
European Consortium for Mathematics in Industry

28th ECMI Modelling Week
Final Report

19.07.2015—26.07.2015
Lisboa, Portugal

Group 9

Reduce OD matrix
dimensions (Railway
context)

Anastasia Pavlova
Lappeenranta University of Technology

Mario Cekic
University of Novi Sad
Nathan Eizenberg
University of Oxford
Stephanie Nargang

Technische Universität Dresden
Quanjiang Yu

Chalmers University of Technology
Roman Stasiński

University of Warsaw

Instructor: João Gouveia
CMUC, University of Coimbra
Instructor: Elsa Carvalho

SISCOG

2

Abstract

Line planning is a classical optimization problem in the design of a public
transportation system. It involves the selection of paths in the railway
network on which train lines are operated. The aim is to select a set of lines
with corresponding operation frequencies, such that a given travel demand
can be satisfied. This demand data is usually given for pairs of origins
and destinations in a so-called origin-destination matrix (OD matrix).To
make it easier to work with real and big instances, a possible approach is to
reduce the original dimension of the OD matrix, removing certain stations
and adapting demand accordingly. This report presents different methods
capable of reducing the OD matrix dimension, given a set of constraints
that must be met and an optimization criterion that minimizes the cancelled
demand and the transferred demand between stations. The implementations
of the various approaches are given and tested with realistic data supplied
by SISCOG.

2 Reduce OD matrix dimensions (Railway context)

9.1 Introduction

In the modelling of transportation systems, the origin-destination (OD) ma-
trix describes the commuter demand between every pair of destinations in a
network. The commuter demand information is used to maximise efficiency
of the transport network when developments are made. Within the railway
context the OD matrix is particularly important when designing a high-
speed train system on top of an existing network. The logistics software
company SISCOG designs software systems for major railways networks
including the Lisbon metro, London underground and other international
networks around the world. A particular problem that SISCOG has pro-
posed is the grouping of stations within a network to reduce commuter
demand within a group whilst still partitioning the network into a smaller
number of groups. Mathematically, this corresponds to reducing the OD
matrix and absorbing the demand between stations into and between the
new group structures. This report explores some novel algorithms that re-
duce any given OD matrix by grouping stations in order to minimise a cost
function supplied by SISCOG. We introduce the algorithms, compare them
numerically and present their solutions to the OD matrix reduction problem
as tested on four railway networks.

In the first section of this report we formulate the problem and introduce
the relevant mathematical background. In the next section we describe our
naive approaches to the problem, starting with algorithms that make greedy
choices at each iteration. We then outline some more sophisticated varia-
tions that employ approximations in order to reduce their computational
cost. In Section 9.3 we describe a different approach that utilises similar so-
lutions to the well known Facility Location problem to approximately solve
our problem. In Section 9.4 we present numerical results for each of our
algorithms’ performance in time and optimal solution cost function value.
In Section 9.5 we discuss methods of post-processing that aim to improve
near optimal solutions and to determine if the solutions are local or global.
In the final section we discuss possible developments for the project.

Background

For the purposes of line-planning and partitioning of a railway network,
the information can be represented by an adjacency matrix and an origin-
demand (OD) matrix. An adjacency matrix D, contains distance informa-
tion between adjacent nodes so that

[D]i,j =

{
ei,j stations share a direct edge

0 otherwise
, (9.1)

where ei,j is the edge weight between stations i and j. The edge weight
between two stations can be considered to be the direct distance between

28th ECMI Modelling Week 3

them. In this report we only consider simple, symmetric networks where
ei,j = ej,i and ei,i = 0 for all stations i and j, meaning that the distance
between adjacent stations is identical in either direction and train journeys
that start and end at the same station. The adjacency matrix can be repre-
sented as a graph by taking the edge weights from (9.1). Figure 9.1 shows a
graph that contains the information of the adjacency matrix for an example
’Toy’ network with 8 stations.

Figure 9.1: Example graph for the ’Toy’ network

The OD matrix contains the demand information of the network, cap-
turing the popularity of journeys between any two stations at peak hour.
Elements of the OD matrix are defined as

[OD]i,j = peak demand from station i to station j (9.2)

, for all stations i and j. In practice, OD matrices are often approximated
from real measurements of customer flow and are used in most traffic and
transport modelling. An example OD matrix for the ’Toy’ example network
is shown in Figure 9.2. By coupling the information of the network structure
given by the adjacency matrix with the demand structure given by the
OD matrix we can make a complete picture of customer flow on the train
network.

OD matrix reduction

It is sometimes important in application to have the full OD matrix in
order to understand how traffic flows between stations. On the larger scale,
however, it is often more enlightening to group stations together into zones
so that traffic flow can be understood at a courser scale. This grouping of
stations, hereafter called zoning, is equivalent to collapsing the OD matrix
where the number of rows and columns are now the number of zones, and
is the subject of this report. For example, by introducing 5 zones in the
’Toy’ example network, we can reduce the OD matrix to as shown in Figure

4 Reduce OD matrix dimensions (Railway context)

Figure 9.2: Origin-demand (OD) matrix for the ’Toy’ network. Elements
[OD]i,j give the customer demand for the journey from station i to station
j. In this case, the OD matrix is symmetrical meaning that demand is the
same in either direction.

9.3. The stations B and C have been merged into a zone and the stations
E, F and G belong to a zone together, otherwise all the rest are solo station
zones.

Figure 9.3: Reduced OD matrix for the ’Toy’ network. The columns and
rows now represent different zones containing one or more stations. While
still symmetrical, there are now nonzero diagonal elements. These diagonal
values represent demand within a zone.

