
Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Mechanised Justification in
"Systems that Explain Themselves"

for Mathematics Education

Walther Neuper

IICM, Institute for Computer Media,
University of Technology.

Graz, Austria

eduTPS: Working Group on Justification in Doing Math
at CADGME, Coimbra, Portugal

June TODO, 2018

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Outline

1 “Systems that Explain Themselves”?

2 Mechanical Explanation and Language Layers
Term Language
Proof Language
Specification Language
“Next step guidance”
Programming Language

3 Conclusions

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

“Systems that Explain
Themselves”?

• Systems for proofs: well-known theorem provers (TP),
e.g. Coq, PVS, HOL, Isabelle have

• math knowledge deduced from first principles (axioms)
• so, elements of math knowledge “explain themselves”
• usage for proof does not explain itself

−→ short demo of Isabelle

• Systems for engineering mathematics: only prototypes,
e.g. 4ferries (by R.J. Back), Mathtoys, ISAC
• need to build upon TPs (justifications !)
• need to step-wise construct problem solutions
• need to support modularisation into sub-problems
• . . . such that usage and knowledge “explain

themselves”

−→ Isabelle/ISAC will serve as example

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

“Systems that Explain
Themselves”?

• Systems for proofs: well-known theorem provers (TP),
e.g. Coq, PVS, HOL, Isabelle have

• math knowledge deduced from first principles (axioms)
• so, elements of math knowledge “explain themselves”
• usage for proof does not explain itself

−→ short demo of Isabelle

• Systems for engineering mathematics: only prototypes,
e.g. 4ferries (by R.J. Back), Mathtoys, ISAC
• need to build upon TPs (justifications !)
• need to step-wise construct problem solutions
• need to support modularisation into sub-problems
• . . . such that usage and knowledge “explain

themselves”

−→ Isabelle/ISAC will serve as example

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

“Systems that Explain
Themselves”?

• Systems for proofs: well-known theorem provers (TP),
e.g. Coq, PVS, HOL, Isabelle have

• math knowledge deduced from first principles (axioms)
• so, elements of math knowledge “explain themselves”
• usage for proof does not explain itself

−→ short demo of Isabelle

• Systems for engineering mathematics: only prototypes,
e.g. 4ferries (by R.J. Back), Mathtoys, ISAC
• need to build upon TPs (justifications !)
• need to step-wise construct problem solutions
• need to support modularisation into sub-problems
• . . . such that usage and knowledge “explain

themselves”

−→ Isabelle/ISAC will serve as example

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

“Systems that Explain
Themselves”?

• Systems for proofs: well-known theorem provers (TP),
e.g. Coq, PVS, HOL, Isabelle have

• math knowledge deduced from first principles (axioms)
• so, elements of math knowledge “explain themselves”
• usage for proof does not explain itself

−→ short demo of Isabelle

• Systems for engineering mathematics: only prototypes,
e.g. 4ferries (by R.J. Back), Mathtoys, ISAC
• need to build upon TPs (justifications !)
• need to step-wise construct problem solutions
• need to support modularisation into sub-problems
• . . . such that usage and knowledge “explain

themselves”

−→ Isabelle/ISAC will serve as example

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

“Systems that Explain
Themselves”?

• Systems for proofs: well-known theorem provers (TP),
e.g. Coq, PVS, HOL, Isabelle have

• math knowledge deduced from first principles (axioms)
• so, elements of math knowledge “explain themselves”
• usage for proof does not explain itself

−→ short demo of Isabelle

• Systems for engineering mathematics: only prototypes,
e.g. 4ferries (by R.J. Back), Mathtoys, ISAC
• need to build upon TPs (justifications !)
• need to step-wise construct problem solutions
• need to support modularisation into sub-problems
• . . . such that usage and knowledge “explain

themselves”

−→ Isabelle/ISAC will serve as example

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

“Systems that Explain
Themselves”?

• Systems for proofs: well-known theorem provers (TP),
e.g. Coq, PVS, HOL, Isabelle have

• math knowledge deduced from first principles (axioms)
• so, elements of math knowledge “explain themselves”
• usage for proof does not explain itself

−→ short demo of Isabelle

• Systems for engineering mathematics: only prototypes,
e.g. 4ferries (by R.J. Back), Mathtoys, ISAC
• need to build upon TPs (justifications !)
• need to step-wise construct problem solutions
• need to support modularisation into sub-problems
• . . . such that usage and knowledge “explain

themselves”

−→ Isabelle/ISAC will serve as example

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

“Systems that Explain
Themselves”?

