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Abstract

A rectangular shaped parking lot located outside an office is simulated in
Matlab, R and python. We investigate parking time with respect to time of
the day, geometry and size of the parking lot, greediness levels of the drivers
and the preference map of the parking lot, using two different models. In
parallel, an analytical approach is made, using Game theory. It is found
that greediness is the factor that affects the parking time the most. Future
work includes simulations with multiple cars searching for a parking place
simultaneously and investigations of different shapes of parking lot. It can
be concluded that it is not worth to be greedy!
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8.1 Introduction

Imagine entering the parking lot located outside your office. Are you one of
those people who wants to park your car as close to the entrance of the office
as possible? Have you ever asked yourself a question what affects the time
it takes for you to find an empty parking place? In this project the main
question is how much time it takes to park at a parking lot depending on
characteristics of both the parking lot and the drivers entering the parking
lot. The characteristic of a driver include driving rule (how a driver drives
within the parking lot) and greediness (i.e., a measure of the driver’s eager-
ness to park in a specific parking space), and the characteristics of parking
lot include (1) geometry of the parking lot and (2) preference map (map
indicating the different levels of parking preference of drivers), (3) parking
lot dimension or size of the parking lot, and (4) the number of entrances to
the market/office.

In this project five research questions are of interest:

1. How does the level of greediness affect the parking time?

2. How does the dimension or size of the parking lot affect the parking
time?

3. How does the parking time change by different time of a day?

4. How does the geometry of the parking lot affect the parking time?

5. How does the different preference map of parking lot affect the parking
time?

We tackle above questions numerically using Matlab, R and python.
The simulations in Matlab and R are based on the same model, hereafter
named Model 1, whereas the simulations in Python are based on a second
model, Model 2. In section 8.5, we introduce mean-field game which can
potentially give an analytical solution. Finally, in the Conclusion and Future
Work section, we discuss about future work on these type of parking lot
simulations.

8.2 Model Specification

In all investigations in this project, the parking lot is rectangular. The cars
can only park from one direction, meaning that each row in the parking lot
only has one line of cars. The parking lot is simulated during ten hours,
from 8am to 6pm. For each research question described in the introduction,
the simulation is repeated 365 times, simulating collection of data from one
year.
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The cars are assumed to arrive to the parking lot according to an expo-
nential distribution. In the models in this project only one car tries to find
a free place at the parking lot at the time. The frequency of arriving cars
are higher in the morning than later during the day, since we think of the
parking lot as located outside an office where most of the employees arrive
during the first part of the day. The distribution of the relative frequencies
throughout the day is shown in Figure 8.1a. Moreover the intensity of cars
is dependent of the size of the parking lot. The frequency of cars is higher
for a larger parking lot than for a smaller one.

Every car stays at the parking lot a random amount of time, which
is chosen from a uniform distribution, starting from the time that the car
arrives to the parking lot and ending at 6pm (when the parking lot is closing).

Greediness levels are first assumed to be uniformly distributed on the
interval [0, 1]. In a second assumption the greediness levels of the drivers
are chosen from a shifted beta distribution with a mean of 0.74, as shown
as a histogram in Figure 8.1b. The parking time is the relative time it takes

(a) Relative frequencies of arriving cars
throughout the day (b) Shifted beta distribution

Figure 8.1

for a car to find a place to park at (time for driving to this position in the
parking lot grid and decision making along the way), not including the time
it takes to actually park.
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(a) Model 1. Office is located at the top
of the picture. Black represents an empty
and blue an occupied parking lot. The
entrance is located in the bottom right
corner.

(b) Model 2. Office is located at the bot-
tom of the picture Red represents a car,
green an empty parking lot and blue the
road on which the cars can go. The en-
trance is located in the upper left corner.

Figure 8.2: Visualisation of the different simulations based on the the two
models.

8.3 Model 1 - Matlab and R

Description

Figure 8.3: The rules of movement of cars in the Model 1
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In this section we will describe how the Model 1 was implemented.