Zones are particularly important when planning a high speed train sys-
tem on top of an existing network. In this case, key stations for each zone
are interconnected by a high speed train line, while stations within a zone
are connected by the regular train services. For such applications, the zones
should be chosen to best suit customer demand on the network. The key
stations that represent each zone also need to be chosen carefully. The
company SISCOG provided us with a model which they had developed to
formulate this zoning problem as a discrete optimisation problem.

28th ECMI Modelling Week 5

SISCOG model

The model proposed by SISCOG aims to group stations in order to minimises
the amount of travel within a zone, preferring travel between zones. In the
context of high-speed trains, this approach is very reasonable: a customer
wanting to travel between two small towns a and b both near larger cities
A and B respectively, should prefer a journey

a→ A→ B → b, (9.3)

where the cities A and B are serviced by a high-speed train and the smaller
towns a and b are only serviced by the regular train network. Minimising
the traffic on regular train routes can increase network efficiency and can
also mean that customers spend less time travelling. The model defines
two different types of travel: transfer and inner. Transfer travel accounts
for journeys between zones and inner travel for transfer within a zone. In
Figure 9.4 the route in orange between stations B and C is an inner travel
route because the two stations are within the same zone, the route between
stations G and H, however, is a transfer route because they are not in the
same zone. In the SISCOG model, these two types of travelling are consid-
ered to be a cost to the customer that we aim to minimise. We define the
cost of travel between two stations as the product of distance and demand
for any two stations i and j. The model also introduces the concept of a
representative station - a station that represents an entire zone. Transfer
travel can only occur between two representative stations in two different
zones. Figure 9.4 shows a 5 zone solution for the ‘Toy’ example network
where the zones are grouped by ovals superimposed on the network. Here,
the representative stations A,C,D,G and H are highlighted in green. The
consequence of this zone structure is that any journey between, say, stations
E and A must go through the representative station, G.

In the SISCOG model the distance is taken as the weighted product of
the demand and the shortest path between two stations. The cost between
station i and j is therefore defined as

C(i, j) = shortestPath(i, j) [OD]i,j , (9.4)

for any two stations.
However the weights for the costs are different depending on the zone

structure: if i and j are in the same zone then the inner cost is

Cinner(i, j) = 0.9C(i, j), (9.5)

and if i and j are in different zones with representative stations i∗ and j∗

respectively, then the transfer cost is

Ctransfer(i, j) = 0.9 (C(i, i∗) + C(j∗, j)) + 0.1C(i∗, j∗), (9.6)

6 Reduce OD matrix dimensions (Railway context)

Figure 9.4: A 5 zone solution to the ‘Toy’ example network. The represen-
tative stations are highlighted in green. Two examples of travel cost are
superimposed between stations B and C and G and H and correspond to
the one way origin-demand elements of the reduced OD matrix taken from
9.3.

for all i, j and all zones. The total cost is therefore

Ctotal =
∑
i,j

∑
zones

(Cinner(i, j) + Ctransfer(i, j)) (9.7)

so the travel within a zone is 9 times more costly than travel between zones.
This reflects the importance of minimising customer travel within the same
zone, preferring but still minimising travel between zones.

Goals and Challenges

The goal for this project was to develop an algorithm that could reduce
any train network into a set of zones that minimises the cost function (9.7).
We were asked not to use any commercial linear programming software and
that the algorithm has fast execution times. In particular we were asked
to produce zoning solutions and cost function values for four test networks
each with n stations:

1. ’Toy’ network n = 8

2. Beijing–Shanghai intercity network n = 28

3. Washington DC metro n = 88

4. ’Big’ network n = 884

These networks provided an adequate framework to test algorithms however,
without multiple networks with the same number of stations to test each
algorithm, our analysis lacked robustness. The main challenge in this report
was producing an algorithm that could produce solutions in a short time for
the larger networks.

28th ECMI Modelling Week 7

9.2 Greedy Approaches

Naive approach

Our first approach utilised simple and greedy zoning mechanisms. The code
may be found in coregreediestR.m file in the Appendix in Section .1. We
start with a situation when all stations belong to separate zones. In each
iteration of the main loop we compute the increase in cost function when
merging all possible pairs of zones and choose the pair with the smallest
increase.

To reduce the computational cost of this algorithm we reformulated the
formula for the cost of zoning. Firstly we symmetrise the OD matrix

OD :=
(
OD + ODT

)
· 0.5

and observe that the cost of zoning does not change. Then we observe that
we may rewrite the formula for the cost in the following way:

2
∑
zones

∑
members
of zone

(
0.8 · shortestPath

(
representant

of zone ,member
of zone

)
· demand from member
to stations within zone+

+0.1 · shortestPath
(
representant

of zone ,member
of zone

)
· total demand
from member

)
which is equal to ∑

A∈zones
partialCost(A)

where partialCost(A) is equal to∑
members
of zone A

(
2 · 0.8 · shortestPath

(
representant

of zone ,member
of zone

)
· demand from member
to stations within zone+

+0.1 · shortestPath
(
representant

of zone ,member
of zone

)
· total demand
from and to member

)
(9.8)

In the above, we have grouped together the total demand to and from
each station in the last term (explaining the loss of a factor of 2). This
way of evaluating cost has been implemented in the Runner2.m file and
showed significant improvements to the computational time. Using this for-
mulation of the cost function we have also written the MATLAB function
bestCentralStation.m which, given a set of zones, finds the optimal rep-
resentative station. The formula (9.8) justifies computing the partial cost of
each zone separately and allows us to compute the change in cost of joining
zones A and B as

partialCost(A ∪B)− partialCost(A)− partialCost(B).