• Systems for proofs: well-known theorem provers (TP),
e.g. Coq, PVS, HOL, Isabelle have

• math knowledge deduced from first principles (axioms)
• so, elements of math knowledge “explain themselves”
• usage for proof does not explain itself

−→ short demo of Isabelle

• Systems for engineering mathematics: only prototypes,
e.g. 4ferries (by R.J. Back), Mathtoys, ISAC
• need to build upon TPs (justifications !)
• need to step-wise construct problem solutions
• need to support modularisation into sub-problems
• . . . such that usage and knowledge “explain

themselves”

−→ Isabelle/ISAC will serve as example

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

“Systems that Explain
Themselves”?

• Systems for proofs: well-known theorem provers (TP),
e.g. Coq, PVS, HOL, Isabelle have

• math knowledge deduced from first principles (axioms)
• so, elements of math knowledge “explain themselves”
• usage for proof does not explain itself

−→ short demo of Isabelle

• Systems for engineering mathematics: only prototypes,
e.g. 4ferries (by R.J. Back), Mathtoys, ISAC
• need to build upon TPs (justifications !)
• need to step-wise construct problem solutions
• need to support modularisation into sub-problems
• . . . such that usage and knowledge “explain

themselves”

−→ Isabelle/ISAC will serve as example

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Outline

1 “Systems that Explain Themselves”?

2 Mechanical Explanation and Language Layers
Term Language
Proof Language
Specification Language
“Next step guidance”
Programming Language

3 Conclusions

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Term Language

The demo has shown . . .

• principal benefits

• uniformity over all domains of mathematics
• type system efficiently excludes ambiguities
• clear description of functions and respective rules

• added value of implementation

• a formula’s elements are connected with definitions
• types are transparent by mouse pointer
• feedback to input of formulas
• structure of formulas, i.e. sub-terms are transparent
• internal representation adaptable to engineers’ needs

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Term Language

The demo has shown . . .

• principal benefits

• uniformity over all domains of mathematics
• type system efficiently excludes ambiguities
• clear description of functions and respective rules

• added value of implementation

• a formula’s elements are connected with definitions
• types are transparent by mouse pointer
• feedback to input of formulas
• structure of formulas, i.e. sub-terms are transparent
• internal representation adaptable to engineers’ needs

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Term Language

The demo has shown . . .

• principal benefits

• uniformity over all domains of mathematics
• type system efficiently excludes ambiguities
• clear description of functions and respective rules

• added value of implementation

• a formula’s elements are connected with definitions
• types are transparent by mouse pointer
• feedback to input of formulas
• structure of formulas, i.e. sub-terms are transparent
• internal representation adaptable to engineers’ needs

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Outline

1 “Systems that Explain Themselves”?

2 Mechanical Explanation and Language Layers
Term Language
Proof Language
Specification Language
“Next step guidance”
Programming Language

3 Conclusions

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Proof Language . . .

. . . adapts to conventions of engineering mathematics:

Figure: Conventional worksheet on ISAC’s front-end

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Proof Language

• Principal benefits

• calculations in a conventional format
• all steps of calculation in a consistent framework
• each step is justified by theorems
• specific steps equivalent to Computer Algebra
• Computer Algebra decomposed into elementary steps

• Added value of implementation

• change from survey to detail in the calculation tree
(collapsing and expanding)

• justification for any step can be inspected on demand
• steps can be redone while trying alternative ways
• alternatives can be tried in parallel windows

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Proof Language

• Principal benefits

• calculations in a conventional format
• all steps of calculation in a consistent framework
• each step is justified by theorems
• specific steps equivalent to Computer Algebra
• Computer Algebra decomposed into elementary steps

• Added value of implementation

• change from survey to detail in the calculation tree
(collapsing and expanding)

• justification for any step can be inspected on demand
• steps can be redone while trying alternative ways
• alternatives can be tried in parallel windows

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Outline

1 “Systems that Explain Themselves”?

