

13 37.203740366653165*t + 192.0595346933998; label =1;}

14 border f8(t=11.688120335844724 ,12.5) {x=t; y=

0.818080357142857*t^3 - 26.75577731092437*t^2 +

15 291.4957983193277*t - 1051.6302521008404; label =1;}

16 border f9(t=2*pi

-2.739677193250460 ,2.225248502466470) {x=

(4.763099785545185^(1./2.))*cos(t) +

17 13.016633203294978; y= (4.763099785545185^(1./2.))*

sin(t)+4.772829646050528; label =1;}

18 border g1(t=3.122414148982325 ,4){x=t;y

= -1.200267257468735*t + 5.932898265695426;}

19 border g2(t=11.41942696370471 ,12.880766163863337){x=

t;y = 0.332421039275865*t - 4.454882158508418; label

=2;}

20 border g4(t=12.5, 11.265838454747){x=t; y=

-0.164567526760309*t + 11.347313687969192;}

21

22

23 plot(f1(50)+f2(50)+f3(50)+f5(50)+f6(50)+f7(50)+f8

(50)+g1(50)+g2(50)+g4(50)+f9(50));

24

25

26 mesh Th1=buildmesh(f1(50)+f2(10)+f3(50)+f5(30)+f6

(70)+f7(30)+f8(35)+f9(25)+g1(20)+g2(20)+g4(20));

27

28 mesh Th=movemesh(Th1 ,[0.001*2.5*x ,0.001*2.5*y]);

29

30 plot(Th);

31

32

33 // macro operators

34 macro Grad(u1 ,u2) [dx(u1),dy(u1), dx(u2),dy(u2)]//

35 macro UgradV(u1 ,u2,v1,v2) [[u1,u2]’*[dx(v1),dy(v1)]

, [u1 ,u2]’*[dx(v2),dy(v2)]]//

36 macro div(u1 ,u2) (dx(u1)+dy(u2))//

37

38 // macro Gradn(u1n ,u2n) [dx(u1n),dy(u1n), dx(u2n),dy

(u2n)]//

39 // macro UgradVn(u1n ,u2n ,v1 ,v2) [[u1n ,u2n]’*[dx(v1),

dy(v1)] , [u1n ,u2n]’*[dx(v2),dy(v2)]]//

28th ECMI Modelling Week 25

40 //macro divn(u1n ,u2n) (dx(u1n)+dy(u2n))//

41

42 // FE Space

43 fespace Xh(Th ,P2);fespace Mh(Th ,P1);

44 Xh u1,u2,v1,v2 ,du1 ,du2 ,u1p ,u2p;

45 Mh p,q,dp,pp;

46

47 Xh vel;

48

49 real c; // velocity of in flow

50

51 //real tau =0.01; //time

52

53 // Physical properties

54 real mu = 0.0035 , rho = 1060;

55 real Vmean;

56 real Re = 100;

57 real Lc =0.003425;

58 c = Re*mu/(rho*Lc);

59 cout << c << endl;

60

61 real t;

62 real T=2;

63 real n=200;

64 real tau=T/n;

65

66 real[int]viso (2);

67 for(int ii=0;ii <viso.n;ii++)

68 viso[ii]=ii *0.1;

69

70

71 Xh u1o=0,u2o=0,po=0,u1plot ,u2plot;

72 problem Stokes ([u1 ,u2 ,p],[v1 ,v2 ,q],solver=UMFPACK)

=

73 int2d(Th)((rho/tau)*[u1,u2]’*[v1,v2]+0.5*(mu*(

Grad(u1,u2)’*Grad(v1 ,v2))

74 - div(u1 ,u2)*q - div(v1 ,v2)*p))+

75 int2d(Th)(-(rho/tau)*[u1o ,u2o]’*[v1,v2

]+0.5*(mu*(Grad(u1o ,u2o)’*Grad(v1 ,v2))

76 - div(u1o ,u2o)*q - div(v1 ,v2)*po)

77)

78

79 + on(1,u1=0,u2=0)

80 //+ on(2,u1=0,u2=0);

81 //+ on(2,u1=-c*(N.x),u2=-c*(N.y));