8 Reduce OD matrix dimensions (Railway context)

Despite the improved method of computing the cost, this algorithm per-
formed too slowly even in moderately large cases (see Section 9.4), therefore
in the further work we introduced more sophisticated approaches.

Alternative greedy approaches: ‘Full Greedy’ and ‘Partial
Greedy’

The main idea behind the following two algorithms is to choose a pair of
stations, merge the demand between them (change the OD matrix) and
then remove one station from the data set. Of the two stations, a repre-
sentative station is chosen to absorb the other and its demand, and the
non-representative is then removed. We pick the pairs according to the rule
that we want to minimise the following function – cost of merging station j
to station i equal to

cost(i, j) = totalDemand(j) · shortestPath(i, j) · 0.1+

+2 · 0.8 ·OD(i, j) · shortestPath(i, j),

where totalDemand stands for total demand from and to a station and
OD is the origin-destination matrix. The formula above is a simplified ver-
sion of (9.8). What is important is that we do not chose optimal repre-
sentatives at each iteration – instead do it only once at the end using the
bestCentralStation.m function. The basic version of this algorithm is im-
plemented in the mergeStation.m file and is referred to as Full Greedy later
on.

Less expensive version (found in the mergeStation2.m file) where in-
stead of checking all pairs of stations we chose from a smaller set of close
stations. We introduce notions of distance between stations as a product of
demand and shortest path, then for each station we look for the nearest one
(considering this distance) and these pairs form the set that we check the
costs for. This reduces the complexity of the algorithm and performs much
faster. We refer to this algorithm as the Partial Greedy algorithm due to its
use of the partial cost equation and greedy zoning choice mechanism.

Low memory greedy algorithm

Another variant approach is bases on determining representatives before any
station merging has occurred. Given a specified reduction factor, the number
of representatives can be calculated and identified a priori, and then the rest
of the stations can be distributed thereafter.

In addition, this approach accounts for stations which do not have any
demand to or from them. These unpopular stations can be assigned to
the nearest station immediately, thus reducing the size of the problem from
the onset and saving on computation. Furthermore, this immediate pairing
of unpopular stations has no influence on the cost function. For example,

28th ECMI Modelling Week 9

if there are enough stations with zero demand to satisfy a given network
reduction factor then the entire network reduction can be performed without
an any analysis of stations. In this case, we are able to fulfil the requirement
by merging stations with zero demand to the predetermined representatives
with almost no calculation of the cost function. However, when the number
of stations with zero demand do not match the reduction factor, further
analysis is required.

Determining the candidates for representative stations requires estimat-
ing the total demand of every station by

TotalDemand(i) =
∑
j

[OD]i,j + [OD]j,i, (9.9)

for any station i and j. We assume that representatives should have the
largest total demand with respect to distances to other stations. It can be
explained as follows. Assigning the station with the considerable demand
leads to great increasing the cost function since the whole demand of the
station will be transferred to another station. In addition, we suggest taking
into account the distances between stations. Let us introduce an example
in order to clarify out suggestions. The example is illustrated in Figure 9.2.
We specify one representative station, A, and attach one other station, B,
to it so that TotalDemand(A) > TotalDemand(B). However, all demand
from other stations to station B is then absorbed into station A, which is
further away, and because they are in the same zone, contribute considerable
increasing of the cost function. Therefore, if the cost to merge stations is
high we suggest attaching all stations to the station B, despite it not having
the largest total demand.

Next, we specify the stations which should be attached to the representa-
tives. It is worth mentioning that here we do not take into account stations
with zero demand because they can already be assigned. The number of
candidates is equal to (l−m−h), where m is a number of representatives, l
is the total number of stations and h is the number of stations with zero de-
mand. After that, we estimate the best pairs to be candidates for merging.

10 Reduce OD matrix dimensions (Railway context)

We determine the cost of merging the station i to station j as following:

Ci,j = 0.1 · TotalDemand(i) · ShortestPath(i, j)+

+2 · 0.8 · demand(i,j) · dist(i,j),

and the pair with the lowest cost is optimal. The advantage of this
current approach is that since we already specified all representatives and
all candidates for merging we only have to decide to which representatives
every residual station should be attached. In other words, we go through all
candidates and decide to which representative each station can be optimally
paired. This approach uses less memory and results in faster performance
because we do not calculate all possible merging pairs as in other algorithms.
The current approach is similar to the previous greedy algorithms, however
it has considerable advantages being faster and uses less memory.

9.3 Approximation Approach

In the previous chapters we have shown some ways of constructing the zones
step-by-step. In this chapter, however, we are going to try to reduce the
problem of zone selection to a more familiar one, p-median facility location
problem (FLP).

The FLP is well-known in the field of operational research. The main
aim is to optimise the positions of facilities - which, for example, may be
storage depots for large supermarket chains - in order to minimise trans-
portation costs between the depots while considering additional constraints.
In particular, the p-median FLP deals with the optimal placement of p fa-
cilities in order to minimise the demand-weighted average distance between
demand nodes and the nearest of the selected facilities.

The SISCOG problem relies on minimising (9.7) where the inner cost is
highly penalised and the transfer cost, relatively discounted. However, in
the canonical case of the p-median FLP the cost function does not make a
distinction between transfer costs, giving the relation

Ctotal = 0.5 Ctransfer + 0.5 Cinner, (9.10)

so the transfer and inner sub-costs have the same weight.

Although the FLP is generally NP-hard, there are numerous heuristics
which provide efficient solutions to this problem. While the cost function for
the FLP is very different from the SISCOG cost function in (9.7), the hope is
that a solution to (9.10) will be close to a solution to the SISCOG problem.
We therefore posed the SISCOG problem as a typical FLP by choosing to
assign as many stations as possible to p zones so that the demand-weighted
distance (but equally weighting the distance within a zone and between
zones) is minimised. We then applied a well developed p-median FLP solver,

28th ECMI Modelling Week 11

PMCLUSTER1 which uses a simulated annealing method to find optimal
solutions.