2 Mechanical Explanation and Language Layers
Term Language
Proof Language
Specification Language
“Next step guidance”
Programming Language

3 Conclusions

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Specification Language

Formal specification of the previous Solution:
01 Problem (Biegelinie, [Biegelinien])
02 Specification:
03 Model:
04 Given : Traegerlaenge L, Streckenlast q0
05 Where : q0 ist_integrierbar_auf [0, L]
06 Find : Biegelinie y
07 Relate : Randbedingungen [Q 0 = q0 · L, Mb L = 0, y 0 = 0, d

dx y 0 = 0]
08 References:
09 Theory : Biegelinie
10 x Problem : ["Biegelinien"]
11 o Method : ["IntegrierenUndKonstanteBestimmen2"]
12 Solution:

Hidden data for “next step guidance” :
[([Traegerlaenge L, Streckenlast q0, Biegelinie y,

Randbedingungen [Q 0 = q0 · L, Mb L = 0, y 0 = 0, d
dx y 0 = 0], FunktionsVariable x]

("Biegelinie", ["Biegelinien"], ["IntegrierenUndKonstanteBestimmen2"]))]

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Specification Language

• Principal benefits
• formal specification prepares mechanical solution
• pre-condition determines solvability
• post-condition makes essence of a problem explicit
• problems decomposed into sub-problems (with

specifications)
• Added value of implementation

• specifications can be easily searched and tried
• trees of specifications allow automated refinement
• successfully specified problems solved by key stroke
• sub-problems can be interactively arranged
• specifications as black boxes raises abstraction

in problem solving, see slide movie

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Specification Language

• Principal benefits
• formal specification prepares mechanical solution
• pre-condition determines solvability
• post-condition makes essence of a problem explicit
• problems decomposed into sub-problems (with

specifications)
• Added value of implementation

• specifications can be easily searched and tried
• trees of specifications allow automated refinement
• successfully specified problems solved by key stroke
• sub-problems can be interactively arranged
• specifications as black boxes raises abstraction

in problem solving, see slide movie

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Start Example

Problem [area-of-circle]

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Start Example

Problem [area-of-circle]

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Problem modelled ok

Problem [area-of-circle]

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Start considering sub-problems

d cm, φ l/s, s cm

Find: h m

Problem [area-of-circle]

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Select sub-problems

d cm, φ l/s, s cm

Problem [rational, equation]

Find: h m

Problem [area-of-circle]

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Select sub-problems

d cm, φ l/s, s cm

Problem [rational, equation]

Problem [velocity-space-time, find-time]

Find: h m

Problem [area-of-circle]

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Select sub-problems

d cm, φ l/s, s cm

Problem [rational, equation]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Find: h m

Problem [area-of-circle]

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Select sub-problems

d cm, φ l/s, s cm

Problem [rational, equation]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Delete irrelevant sub-problems

d cm, φ l/s, s cm

Problem [rational, equation]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Select relevant sub-problems

d cm, φ l/s, s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

What is given / has to be found?

d cm, φ l/s, s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

What is given / has to be found?

d cm, φ l/s, s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

h m

t s

A cm
v m/s s m

t s

A m φ m3/s

v m/s

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Connect “Given” and “Find”

d cm, φ l/s, s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

h m

t s

A cm
v m/s s m

t s

A m φ m3/s

v m/s

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Connect “Given” and “Find”

d cm, φ l/s, s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

h m

t s

A cm
v m/s s m

t s

A m φ m3/s

v m/s

?

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Connect “Given” and “Find”

d cm, φ l/s, s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

h m

t s

A cm
v m/s s m

t s

A m φ m3/s

v m/s

?

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Connect “Given” and “Find”

d cm, φ l/s, s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

h m

t s

A cm
v m/s s m

t s

A m φ m3/s

v m/s

?

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Connect “Given” and “Find”

d cm, φ l/s, s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

h m

t s

A cm
v m/s s m

t s

A m φ m3/s

v m/s

?

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Dangling connection ???

d cm, φ l/s, s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

h m

t s

A cm
v m/s s m

t s

A m φ m3/s

v m/s

?

???

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Rearrange sub-problems

d cm, φ l/s, s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

h m

t s

A cm
v m/s s m

t s

A m φ m3/s

v m/s

?

???