82 + on(2,u1=-c*(N.x)*sin (10*t)*sin (10*t),u2=-c*(N.y)

*sin (10*t)*sin (10*t));

83

84

26 Patient-specific blood flow modelling

85 t=0;

86 for (int iii = 0; iii < n; iii++){

87 t+=tau;

88 cout << "t" << t << endl;

89

90 u1o=u1;

91 u2o=u2;

92 po=p;

93

94 Stokes;

95 vel = sqrt(u1^2+u2^2);

96

97 u1plot=u1/70;

98 u2plot=u2/70;

99

100

101 //plot([u1plot ,u2plot],ps=" Magnetude "+iii +". jpg");

102 plot([u1plot ,u2plot]);

103 //plot(vel , fill=1, value=1,ps="Plot"+iii +". jpg",

viso=viso (0: viso.n-1));

104 //plot(vel ,fill=1,value=1,ps="Plot.jpg", viso=viso

(0: viso.n-1));

105 }

Optimization.edp

1 // Observation Error Minimization for Stationnary

imcompressible Stokes Equation with Newton method.

2

3 // ---------------------------------------

4 // I. Load modules:

5 // ---------------------------------------

6

7 load "ff -cmaes"

8

9 // ---------------------------------------

10 // II. Global variables:

11 // ---------------------------------------

12

13 // Mesh properties

14 real L = 10., l = 4.;

15 real l2=l/2;

16 mesh Th;

17

18 // FE Space

19 fespace Xh(Th ,P2);

20 fespace Mh(Th ,P1);

28th ECMI Modelling Week 27

21 Xh u1,u2,v1,v2 ,du1 ,du2 ,u1p ,u2p;

22 Mh p,q,dp,pp;

23 Xh boundaryC1 ,boundaryC2;

24

25 // Physical properties

26 real mu = 0.8, rho = 0.5;

27 real Vmean = 1.;

28 real Re = 100;

29

30 // Simulation and Observation properties and

variables (for optimization part)

31 real c = 0.5; // velocity of in flow

32 real alpha = 0.01; // weight of the regularization

term

33 int numObs =2;

34

35 // Arrays numNodesInflowBoundary , nodesObsLines , etc

. don’t have a lot of physical/mathematical sence ,

36 // they are introduced only to read/compare

observations at the observation lines

37 int numNodesInflowBoundary; // number of dots

on the inflow boundary line

38 int[int] nodesInflowBoundary (0); // to get indices

of inflow boundary dofs

39 int[int] numNodesObsLines(numObs); // (cnumber)

number of dots on the observation lines

40 int[int ,int] nodesObsLines(numObs , 0); // (cMatrix)

// to get indices of observation lines dofs

41

42 Xh u1Sim , u2Sim; // stores the data from observation

lines

43 real [int , int] uObsMat1 (numObs ,2000); // another

format / stores the data from observation lines (x

component)

44 real [int , int] uObsMat2 (numObs ,2000); //

another format / stores the data from observation

lines (y component)

45

46 real[int] control1 , control2;

47

48 // Plotting properties

49 int itNum = 0;

50 int plotEvery = 5000; // intermediate plots

51

52 // ---------------------------------------

53 // III. Mesh

54 // ---------------------------------------

55

56 // build the Mesh

28 Patient-specific blood flow modelling

57 border gamma1(tt=0,L) { x=tt ; y=-l/2; label =1; }

58 border gamma4(tt=-l2 ,l2) { x=L ; y=tt; label =3; }

59 border gamma2(tt=L,0) { x=tt ; y=l/2; label =1; }

60 border gamma3(tt=l2 ,-l2) { x=0 ; y=tt; label =2; }

61 border gamma6(tt=l2 ,-l2){ x=4 ; y=tt; label =5;}

62 border gamma5(tt=l2 ,-l2){ x=1 ; y=tt; label =4;}

63

64 int[int] labels = [2,4,5];

65

66 Th=buildmesh(gamma1(L*2)+gamma2(L*2)+gamma3(l*2)+

gamma4(l*2)+ gamma5(l*2)+gamma6(l*2));