The first assumption that we made was that the Office was located at
the top of the parking lot and that there were many entrances so that the
parking preference was linearly decreasing from the first line down to the
bottom line.

As one can note from the Figure 8.3 the parking lot entrance is located
in the bottom right corner.

As described in the Section 8.2 the cars are assumed to arrive to the
parking lot according to an exponential distribution. Once the Time of the
day corresponds to the next randomly generated Arrival time a new Struct
car is created, hereafter named New car, with the following attributes

1. Position row

2. Position col

3. Greediness : Randomly generated according to the rules explained in
the Section 8.2

4. Arrival time : Time of the day when the New car is generated

5. Finding time : Time that the New car needs to find the parking
place where it will park

6. Time to leave : Time of the day when the New car leaves the park-
ing lot, randomly generated between the moment when the New car
parked, i.e., Arrival time + Finding time and the time when the
parking closes

7. M indx : When the New car parks add 1 to the Parking lot reference
matrix in the position where it parked (Position row, Position col),
and add 0 to the same position when the New car leaves the parking
lot.

So let us describe the dynamic of the movements. After a car has been
created it enters in the bottom right corner and starts to move on the column
as shown in the Figure 8.3 until its greediness level is lower or equal to the
parking preference of one line.

A. When this happens, flip a coin that decides if the car has to try to
park on that line or move forward.

B. If the car decides to move forward, move to the next line and

(a) If it has not yet arrived in the first line, do point A.

(b) If it has arrived to the first line, tries to park.
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C. If the car enters in one line, i.e. it tries to park

(a) Park in the first free place. When the New car has found a
parking place, calculate the finding time and add it to
New car.finding time. Generate also randomly a time to leave
and add it to New car.time to leave.

(b) If the line is full (in our Figure 8.3 the car is now situated in
the left side of the parking) add that line to the visited lines of
the New car and move forward, do point A. until the car finds a
parking place or it arrives in the first line.

D. If a car arrives in the first line, and can not find a free place, it starts
to move backward and tries to park into the first line that it has not
yet visited. If in that way the New car arrives down to the last line
it simply leaves the parking lot.

When the Time of the day corresponds to some of the cars.time to leave
(in Figure 8.3 displayed as Leave at ## : ##) they leave the parking,
i.e., empty that Positions, putting a 0 in the corresponding position of the
Parking lot reference matrix.

Result and Discussion

How does the dimension or size of the parking lot affect the parking time? To
investigate this question the geometry of the parking lot is kept rectangle
horizontal with ratio 1:2. The number of cars increases when the size of
the parking lot increases. In this model the greediness levels of drivers are
chosen from the beta distribution shown in Figure 8.1b. The parking lot is
changed from 10 by 20 dimension to 40 by 80 dimension. In Figure 8.4 there
are six different sizes of parking lots. Histograms show that the larger the
parking lot the longer the time is needed for the drivers to find a parking
place. It is shown that for the small parking lot with dimension 10 by 20
the driver needs only 65 - 72 steps on average for finding a parking place,
whereas for the average dimension of parking (25 by 50) the most drivers
need 320 - 330 steps to find the place and for the largest parking it takes
720 - 730 steps.

How does the time of the day affect the parking time? To answer this
question it was assumed that the parking lot has dimension 16 by 16. The
greediness levels of the drivers have again the beta distribution described in
section Model Specification and the preference map is linear. The time of
day was divided by hours from 8 a.m. to 6 p.m. In the histograms in Figure
8.5 it is shown that from 8 a.m. to 9 a.m, shortly after when the parking
lot opens, the intensity of cars is high and a lot of parking places are free,
resulting in that almost all cars find a parking place quickly. From 10 a.m.
to 11 a.m. it is more difficult to find a parking place, as almost all places
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Figure 8.4: Visualization of dependence between the average time for finding
parking place and the size of the parking lot

Figure 8.5: Visualisation of dependence between the time for finding parking
a place and the intensity of cars, depending from times of day

are occupied. In the middle of the day (12 to 13 p.m.) the time for finding
a parking place is different due to that some cars are leaving the parking
during lunch time and at the same time a lot of cars arrive. At the end of
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the day it is easier to find a parking place and the driver needs only 50 steps
on average. In the last graph in Figure 8.5 it is shown how much time the
driver needs on average to find a place at different hours during the day.
The graph shows that in the middle of the day the driver needs the longest
time for finding a place for his car.