Figure 9.5: Zone representatives obtained using p-median facility location
approach.

Using this tool, we obtain the zones with their representatives (figure
9.5) for some of the stations. The next step is to assign the rest of the
stations to the p zones. We then utilise the simple greedy approach and
assign the residual stations to their closest representative and zone in terms
of demand weighted distance (cost Cij in 9.4), giving the zone structure for
all stations in the network (figures 9.5 and 9.6).

Figure 9.6: Zoning after assigning all the stations optimal representatives.

The results obtained using this approach seem to provide fairly good

1This tool has been developed by the Michael J. Brusco from Florida State University
and represents a collection of MATLAB programs for p-median clustering.

12 Reduce OD matrix dimensions (Railway context)

solutions (as shown in chapter 9.4). Moreover, this approach can be used
as a good starting point for further improvements, which will be discussed
later.

9.4 Results

We implemented all the algorithms described above. Each algorithm was
tested with four different examples from SISCOG and with different reduc-
tion percentages.
The following table in Figure 9.7 shows the results of the different algo-
rithms. For each algorithm there are two columns, one column contains the
costs of the best result and one column contains the time which was needed
to calculate this result.
Unfortunately, the ‘Big’ example was too large to compute results using the
naive greedy algorithm.
All in all, the greedy singleton merging algorithm performed the best, in
matters of cost function, in very reasonable time. The full greedy algorithm
also performed very well. Compared to the full greedy algorithm, the partial
greedy algorithm performed faster but had slightly worse cost function val-
ues. Our first naive approach was only applicable to small examples, taking
too long to compute solutions for the ‘Big’ example.

28th ECMI Modelling Week 13

%
	

re
du

ce
d

Fu
ll	

gr
ee
dy

t
Fu
ll	

gr
ee
dy
	

va
ria

tio
n

t
Pa
rt
ia
l	
 g
re
ed

y
t

N
ai
ve

t
Lo
w
	
 M

em
or
y	

Gr
ee
dy

t

62
.5

1.
78
46
e+
03

0.
00
11
29

1.
78
46
e+
03

0.
00
31
13

1.
78
46
e+
03

0.
01
44
95

1.
78
46
e+
03

0.
00
48

45
77
2

0.
00
09
37

77
2

0.
00
34
79

69
3.
60
00

0.
00
97
84

	
 6
94

.2
00

0
0.
00
20

90
2.
05
95
e+
06

0.
00
62
11
	

2.
05
95
e+
06

0.
00
48
67

2.
58
19
e+
06

0.
44
26
22

5.
95
44
e+
06

0.
00
67

70
4.
28
24
e+
05

0.
00
40
52

4.
28
24
e+
05

0.
00
51
38

3.
79
18
e+
05

0.
39
65
49

7.
38
04
e+
05

0.
00
20

50
9.
81
81
e+
04

0.
00
32
91

9.
81
81
e+
04

0.
00
69
74
	

9.
81
81
e+
04

0.
33
06
34

1.
39
98
e+
05

0.
00
17

30
3.
07
68
e+
04

0.
00
24
27

3.
07
68
e+
04

0.
00
44
10

3.
07
68
e+
04

0.
19
29
96

5.
11
09
e+
04

0.
00
16

90
	
 1
.1
70
4e
+0
5

0.
05
87
53

1.
41
75
e+
05

0.
03
98
80

1.
00
42
e+
05

27
.4
55
20
3	

3.
90
42
e+
05

0.
00
65

70
1.
72
92
e+
04

0.
05
29
29
	

3.
83
23
e+
04

0.
03
20
93

	
 1
.7
08
0e
+0
4

23
.8
30
57
1	

3.
78
13
e+
04

0.
00
61

50
6.
94
29
e+
03

0.
04
40
08

9.
81
64
e+
03

0.
02
64
15

6.
74
37
e+
03

18
.2
62
17
2

1.
19
53
e+
04

0.
00
47

30
2.
18
47
e+
03

0.
03
25
56

2.
48
24
e+
03

0.
01
89
24

2.
17
86
e+
03

12
.3
94
53
5

3.
57
15
e+
03

0.
00
41

90
3.
76
23
e+
08

55
.8
23
44
9

14
.8
64
e+
08

13
.3
62
60
6

??
??

4.
60
42
e+
08

0.
14
56

70
9.
11
84
e+
06

54
.7
71
95
5

2.
14
39
e+
08

12
.2
52
31
0

??
??

1.
47
87
e+
07

0.
14
77

50
0

47
.3
03
23
6

0
10
.7
39
58
5

0
??

0
	
 0
.0
23

8
30

0
33
.7
11
36
5

0
8.
18
48
71

0
??

0
0.
02
05

TO
Y

BE
IJI
N
G

W
AS

HI
N
GT

O
N

BI
G

F
ig

u
re

9.
7:

T
ab

le
of

co
m

p
u

ta
ti

on
re

su
lt

s

14 Reduce OD matrix dimensions (Railway context)

9.5 Improving the Results

In this chapter we will discuss the possible additional improvements of the
solutions obtained by the explained approaches. All of the approaches out-
lined in this report use station zoning heuristics that attempt to provide
us with optimal solutions. Sometimes these solutions are not stable and a
very small change in zoning structure gives a more optimal solution. In this
section, we consider small perturbations in zoning and their impact on the
cost function.

We considered two possible perturbations, flipping and shuffling. The
first type, flipping, represents swapping two randomly chosen, non-representative,
stations from separate zones, also chosen at random (Figure 9.8).