67 plot(Th);

68

69 // ---------------------------------------

70

71 Xh[int] xh (2);

72 xh[0] = x;

73 xh[1] = y;

74 int n = Xh.ndof; // velocity dfom

75

76 // ---------------------------------------

77 // IV. Auxilary functions

78 // (GO TO to the next chapter to skip the details

of implementation)

79 // ---------------------------------------

80

81 // ---------------------------------------

82 // IV.a Standard macro operators

83 // ---------------------------------------

84

85 macro Grad(u1 ,u2) [dx(u1),dy(u1), dx(u2),dy(u2)]//

86 macro UgradV(u1 ,u2,v1,v2) [[u1,u2]’*[dx(v1),dy(v1)]

, [u1 ,u2]’*[dx(v2),dy(v2)]]//

87 macro div(u1 ,u2) (dx(u1)+dy(u2))//

88

89 // ---------------------------------------

90 // IV.b Functions and macros needed

91 // ---------------------------------------

92

93 // the function return the indeces of nodes located

94 // at the border with a label ’label’

95 func int getNodesOnLine(int iLine)

96 {

97 int label = labels(iLine);

98

99 // to generate a vector with 1 on boundary dofs

100 varf von(u,v)= on(label ,u=1);

101 real[int] on1=von(0,Xh , tgv =1); // one on boundary

dofs

28th ECMI Modelling Week 29

102

103 int numNodesOnBorder = on1.sum; // number of nodes

on the line ’label’

104 int[int] nodesOnBorder(numNodesOnBorder);

105

106 int boundaryCounter = 0;

107 for (int i=0;i<n;++i)

108 {

109 if(on1[i])

110 {

111 nodesOnBorder[boundaryCounter]=i;

112 boundaryCounter ++;

113 }

114 }

115

116 cout << "# nodes " << Xh.ndof << "; "

117 << "# nodes on the border " << numNodesOnBorder

<< endl;

118 cout << "Indeces and positions of nodes at the

observation line "

119 << iLine << ": " << endl;

120 for (int n = 0; n < numNodesOnBorder; n++) {

121 cout << nodesOnBorder[n];

122 for (int d = 0; d < 2; d++)

123 cout << " " << xh[d][][nodesOnBorder[n]]; //

x, y

124 cout << endl;

125 }

126

127 // ---------------------------------------

128 // save the results to global arrays

129

130 // Inflow boundary

131 if (iLine == 0) {

132 nodesInflowBoundary.resize(numNodesOnBorder);

133 nodesInflowBoundary = nodesOnBorder;

134 numNodesInflowBoundary = numNodesOnBorder;

135 }

136

137 // Observation lines

138 if (iLine >= 1) {

139 if (nodesObsLines.m < numNodesOnBorder)

140 nodesObsLines.resize (numObs , numNodesOnBorder

);

141 nodesObsLines(iLine -1,:) = nodesOnBorder;

142 numNodesObsLines(iLine -1) = numNodesOnBorder;

143 }

144

145 return 0;

30 Patient-specific blood flow modelling

146 }

147

148 // solve Stokes equation

149 macro solvePDE(control)

150 {

151 convertControlToBoundary(control); /* changes

boundaryC1 ,boundaryC2 */

152

153 /* Initial guess for (u1 , u2) with B.C.*/

154 solve Stokes ([u1 ,u2 ,p],[v1,v2,q],solver=UMFPACK)

=

155 int2d(Th)(

156 (1/Re)*(Grad(u1 ,u2)’’*Grad(v1 ,v2))

157 - div(u1,u2)*q - div(v1,v2)*p

158)

159 + on(1,u1=0,u2=0)

160 + on(2,u1=boundaryC1 ,u2=boundaryC2);

161

162 /* change u1 and u2 on control */

163 }[u1 ,u2]//

164

165 // the function convert a vector control into

166 // compatible for the current program format of

boundary

167 macro convertControlToBoundary(control)

168 {

169 splitControlVectorIntoTwoVectors(control , control1

, control2);

170 for (int n = 0; n < numNodesInflowBoundary; n++) {

171 boundaryC1 [][nodesInflowBoundary[n]] =

control1[n];