How does the greediness level affect the parking time? To answer this ques-
tion it was assumed that the dimensions of the parking lot are 10 by 10. In
the first approach we compared the average finding time (throughout the
whole day between 8 a.m and 6 p.m.) for people with different greediness
levels linearly distributed between 0 and 1. As it is shown in the Figure 8.6,
people with higher greediness levels need more time to find their parking
spot. It is worth noting that we can see a lot of outliers in the plot at each
greediness level. This is caused by the fact that several drivers arrived to
an almost full parking lot, so it took a lot of time to find a free place. What
is more, the average utility of the less greedy drivers– defined as difference
between preference level of the place eventually taken and their greediness
coefficient – is lower. This indicates that being less greedy is a good strat-
egy – you need less time to find a parking spot and you obtain more utility
afterwards.

Figure 8.6: The first plot shows the drivers greediness and finding time.
Average finding time for each greediness level is marked with a red line. In
the second chart the drivers greediness and utility obtained after finding a
place was plotted.

In the second approach, we compared distributions of finding times in
two cases:
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a) all drivers have greediness coefficients equal to 0.2

b) all drivers have greediness coefficients equal to 0.8

Boxplots of these distributions are shown in Figure 8.7. In the case a)

Figure 8.7: Boxplots of the finding time distributions in case when all drivers
have greediness equal to 0.2 (red) and when all drivers have greediness equal
to 0.8 (blue). First quartiles, medians and third quartiles of the distributions
are presented.

the average finding time was equal to 32.26 minutes, while in the case b)
in was equal to 37.29 minutes. It can be also observed that the variance
of distribution obtained in the first case is significantly higher than in the
second case as there is a large group of people who find their parking spot
very quickly. On the other hand, in the case b) there are very few people
able to find a free place in less than 30 minutes (about 25% of the drivers).
This happens because according to the procedure described above, if we
assume that greediness is equal to 0.8, each car begins to look for a free
place in the third, second or first line. This means that each driver starts
his search from travelling to one of the first three rows. Furthermore, after
first few hours the most desired rows are already occupied. That is why for
new drivers entering the parking lot it is pointless to travel to one of the
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first lines as they are still forced to take their place in a less attractive row.
Those drivers lose a huge amount of time trying to find a desired place – if
they were less greedy, the algorithm would allow them to find their place in
a shorter time (on average). Hence, we can deduce that in this case being
less greedy brings benefits for the drivers society.

8.4 Model 2 - Python

As we introduced in the beginning, we would like to tackle two questions:
(1) How does the different geometry of the parking lot affect the parking time,
and (2) how does the different preference maps affect the parking time? We
tackled those questions using slightly different model, which we would like
to describe in the following.

Description of model

Figure 8.8: Illustration of a parking lot. Green lines are parking lines,
which consist of 19 parking spaces except the foremost line (the green line
at the bottom of the figure) which has 21 parking spaces. Parking lines are
separated by road (blue). Red square indicates a car.