Figure 9.8: Station flipping.

The other perturbation considered: shuffling, is accomplished by choos-
ing a non-representative station at random from a random zone and moving
it to another zone, also chosen at random (Figure 9.9).

Figure 9.9: Station shuffling.

Comment on results These perturbations were implemented on previ-
ously computed solutions on all four network examples to give no significant
improvement of the cost function. Given thousands of single perturbations
generated randomly, the optimal cost function value did not improve signif-
icantly. Further experimentation would be valuable, however, due to time

28th ECMI Modelling Week 15

restraints these preliminary results allowed us to conclude that the zoning
solutions produced by our algorithms could not be significantly improved by
either ’flipping’ or ’shuffling’ of stations. We suggest that this is due to a
local stability of the obtained solutions.

9.6 Outlook and possible future work

Due to time constraints it was not possible to develop the algorithms or
post-processing method any further, however, we end this report with some
suggestions for further directions and improvements. Firstly, by constructing
ensembles of random networks for any given size and testing each algorithm
on all of them would give more robust statistical insight into their perfor-
mance. With only a single network for each size, as included in this report,
the results are susceptible to being influenced by network characteristics in-
stead of algorithm performance. We suggest performing a similar analysis
as outlined in this report on ensembles of random networks.

Secondly, after encouraging results from the simulated annealing inspired
post-processing method, we suggest developing these methods to try and
find global solutions to the OD matrix reduction problem. We found that
initial solutions, given by each algorithm, were rarely improved dramatically
by small perturbations. This implies that the solutions are local minima of
the cost function. We suggest developing a method that perturbs local
solutions intermittently to try and ensure that the final solution is close to
the global minimum. Ideally, instead of post-processing being conducted
once a solution is given by one of the primary algorithms, we could apply
perturbations after every few iterations.

9.7 Conclusions

In this report we explored the origin-demand matrix reduction problem as
applied to railway network planning as proposed by the logistics software
company SISCOG. We presented novel algorithms that reduce any given
network into groups of stations while optimising efficiency for commuters
travelling between these groups. We presented results of each algorithm
tested on four sets of railway networks, either real or realistically inspired.
We also presented methods to improve solutions by locally perturbing sets
of groups of stations in an aim to further reduce the given cost function.
Finally, we describe further directions for this project that may improve
our algorithms to provide near global solutions to the SISCOG problem. In
conclusion, we have presented algorithms that meet the original aims of this
project - taking a given network and providing a set of zones that minimises
commuter disruption - giving an optimal reduced OD matrix.

16 Reduce OD matrix dimensions (Railway context)

.1 Appendix

Runner

function co s t = Runner2 (OD, weight , zones ,
r e p r e s e n t a t i v e s , shor te s tPath)

%
%This i s our v e r s i o n o f e v a l u a t o r
%

OD = (OD + OD’) . ∗ 0 . 5 ;
numStations = s ize (OD, 1) ;
totalDemand = zeros (numStations , 1) ;
for i = 1 : numStations

totalDemand (i) = sum(OD(: , i)) + sum(OD(i , :))
;

end
co s t = 0 ;
for i = 1 : length (r e p r e s e n t a t i v e s)

membersOfZone = find (zones (i , :) ==1) ;
for k = 1 : length (membersOfZone)

inCost = shortes tPath (r e p r e s e n t a t i v e s (i
) , membersOfZone (k)) ∗ sum(OD(
membersOfZone (k) , membersOfZone)) ;

outCost = shortes tPath (r e p r e s e n t a t i v e s (
i) , membersOfZone (k)) ∗ totalDemand (
membersOfZone (k)) ;

co s t = cos t + (4∗weight − 2) ∗ inCost +
(1 − weight) ∗ outCost ;

end
end

end

28th ECMI Modelling Week 17

Best Central Station

function [r e p r e s e n t a t i v e s , c o s t] = be s tCent ra lS ta t i on (
mergedStations , totalDemand , OD, shorte s tPath)

%
%This f u n c t i o n may be used to f i n d opt imal

r e p r e s e n t a t i v e s t a t i o n s when we know the zoning
%

r e p r e s e n t a t i v e s = zeros (s ize (mergedStations , 1) ,1) ;
%symmetr izat ion o f the OD matrix s i m p l i f i e s the

a l gor i thm
OD = (OD + OD’) . ∗ 0 . 5 ;
% loop f o r the number o f zones , f o r each zone we

p i c k the r e p r e s e n t a t i v e s t a t i o n s e p a r a t e l y
co s t = 0 ;
for i = 1 : length (r e p r e s e n t a t i v e s)

membersOfZone = find (mergedStat ions (i , :) == 1) ;
c o s t s = zeros (length (membersOfZone) ,1) ;
% loop f o r each s t a t i o n in one zone
for j = 1 : length (membersOfZone)

% loop f o r the summing o f the c o s t
for k = 1 : length (membersOfZone)

inCost = shortes tPath (membersOfZone (j) ,
membersOfZone (k)) ∗ sum(OD(
membersOfZone (k) , membersOfZone)) ;

outCost = shortes tPath (membersOfZone (j)
, membersOfZone (k)) ∗ totalDemand (
membersOfZone (k)) ;

c o s t s (j) = c o s t s (j) + 2 ∗ 0 .8 ∗ inCost
+ 0 .1 ∗ outCost ;

end
end
[M, I] = min(c o s t s) ;
c o s t = cos t +M;
r e p r e s e n t a t i v e s (i) = membersOfZone (I) ;

end
co s t ;

end

18 Reduce OD matrix dimensions (Railway context)

Naive Greedy

function [zones , r e p r e s e n t a t i v e s , co s t] =
NaiveGreed iest (inputFileName , reduct ionPercentage)