172 boundaryC2 [][nodesInflowBoundary[n]] =

control2[n];

173 }

174 }[boundaryC1 , boundaryC2]//

175

176 // auxiliary function for convertControlToBoundary(

control)

177 func int splitControlVectorIntoTwoVectors(

178 /* input */ real[int] & control ,

179 /* output */ real[int] & control1 , real[int] &

control2)

180 {

181 int obsLength = control.n/2;

182 control1.resize(obsLength);

183 control2.resize(obsLength);

184

185 for (int i = 0; i < obsLength; i++)

186 {

28th ECMI Modelling Week 31

187 control1[i] = control[i];

188 control2[i] = control[i + obsLength];

189 }

190

191 return 0;

192 }

193

194 // plot the current solution u

195 func int plotSolution ()

196 {

197 Xh mag=sqrt(u1^2+u2^2); // for a magnitude plot

198 plot([u1 ,u2],value =1);

199 plot(mag ,value=1, fill =1);

200 return 0;

201 }

202

203 // run the simulation with an inclined parabola at

the inflow border

204 func int runSimulation () {

205

206 real[int] cInitX(numNodesInflowBoundary);

207 real[int] cInitY(numNodesInflowBoundary);

208 real[int] cInit2 (2* numNodesInflowBoundary);

209

210 real xx , yy;

211 for (int n = 0; n < numNodesInflowBoundary; n++) {

212 yy = xh [1][][nodesInflowBoundary[n]];

213 //xx = xh [0][][nodesInflowBoundary[n]];

214

215 cInitX(n) = (-c*(yy^2)+c*(l2^2))*cos(-pi/6);

216 cInitY(n) = -(-c*(yy^2)+c*(l2^2))*sin(-pi/6)

;

217

218 cInit2(n) = cInitX(n);

219 cInit2(n+numNodesInflowBoundary) = cInitY(n);

220 }

221

222 solvePDE(cInit2);

223 plotSolution ();

224

225 return 0;

226 }

227

228 // save the results of simulation as observation

229 func int getObservationsFromSimulation ()

230 {

231 real yy;

232 for (int k = 0; k<numObs; k++){

233 for (int j = 0; j < numNodesObsLines[k]; j++) {

32 Patient-specific blood flow modelling

234 uObsMat1(k,j)= u1[][nodesObsLines(k,j)];

235 uObsMat2(k,j)= u2[][nodesObsLines(k,j)];

236 }

237 }

238

239 u1Sim = u1;

240 u2Sim = u2;

241 return 0;

242 }//[u1Sim ,u2Sim ,uObsMat1 ,uObsMat2]

243

244 // compute errors on the whole domain , inflow and on

observation lines

245 func real[int] computeError () {

246 real[int] error (3);

247

248 error (0) = int2d(Th)

249 (

250 sqrt(

251 (u1Sim - u1)^2

252 + (u2Sim - u2)^2

253)

254 /

255 sqrt(

256 (u1Sim)^2

257 + (u2Sim)^2

258)

259);

260

261 error (1) = int1d(Th,gamma3)

262 (

263 sqrt(

264 (u1Sim - u1)^2

265 + (u2Sim - u2)^2

266)

267 /

268 sqrt(

269 (u1Sim)^2

270 + (u2Sim)^2

271)

272);

273

274 error (2) = int1d(Th,gamma5)

275 (

276 sqrt(

277 (u1Sim - u1)^2

278 + (u2Sim - u2)^2

279)

280 /

281 sqrt(

28th ECMI Modelling Week 33

282 (u1Sim)^2

283 + (u2Sim)^2

284)

285)

286 + int1d(Th,gamma6)

287 (

288 sqrt(

289 (u1Sim - u1)^2

290 + (u2Sim - u2)^2

291)

292 /

293 sqrt(

294 (u1Sim)^2

295 + (u2Sim)^2

296)

297);

298 return error;

299 }

300

301 func real[int] setInitialControlToZero () {

302 itNum = 0;

303 real[int] cInit (2* numNodesInflowBoundary);