We have rectangular parking lot, of which the size is 20×21. The example
is given in Fig. 8.8; parking lines (green line) are separated from each other
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by one road (blue line); therefore, the number of the parking lines is ten.
Each parking line is consisted of 19 parking spaces, except the frontmost line
(the lowest row) which composes of 21 parking spaces. Each parking space
has a preference that is decided by preference function, which is dependent
on the geometry of the parking lot and the location of the destination (see
section 8.4). A driver enters the parking lot from the top-left corner, which
is indicated as a red square in Fig. 8.8. The common characteristic with
the driver in Model 1 is that a driver will park at a parking space which has
preference not smaller than the driver’s greediness. However, the movement
rule is very simple compared to Model 1; a driver keeps driving forward until
it arrives at intersection. Once at intersection, the driver randomly choose
any direction except the direction which leads the driver to its location at
the previous time step. Therefore, a driver does not go backward in any
case, but it is possible that the driver does not drive toward the front line
but toward the rear line. For each experiment, we run the simulation for 10
hours a day (i.e., 36, 000 seconds a day), throughout a year (i.e., 365 days),
and any cars left at the end of a day is removed from the parking lot before
the beginning of the next day. We calculated the average time to park over
all cars that succeeded to park. Cars that did not park in parking lot is thus
dismissed in this work.

Effect of change of geometry on the time to park

Geometry can be changed in various ways. It can be done by changing
the shape of the boundary of the parking lot, but also it can be done by
adding shortcuts as in Fig. 8.9a. We focussed on the latter, thus we changed
the geometry of the parking lot by cutting each parking line which creates
a shortcut from one parking line to another parking line.1 By increasing
the number of cuts in each parking lines, we investigated how the average
time to park (i.e., average time to find a parking space) changes. We added
1, 2, 3, 4, 5 and 8 cuts in each parking line, and investigated how the average
time to find a parking space changes.

As one can observe from Fig. 8.9b, up to 4 cuts, the time to park gets
shorter, which means in a parking lot of size 20 × 21, it gets more efficient
for a driver to find a parking space if you increase the number of cuts up
to 4. However, the time to park increases after 4 cuts. In a finite parking
space, if the number of cuts is below certain level, then it gets more efficient
for a driver to move forward and find more satisfactory parking space (i.e.,
parking space that has higher preference than the driver’s greediness), thus

1As we have limited size of the parking lot, we cut each parking lines by getting rid of
parking spaces as many as the number of cuts. This way, we actually reduce the number
of available parking spaces, but it is realistic trade-off between equity and efficiency; either
to increase the number of available parking spaces or to increase the mobility of the cars
to find a place in parking lot, when the size of parking lot is set constant.
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(a) (b)

Figure 8.9: (a) The illustration of the parking lot after adding one cut to
the parking lines. (b) The change of parking time by increasing the number
of cuts in the parking lines.

shortens the time to find a parking space. However, if there are too many
cuts, then the chance gets higher for a driver to move not only forward
but also backward, which decreases the possibility for a driver to find the
satisfactory parking space, which is near the frontmost line. Therefore,
after certain number of cuts, the efficiency decreases and the time to park
gets longer. The critical number of cuts that has the smallest time to park
depends on the geographic restriction: the critical number of cuts gets larger
with increasing the size of parking lot.

Effect of different preference map on time to park

Next we investigated how different preference maps have influence on the
parking time. We changed preference map by changing the preference func-
tion φ that decides the preference of each parking location (x, y) where x
is the horizontal distance from the left end, and y is the vertical distance
from the bottom end. Except for uniform preference function, all preference
functions are decreasing function by the vertical distance y from the front
row, which is the place where we assume that the destination is located. We
tried four different preference functions: uniform preference, linear prefer-
ence, quadratic preference and radial preference.

• Uniform preference (Figure 8.10a): All locations in the parking lot
have the same preference as φ(x, y) = 1, therefore drivers would park
anywhere.

• Linear preference (Figure 8.10b): The preference of parking space
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(a) (b)

(c) (d)

Figure 8.10: Preference maps with different preference functions. (a) Uni-
form preference map where all location in the parking lot have the same
preference of 1. (b) Linear preference map where the preference decreases
linearly, and (c) quadratic preference function where the preference decreases
by the order of two. (d) Radial preference map where the preference de-
creases from the centre of the front row toward any direction.