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Flipped two sub-problems

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h m

t s

v m/s

A cm
A m φ m3/s

s m

v m/s

t s

d cm, φ l/s, s cm

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Connect “Given” and “Find”

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h m

A cm
A m φ m3/s

s m

d cm, φ l/s, s cm

t s

t s

v m/s

v m/s

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Connect “Given” and “Find”

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h m

A cm φ l/s

A m φ m3/s

s m

d cm, φ l/s, s cm

t s

t s

v m/s

v m/s

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Connect “Given” and “Find”

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h m

A cm φ l/s

A m φ m3/s

s m
s cm

d cm, φ l/s, s cm

t s

t s

v m/s

v m/s

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Connect “Given” and “Find”

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h m

v m/s

A cm φ l/s

A m φ m3/s

s m
s cm

d cm, φ l/s, s cm

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Connect “Given” and “Find”

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h m

t s

v m/s

A cm φ l/s

A m φ m3/s

s m
s cm

d cm, φ l/s, s cm

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

All connections finished

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h m

t s

v m/s

A cm φ l/s

A m φ m3/s

s m
s cm

d cm, φ l/s, s cm

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Care about unit conversions

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h m

t s

v m/s

A cm φ l/s

A m φ m3/s

s m
s cm

d cm, φ l/s, s cm

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Solution with units only

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Solution complete

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Outline

1 “Systems that Explain Themselves”?

2 Mechanical Explanation and Language Layers
Term Language
Proof Language
Specification Language
“Next step guidance”
Programming Language

3 Conclusions

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

“Next step guidance” . . .

• . . . in specifying a problem:

If data for each variant for constructing a specification
(one variant shown above) are given,
then the system can guide the student in completing
a specification

• . . . in step-wise constructing a solution:

If a program describes how to solve a problem
defined by a formal specification,
then this program run by Lucas-Interpretation

• determines a next step (if requested by the student)
• checks input of the student using the logical context.

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

“Next step guidance” . . .

• . . . in specifying a problem:

If data for each variant for constructing a specification
(one variant shown above) are given,
then the system can guide the student in completing
a specification

• . . . in step-wise constructing a solution:

If a program describes how to solve a problem
defined by a formal specification,
then this program run by Lucas-Interpretation

• determines a next step (if requested by the student)
• checks input of the student using the logical context.

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Outline

1 “Systems that Explain Themselves”?

2 Mechanical Explanation and Language Layers
Term Language
Proof Language
Specification Language
“Next step guidance”
Programming Language

3 Conclusions

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Programming Language . . .

. . . for authors of mathematics knowledge.

Isabelle provides a “function package” for programming.
Added value of this implementation:

• syntax errors are indicated accurately
• type annotations shift into the initial signature
• less type annotations are required
• syntax highlighting specific for constants etc
• free variables on right-hand-sides are rejected

Students might watch progress within a solution
like in a debugger (on request).

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Conclusions

TP technology provides mechanical explanations due to

• principal benefits

• added value of implementation

• and “next step guidance”

of various kinds on different language layers — all explanations
come on users’ request!

Field tests will show, whether “systems that explain themselves”
meet the promise to make learning mathematics a game
like learning to play chess by software.

In order to get prototypes ready for field tests,
understanding by stakeholders in STEM education is needed,
private demos of Isabelle/ISAC are welcome.

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Conclusions

TP technology provides mechanical explanations due to

• principal benefits

• added value of implementation

• and “next step guidance”

of various kinds on different language layers — all explanations
come on users’ request!

Field tests will show, whether “systems that explain themselves”
meet the promise to make learning mathematics a game
like learning to play chess by software.

In order to get prototypes ready for field tests,
understanding by stakeholders in STEM education is needed,
private demos of Isabelle/ISAC are welcome.

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Conclusions

TP technology provides mechanical explanations due to

• principal benefits

• added value of implementation

• and “next step guidance”

of various kinds on different language layers — all explanations
come on users’ request!

Field tests will show, whether “systems that explain themselves”
meet the promise to make learning mathematics a game
like learning to play chess by software.

In order to get prototypes ready for field tests,
understanding by stakeholders in STEM education is needed,
private demos of Isabelle/ISAC are welcome.

Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions Thank you for Attention!

	``Systems that Explain Themselves''?
	Mechanical Explanation and Language Layers
	Term Language
	Proof Language
	Specification Language
	``Next step guidance''
	Programming Language

	Conclusions