304 for (int n = 0; n < numNodesInflowBoundary; n++) {

305 cInit(n) = 0;

306 cInit(n+numNodesInflowBoundary) = 0;

307 }

308 return cInit;

309 }

310

311 // returns J = || u_Obs - u|| + alpha * || grad(u)|_c

||^2

312 func real evaluateCostFunctionalJ () {

313

314 real cost =0;

315

316 Xh du1x = dx(u1);

317 Xh du1y = dy(u1);

318 Xh du2x = dx(u2);

319 Xh du2y = dy(u2);

320

321 for (int k = 0; k < numObs; k++)

322 {

323 for (int j=0;j<numNodesObsLines[k];j++)

324 {

325 cost +=

326 abs(

327 sqrt(

328 (uObsMat1(k,j) - u1[][nodesObsLines(k,j)])

^2

34 Patient-specific blood flow modelling

329 + (uObsMat2(k,j) - u2[][nodesObsLines(k,j)])

^2

330)

331)

332 + alpha *

333 abs(

334 (du1x [][nodesInflowBoundary[j]])^2

335 + (du1y [][nodesInflowBoundary[j]])^2

336 +

337 (du2x [][nodesInflowBoundary[j]])^2

338 + (du2y [][nodesInflowBoundary[j]])^2

339)

340 ;

341 }

342 }

343

344 return cost;

345 }

346

347 // ---------------------------------------

348 // V. Cost Function

349 // ---------------------------------------

350

351 func real J(real[int] & control)

352 {

353 // ---------------------------------------

354

355 // solves PDE (Stokes here) with the inflow

boundary condition ’control’

356 solvePDE(control);

357 // evaluate the cost functional J using

358 // * the solution obtained by solvePDE(control

) above

359 // and * the observation data (obtained from a

simulation here)

360 real cost = evaluateCostFunctionalJ ();

361

362 // ---------------------------------------

363 // print and plot:

364

365 cout << "J ="<< cost << " control =" << control1

(0) << " " << control1 (1) << "...\n" ;

366 if (itNum % plotEvery == 0) plotSolution ();

367 itNum ++;

368

369 // ---------------------------------------

370

371 return cost;

372 }

28th ECMI Modelling Week 35

373

374 // ---------------------------------------

375 // VI. Main program

376 // ---------------------------------------

377

378 // ---------------------------------------

379 // VI.0) Get indeces of nodes at observation lines

and the inflow border.

380 // It is a technical solution with no

mathematical sence in it.

381

382 for (int i=0 ; i<= numObs; i++){

383 getNodesOnLine(i);

384 }

385

386 // ---------------------------------------

387 // VI.1) SIMULATION

388

389 runSimulation ();

390 getObservationsFromSimulation ();

391

392 // ---------------------------------------

393 // VI.2) OPTIMIZATION

394

395 // We start from cInit (the control , initial flow)

being a rendom vector around 0

396 real[int] cInit = setInitialControlToZero ();

397 // The function cmaes performs optimization given

398 // * a cost function J (solvePDE with cInit +

compute the cost functional)

399 // and * a control vector cInit

400 real min = cmaes(J,cInit ,stopTolFun =1e-3,

stopMaxIter =500, seed =1);

401

402 // ---------------------------------------

403 // VI.3) RESULTS

404

405 cout << "minimal value is J = " << min << endl;

406 plotSolution ();

407 real[int] error = computeError ();

408 cout << "Error whole domain: " << error (0) << endl

;

409 cout << "Error inflow boundary: " << error (1) <<

endl;

410 cout << "Error observation lines: " << error (2) <<

endl;

	Patient-specific blood flow modelling
	Introduction
	Cardiovascular system and diseases
	Model
	Assumptions
	Mathematical model for blood flow
	Weak Formulation

	The Newton Method
	Time dependent Stokes Equation
	Results
	Time dependent Stokes Equation

	The Observation Error Minimization
	Problem Motivation
	Problem Formulation
	Discretization and Algorithm
	Observation Data
	Optimization Procedure and Results

	Conclusions
	Code
	Navier-Stokes Stenosis.edp
	Time-dependent Stokes equation.edp
	Optimization.edp