φ(x, y) follows a linearly decreasing function2

φ(x, y) =
y

r

where r is the height, which is the number of rows (20 in this case) of
the parking lot.

• Quadratic preference (Figure 8.10c): The preference function is

φ(x, y) =
y

r

2

where the preference decreases by the order of two.

2In all other experiments in this work, we use the linearly decreasing preference func-
tion.
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• Radial preference (Figure 8.10d): The preference function is

φ(x, y) =
y

r
+

1−
∣∣x− c

2

∣∣
c
2

where c is the width (i.e., the number of columns) of the parking lot
where the preference decreases linearly from the center of the front
row toward all directions3.

Figure 8.11: Histogram of time to search for a place in a parking lot, by
different preference maps. Dashed lines indicate the average time to find
a parking space for each preference map: uniform preference (red), linear
prefernce (green), quadratic preference (yellow) and radial preference (blue).

As one can observe from Fig. 8.11, one can observe that the frequency
of the cars which park decreases radically with the increase of time to park,
which shows that most of the cars park in relatively short period of time.
However, we did not try fitting the data into either exponential curve or
power-law curve, thus we do not know what distribution the histogram fol-
lows. The average time to park by different preference maps are indicated by

3It is not exactly radial as the functional form of the radial preference map does not fol-
low radial function, however we named it radial preference map as the preference decreases
toward any direction.
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different coloured dash lines, and they show that the parking time is small-
est when a driver does not care where to park (i.e., when the preference of
all parking spaces is one), and it takes the longest time if only one parking
space at the centre of the front row gives the highest utility to a driver and
less in other spaces further from the centre. Also, drivers take less time to
park when the preference decreases linearly than quadratically.

8.5 Analytics

We will present the reader with gentle heuristic introduction to mean field
games, omitting technical issues, and try to make some suggestions why the
given abstract mathematical framework possibly could happen to be a suit-
able model for the parking lot or similiar dynamics.Mean field games is a
relatively novel mathematical field involving a system of partial differential
equations, which are used to discribe the behaviour of multiple agents each
individually trying to optimise their position in space and time, while their
preferences are being partly determined by the choices of all other agents,
in the asymptotic limit when the number of players goes to infinity. For
example, each agent in traffic congestion tries to get from point A to point
B in the shortest path possible, but the speed (or more generally the velocity
vector) at which one can travel depends on the density of the other agents
in the area. Under some assumptions, mean field games can be expressed
as a coupled system of two equations, a Fokker-Planck type equation evolv-
ing forward in time that governs the evolution of the density function m
of agents, and a Hamilton-Jacobi-Bellman evolving backward in time that
governs the comptutation of the optimal path of each agent.

Before considering mean field games, let us consider a more classical
problem in calculus of variations, namely that of a single agent trying to
optimise his or her path in spacetime with respect to a fixed cost function,
which the agent is trying to minimise.

Suppose that an agent is at some position x(0) at time t = 0 in some
domain, for example Rd, and would like to end up at some better position
x(T ) at a later time t = T > 0. When modeling this, we imagine that each
location x ∈ Rd has some cost u(T, x) ∈ R at the time T , which is small
when x is a desirable position and large otherwise. If the transportation
was not a problem, this is a straightforward problem to solve. One simply
finds the value of x(T ) that minimises u(x(T )) and then the agent takes an
arbitrary path, for example the straight line connecting the points x(0) and
x(T ) with constant velocity.

But now let us suppose that there exists transportation cost in addition
to the cost of the final location. For instance, moving at too fast a velocity
or wrong direction could incur an energy cost. To model this, we introduce
a velocity cost function C : Rd → R, where C(v)dt measures the marginal
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cost of moving at a given velocity v for time dt and then define the total
cost of a trajectory x : [0, T ]→ R by the formula

u(x(T ), T ) +
∫ T
0 C(x′(t))dt

This is a simplified model, where the cost depends on velocity and not on
position and time, but let us work with it in the current discussion.