%l o a d i n g OD, trainNetwork , sho r te s tPat h , UniqueSt
load (s t r c a t (’ input / ’ , inputFileName)) ;

%j u s t changing name
network = trainNetwork ;

numStations = s ize (OD, 1) ;

%symmetr izat ion needed f o r e a s i e r f ormu la t i on o f
the problem

OD = (OD + OD’) . ∗ 0 . 5 ;

%a d d i t i o n a l v a r i b l e needed f o r s i m p l i c i t y o f the
code − t o t a l demand from and to s t a t i o n

totalDemand = zeros (numStations , 1) ;
for i = 1 : numStations

totalDemand (i) = sum(OD(: , i)) + sum(OD(i , :)) ;
end

% I n i t i a l i s e zone arrays , a l l s t a t i o n s b e lo ng to
s e p a r e t e zones

rep = (1 : numStations) ’ ;
zones = speye (numStations) ;

% C a l c u l a t e f i n a l number o f zones to be reduced
m = f loor (numStations ∗ reduct ionPercentage) ;

%i t i n i a l p a r t i a l c o s t o f zones
i n i t i a l P a r t i a l C o s t = zeros (length (rep) ,1) ;
for i = 1 : length (rep)

membersOfZone = find (zones (i , :) ==1) ;
C 1 = 0 ;
for k = 1 : length (membersOfZone)

inCost = shortes tPath (rep (i) , membersOfZone (k))
∗ sum(OD(membersOfZone (k) , membersOfZone)) ;

outCost = shortes tPath (rep (i) , membersOfZone (k))
∗ totalDemand (membersOfZone (k)) ;

C 1 = C 1 + 2 ∗ 0 .8 ∗ inCost + 0 .1 ∗ outCost ;
end

28th ECMI Modelling Week 19

i n i t i a l P a r t i a l C o s t (i) = C 1 ;
end

% S t a r t loop to combine m zones
for j = 1 :m

%r = randi ([1 , l e n g t h (rep)] , 1) ; % Chose
uniform random s t a t i o n to s t a r t a t

C 0 = Inf ; % I n i t i a l i s e
o b j e c t i v e

%doub le loop f o r a l l p o s s i b l e zone combinat ions
for r = 1 : length (rep)

z temp = r+1 : length (rep) ;
for i = z temp

% Store temporary zone arrays
z 1 = zones ;

% Change temporary zone array to combine
zone r wi th zone i

z 1 (r , :) = z 1 (r , :) + z 1 (i , :) ;
z 1 (i , :) = [] ;

% Now s e t up loop to f i n d opt imal
r e p r e s e n t a t i v e s t a t i o n

r e p s e t = [find (zones (r , :) ==1) , find (zones
(i , :) ==1)] ;

% Loop over a l l rep . s t a t i o n s
for i i = r e p s e t

rep 1 = rep ; rep 1 (r) = i i ; r ep 1 (i) =
[] ;

membersOfZone = r e p s e t ;
C 1 = 0 ;
for k = 1 : length (membersOfZone)

inCost = shortes tPath (i i ,
membersOfZone (k)) ∗ sum(OD(
membersOfZone (k) , membersOfZone))
;

outCost = shortes tPath (i i ,
membersOfZone (k)) ∗ totalDemand (
membersOfZone (k)) ;

20 Reduce OD matrix dimensions (Railway context)

C 1 = C 1 + 2 ∗ 0 .8 ∗ inCost + 0 .1
∗ outCost ;

end

%newCostOfMergedZones i s the p a r t i a l
c o s t o f new zone ob ta in ed by
merging zones r and i

newCostOfMergedZones = C 1 ;
C 1 = C 1 − i n i t i a l P a r t i a l C o s t (r) −

i n i t i a l P a r t i a l C o s t (i) ;

% Store rep . s t a t i o n and t e s t s t a t i o n
t h a t improves the c o s t

% f u n c t i o n
i f C 1 < C 0

C 0 = C 1 ;

%merged zones
i 0 = i ;
r 0 = r ;

%opt imal r e p r e s e n t a n t
i i 0= i i ;

%new p a r t i a l c o s t
newCostOfMergedZones 0 =

newCostOfMergedZones ;
end

end
end
% Update the zone array

end
zones (r 0 , :) = zones (r 0 , :) + zones (i 0 , :) ;
zones (i 0 , :) = [] ;

rep (r 0) = i i 0 ;
rep (i 0) = [] ;

i n i t i a l P a r t i a l C o s t (r 0) = newCostOfMergedZones 0 ;
i n i t i a l P a r t i a l C o s t (i 0) = [] ;

end
r e p r e s e n t a t i v e s = rep ;
load (s t r c a t (’ input / ’ , inputFileName)) ;
%we run our e v a l u a t o r

28th ECMI Modelling Week 21

co s t = Runner2 (OD, 0 . 9 , zones , r e p r e s e n t a t i v e s ,
shor te s tPath) ;

end

22 Reduce OD matrix dimensions (Railway context)

Full Greedy

function [mergedStations , r e p r e s e n t a t i v e s , c o s t] =
FullGreedy (inputFileName , reduct ionPercentage) %
mergeStat ion

%l o a d i n g OD, trainNetwork , sho r te s tPat h , UniqueSt
load (s t r c a t (’ input / ’ , inputFileName)) ;

%j u s t changing name
network = trainNetwork ;

%we symmetrize
OD = (OD + OD’) . ∗ 0 . 5 ;

%we need l a t e r o r i g i n a l data
orig inalOD = OD;
o r i g i n a l S h o r t e s t P a t h = shortes tPath ;

numStations = s ize (OD, 1) ;