A model example cost function C could be the following quadratic one
C(v) = 1

2 |v|
2. In the given situation, the agent should move in a straight line

at a constant velocity to a location x(T ) having low final cost u(x(T )) but
which is reasonably close to the initial position x(0). The last observation
implies that the global minimum for the final cost is no longer the best
place to strive for, as it may be so far away that the the transportation cost
exceeds whatever cost savings one can get from the final cost.To avoid some
technical issues, we will assume C to be stricly convex and even. A possible
way to find the optimal trajectory is to solve the Euler-Lagrange equation
associated to the functional given above, with the boundary condition that
the initial position x(0) is fixed. Thus, we obtain an ordinary differential
equation for x(t), which can be solved by different methods. Another idea
is to generalise the initial time 0 to any time t0 between 0 and T . For any
given t0 between 0 and T and x0 ∈ Rd define the optimal cost u(t0, x0) at
the point (t0, x0) in spacetime to be the infimum of the cost

u(x(T ), T ) +
∫ T
t0
C(x′(t))dt

over all smooth paths x : [t0, T ] 7→ Rd starting at x(t0) = x0 and with an
arbitrary endpoint x(T ). The latter means what the agent would place on
being at the point x0 at time t0 regardless of the initial position x(0) when t0
is positive number.By definition,when t0 = T , the optimal cost at x0 is equal
to the final cost at x0, which justifies using the same notation u to denote
both. Thus, the final cost u(T, ·) can be viewed as a boundary condition for
the optimal cost.

It turns out that (under some assumptions and given that t0 is less than
T ) the optimal cost function u satisfies a partial differential equation, known
as the Hamilton-Jacobi-Bellman equation

−∂tu(t0, x0) +H(∇xu(t0, x0)) = 0

where H : Rd 7→ R represents the Legendere transform of C : Rd 7→ R,i.e.

H(p) := sup
v∈Rd

v · p− C(v)

Given that C is stricly convex it follows thatH is well-defined function. Once
we solve this equation, we can work out the optimal velocity v = v(t0, x0)
to travel at each point (x0, t0). It can be shown that v = −H ′(∇xu). Let us
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suppose that the agents steering mechanism may be subject to a little bit of
random fluctuation, so that if the agent wishes to go from x0 to x0 + vdt in
time dt instead ends up at x0 + vdt + σdBt, where dBt is the infinitesimal
of a standard Brownian motion in Rd. With this stochastic model, the total
cost is now a stochastic quantity rather than a deterministic one, and so the
rational thing for the agent to do is to minimise the expectation of the cost.
In this case, the Hamilton-Jacobi-Bellman equation takes on the following
form

−∂tu− 1
2σ

2∇2u+H(∇xu) = 0

for the expected optimal cost and the optimal velocity is still equal to
−H ′(∇xu).

Now let us suppose that there are a huge number N of agents distributed
throught the space and all of them have identical motivations, i.e. they are
trying to minimise the same cost function.

Rather than dealing with each of the agents separately, we will pass
to a continuum limit N →∞ and consider the normalised density function
m(t, x) of the agents, which is a non-negative function satisfying

∫
Rd m(t, x)dx =

1 for each t. Intuitively, the number of agents in an infinitesimal box in space
[x, x+ dt] should be approximately equal to Nm(t, x)|dx|.

The Fokker-Planck equation evolving forward in time that governs the
evolution of the density function m of the agents is the following one:

∂tm(t, x) +∇ · (mv)(t, x) = 0.

If once again we add random noise to the agents movements the above
equation transforms into

∂tm(t, x)− 1
2σ

2∇2m(t, x) +∇ · (mv)(t, x) = 0.