%number o f i t e r a t i o n s
m = f loor (numStations ∗ reduct ionPercentage) ;

%at the beg inn ing each s t a t i o n b e l o n g s to s e p a r e t e
zone

mergeStat ions = speye (numStations , numStations) ;

totalDemand = zeros (numStations , 1) ;
for i = 1 : numStations

totalDemand (i) = sum(OD(: , i)) + sum(OD(i , :)) ;
end
originalTotalDemand = totalDemand ;

for i = 1 : m
%we keep t h e r e t h e r e the approximated c o s t o f

merging a l l p o s s i b l e p a i r s o f zoning ,
%note t h a t i t i s not symmetric !
co s t = zeros (numStations , numStations) ;

for i = 1 : numStations
for j = 1 : numStations

i f i == j
co s t (i , j) = i n f ;

28th ECMI Modelling Week 23

else
co s t (i , j) = totalDemand (j) ∗

shorte s tPath (i , j) ∗ 0 .1 + 2 ∗
0 .8 ∗ OD(i , j) ∗ shorte s tPath (i ,
j) ;

end
end

end

[M1, I1] = min(co s t) ;
[M2, I2] = min(M1) ;
j = I2 ; %column index f o r the minimal entry
i = I1 (I2) ; %row index f o r the minimal entry

mergeStat ions (i , :) = mergeStat ions (i , :) +
mergeStat ions (j , :) ;

mergeStat ions (j , :) = [] ;

shor te s tPath (j , :)= [] ;
shor te s tPath (: , j) = [] ;

totalDemand (i , :) = totalDemand (i , :) +
totalDemand (j , :) ;

totalDemand (j , :) = [] ;

OD(i , :) = OD(i , :) + OD(j , :) ;
OD(: , i) = OD(: , i) + OD(: , j) ;
OD(j , :) = [] ;
OD(: , j) = [] ;

numStations = numStations − 1 ;
end
mergedStat ions = mergeStat ions ;

%we f i n d opt imal main s t a t i o n s
[r e p r e s e n t a t i v e s , c o s t] = be s tCent ra lS ta t i on (

mergedStations , originalTotalDemand , originalOD
, o r i g i n a l S h o r t e s t P a t h) ;

end

24 Reduce OD matrix dimensions (Railway context)

Partial Greedy

function [mergedStations , r e p r e s e n t a t i v e s , c o s t] =
Part ia lGreedy (inputFileName , reduct ionPercentage) %
mergeStat ion2

%l o a d i n g OD, trainNetwork , sho r te s tPat h , UniqueSt
load (s t r c a t (’ input / ’ , inputFileName)) ;

%j u s t changing name
network = trainNetwork ;

%we symmetrize
OD = (OD + OD’) . ∗ 0 . 5 ;

%we need l a t e r o r i g i n a l data
orig inalOD = OD;
o r i g i n a l S h o r t e s t P a t h = shortes tPath ;

numStations = s ize (OD, 1) ;

%number o f i t e r a t i o n s
m = f loor (numStations ∗ reduct ionPercentage) ;

%I n i t i a l i s e zone arrays
mergeStat ions = speye (numStations , numStations) ;

%’ metric ’ in t roduced on p a i r s o f s t a t i o n s to f i n d
the ’ c l o s e s t ’ ones

p a r t i a l C o s t = OD .∗ shorte s tPath ;
for i = 1 : s ize (par t i a lCos t , 1)

p a r t i a l C o s t (i , i) = i n f ;
end

%t o t a l demand from and to s t a t i o n
totalDemand = zeros (numStations , 1) ;
for i = 1 : numStations

totalDemand (i) = sum(OD(: , i)) + sum(OD(i , :)) ;
end
originalTotalDemand = totalDemand ;

%main loop
for i = 1 : m

28th ECMI Modelling Week 25

%f o r each s t a t i o n we f i n d the ’ c l o s e s t ’ one
accord ing to the metr ic above

[C, I1] = min(p a r t i a l C o s t) ;
c o s t = zeros (numStations , 1) ;

for i = 1 : numStations
%c o s t o f merging s t a t i o n I1 (i) to s t a t i o n

i
co s t (i) = 0 .1 ∗ totalDemand (I1 (i)) ∗

shorte s tPath (i , I1 (i)) + 2 ∗ 0 .8 ∗ OD(i ,
I1 (i)) ∗ shorte s tPath (i , I1 (i)) ;

end
[M, I2] = min(co s t) ;
i = I2 ; %column index f o r the minimal entry
j = I1 (i) ; %row index f o r the minimal entry

%update the data
mergeStat ions (i , :) = mergeStat ions (i , :) +

mergeStat ions (j , :) ;
mergeStat ions (j , :) = [] ;

shor te s tPath (j , :) = [] ;
shor te s tPath (: , j) = [] ;

totalDemand (i , :) = totalDemand (i , :) +
totalDemand (j , :) ;

totalDemand (j , :) = [] ;

OD(i , :) = OD(i , :) + OD(j , :) ;
OD(: , i) = OD(: , i) + OD(: , j) ;
OD(j , :) = [] ;
OD(: , j) = [] ;

p a r t i a l C o s t (i , :) = p a r t i a l C o s t (i , :) +
p a r t i a l C o s t (j , :) ;

p a r t i a l C o s t (: , i) = p a r t i a l C o s t (: , i) +
p a r t i a l C o s t (: , j) ;

p a r t i a l C o s t (j , :) = [] ;
p a r t i a l C o s t (: , j) = [] ;
numStations = numStations − 1 ;

end
mergedStat ions = mergeStat ions ;
%f i n d opt imal r e p r e s e n t a n t s t a t i o n s f o r the zoning