To obtain a mean field game model, we should take into account that in the
presence of other agents throughout the space the cost function of each one
of them should depend on the density function m of all the other agents.
There many ways to generalise the single agents model. The simplest one
would be an additive model, in which the cost function is replaced with the
following one

u(x(T ), T ) +
∫ T
0 C(x′(t))dt+

∫ T
0 F (m(t, x(t)))dt,

where F : R+ → R represents the marginal cost to an agent of having a
given density at the current location. Intuitively, if F is increasing this
means that the agent prefers to be away from the other agents. Conversely,
a decreasing F should lead to attractive effect.

The Hamilton-Jacobi-Bellman equations can be derived for this cost
functional by a similar analysis to before, leading to the equation
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−∂tu− 1
2σ

2∇2u+H(∇xu) = F (m).

Given that the optimal velocity field v is still equal to −H ′(∇xu),the Fokker-
Planck equation becomes (after reversing sign)

−∂tm+ 1
2σ

2∇2m+∇x · (mH ′(∇xu)) = 0)

The system of these two equations, with the final data u(T, x) for u at time
T , and initial data m(0, x) for m at time 0, is an example of a mean field
game. The backward evolution equation represents the agents decisions
based on where they want to be in the future and the forward evolution
equation represents where they actually end up, based on their initial dis-
tribution.

As for the parking lot or similiar dynamics applying or at least trying
to apply mean field approximation heavily relies as a first step on choos-
ing appropriate cost functional. It is crucial to come up with explicit cost
function, which penalises a drivers movement when not complying with the
prescribed parking lot geometry or taking into account the locations of the
other drivers.For instance,if an agent enters highly dense area then it is pos-
sible to employ by adding it to the cost functional the following integral:∫
|x0−x|<ε|x0 − x|

−1m(t, x)dx. In general, we can think of the cost u(t, x)
as a function incorporating the individual agents preferences, but still it is
possible to reflect their motiviations by adding appropriate terms to the cost
functional. When entering subspace where u is a constant then it would be
reasonable to consider the equations describing the behaviour of each driver
when their movements are subject to random fluctuations.

8.6 Conclusion and Future Work

The main idea of the project was to study how different characteristics of
the drivers and the parking lot itself influences the time to find a parking
place. A comparison between very greedy and less greedy drivers was made
and from the simulations it comes out, that on average, the less greedy ones
faster finds a parking place. In addition to that, comparing the different
greediness levels vs. the drivers utility (defined as preference level of the
parking place eventually taken − drivers greediness) it is also shown the
more greedy one is the less happy he is.

Since arrival time of cars during the day is not uniformly distributed,
the arrival frequency was set higher in the first hours of the day, when the
parking lot opens (8−9 a.m.), and then decreased till its minimum in the last
hours before the parking lot closes (6 p.m.). In this case, at the beginning of
the day drivers do not need so much time to find a parking place since the
parking lot is empty. But due to the high arrival frequency it gets full soon
so the time to find a parking place dramatically increases in the next few
hours till it reaches its maximum around (12 a.m. − 1 p.m.). Then, since
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the arrival frequency decreases while the leaving frequency is increasing the
time for finding starts to decrease and continue with the same trend till the
end of the day.

The dependence on the parking lot itself was inspected and it comes out
that the increase of its size leads to longer times to find a free suitable place.

It is shown that the change of geometry by adding cuts in each parking
lines shortens the time to park up to certain level, but then it lengthens the
time to park after that level. It means that some number of cuts can make
parking efficient as the chance to find satisfactory parking space increases
with the increase of the number of cuts, however too many cuts lessens the
chance to find a satisfactory parking space.

Average time to park can also change by varying preference map, but
it was generally observed that the frequency rapidly drops as time to park
gets larger, which shows that most of the cars park in a short period of time.

It can be concluded that is not worth to be greedy!

Some future works that can be made starting from this project are:

• Studies of differently shaped parking lots.

• Studies of parking lots with more levels.

• Simulations where multiple cars arrive to the parking lot and search
for an empty place simultaneously.

• Considering in the model also that during the different seasons/days
the arrival frequency could also change.