26 Reduce OD matrix dimensions (Railway context)

[r e p r e s e n t a t i v e s , c o s t] = be s tCent ra lS ta t i on (
mergedStations , originalTotalDemand , originalOD
, o r i g i n a l S h o r t e s t P a t h) ;

end

28th ECMI Modelling Week 27

Main

%c l c ; c l e a r ;
load (’ B ig input . mat ’) ;
load (’ B i g s h o r t e s t p a t h ’) ;
demand = OD;
d i s t = shortes tPath ;

% demand = rand (5) ;
% d i s t = rand (5) ;
% n = 8;

t ic ;
cand idate s = 0 ; %how many c a n d i d a t e s we want to use to

reduce the OD matrix
P = 90 ;
n = f loor (P∗ s ize (demand , 1) /100) ;% number o f s t a t i o n s

we want to remove
[zones , r e p r e s e n t a t i v e s] = create zonesFINAL (demand ,

d i s t , n) ;
time = toc ;
time
% zones ;
%
%c r e a t e zones in matrix n o t a t i o n
%case wi thout z e r o s rows
z = sparse (length (r e p r e s e n t a t i v e s) , s ize (demand , 2)) ;
for i = 1 : length (zones)

i n d i = find (zones { i }(end) == r e p r e s e n t a t i v e s , 1 , ’
f i r s t ’) ;

i n d j = zones { i } ;
z (i n d i , i n d j) = 1 ;

end
%sum(sum(z))
%
%sum(sum(z (: , r e p r e s e n t a t i v e s)))
%c o s t = Runner (demand , network , d i s t , 0 . 9 , z ,

r e p r e s e n t a t i v e s) % 0.9 i s w e i g h t c o s t
%c o s t = Runner (demand , network , 0 . 9 , z , r e p r e s e n t a t i v e s ,

d i s t) % 0.9 i s w e i g h t c o s t
d i s t (d i s t==i n f) =0;
cos t2=Runner2 (demand , 0 . 9 , z , r e p r e s e n t a t i v e s , d i s t)

28 Reduce OD matrix dimensions (Railway context)

Create Zones

function [zones , heads] = create zonesFINAL (demand , d i s t
, n)

%weigh t i n c l u d e s t o t a l demand o f every s t a t i o n
num stat ions = s ize (demand , 1) ;
zones = num2cel l (1 : num stat ions) ; %i n i t i a l zones
n heads=num stations−n ; % number o f r e p r e s e n t a t i v e s

%c a l c u l a t e the t o t a l demand o f every c i t y
total demand=sum(demand , 2)+sum(demand , 1) ’ ;
% part f o r e l i m i n a t i o n o f zero demand c i t i e s .
z e r o de mand c i t i e s=find (total demand==0) ;

i f length (z e r o de mand c i t i e s)>=n %i t means we can
reduce matrix by j u s t removing zero c o s t c i t i e s

heads = 1 : num stat ions ;
d i s t (z e ro demand c i t i e s , z e r o de mand c i t i e s)=i n f ;
for i =1:n

zones { z e r o de mand c i t i e s (i) } = [] ;
[˜ , ind] = min(d i s t (z e r o de mand c i t i e s (i) , :)) ;
zones { ind } = [ze ro de mand c i t i e s (i) zones { ind
}] ;

end

%remove empty zones
zones (c e l l f u n (@isempty , zones)) = [] ;
%remove empty r e p r e s e n t a t i v e s
heads (z e r o de mand c i t i e s (1 : n)) = [] ;
return ;

end

%e s t i m a t e we igh t o f c i t i e s to be r e p r e s e n t a t i v e
t o t a l w e i g h t=zeros (s ize (total demand)) ;
for i =1: length (total demand)

temp dis t=sort (d i s t (i , d i s t (i , :) ˜= i n f)) ;
nnn=length (d i s t (i , d i s t (i , :) ˜= i n f)) ;
%t o t a l w e i g h t (i)=tota l demand (i)∗median (d i s t (i ,

d i s t (i , :) ˜= i n f)) ;
t o t a l w e i g h t (i)=total demand (i) ∗ median(temp dis t

(1 : round(nnn∗2/5))) ;
end

28th ECMI Modelling Week 29

[˜ , Ind heads] = sort (t o ta l we i gh t , ’ descend ’) ;

%s t a t i o n s which can be r e p r e s e n t a t i v e s
heads=sort (Ind heads (1 : n heads)) ;

%s t a t i o n s which can be merged wi th r e p r e s e n t a t i v e s
t a i l s = 1 : num stat ions ;
t a i l s ([heads ; z e r o de mand c i t i e s]) = [] ;

%a t t a c h every t a i l to the b e s t r e p r e s e n t a t i v e
for i = t a i l s

va lue = total demand (i) ∗ d i s t (i , heads) ∗0 .1 + 2∗
demand(i , heads) .∗ d i s t (i , heads) ∗ 0 . 8 ; %current
c o s t o f adding the i t h s t a t i o n to the j t h
s t a t i o n

[˜ , Ind] = min(va lue) ;
zones { i } = [] ;
zones {heads (Ind) } = [i zones {heads (Ind) }] ;

end

% a t t a c h c i t i e s wi th zero demand
for i =1: length (z e r o de mand c i t i e s)

zones { z e r o de mand c i t i e s (i) } = [] ;
[˜ , ind] = min(d i s t (z e r o de mand c i t i e s (i) , heads)) ;
zones {heads (ind) } = [ze ro de mand c i t i e s (i) zones {

heads (ind) }] ;
end

%remove empty zones
zones (c e l l f u n (@isempty , zones)) = [] ;

end

