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“Systems that Explain
Themselves”?

• Systems for proofs: well-known theorem provers (TP),
e.g. Coq, PVS, HOL, Isabelle have

• math knowledge deduced from first principles (axioms)
• so, elements of math knowledge “explain themselves”
• usage for proof does not explain itself

−→ short demo of Isabelle

• Systems for engineering mathematics: only prototypes,
e.g. 4ferries (by R.J. Back), Mathtoys, ISAC
• need to build upon TPs (justifications !)
• need to step-wise construct problem solutions
• need to support modularisation into sub-problems
• . . . such that usage and knowledge “explain

themselves”

−→ Isabelle/ISAC will serve as example
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Term Language

The demo has shown . . .

• principal benefits

• uniformity over all domains of mathematics
• type system efficiently excludes ambiguities
• clear description of functions and respective rules

• added value of implementation

• a formula’s elements are connected with definitions
• types are transparent by mouse pointer
• feedback to input of formulas
• structure of formulas, i.e. sub-terms are transparent
• internal representation adaptable to engineers’ needs
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Proof Language . . .

. . . adapts to conventions of engineering mathematics:

Figure: Conventional worksheet on ISAC’s front-end
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Proof Language

• Principal benefits

• calculations in a conventional format
• all steps of calculation in a consistent framework
• each step is justified by theorems
• specific steps equivalent to Computer Algebra
• Computer Algebra decomposed into elementary steps

• Added value of implementation

• change from survey to detail in the calculation tree
(collapsing and expanding)

• justification for any step can be inspected on demand
• steps can be redone while trying alternative ways
• alternatives can be tried in parallel windows
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Specification Language

Formal specification of the previous Solution:
01 Problem (Biegelinie, [Biegelinien])
02 Specification:
03 Model:
04 Given : Traegerlaenge L, Streckenlast q0
05 Where : q0 ist_integrierbar_auf [0, L]
06 Find : Biegelinie y
07 Relate : Randbedingungen [Q 0 = q0 · L, Mb L = 0, y 0 = 0, d

dx y 0 = 0]
08 References:
09 Theory : Biegelinie
10 x Problem : ["Biegelinien"]
11 o Method : ["IntegrierenUndKonstanteBestimmen2"]
12 Solution:

Hidden data for “next step guidance” :
[ ( [ Traegerlaenge L, Streckenlast q0, Biegelinie y,

Randbedingungen [ Q 0 = q0 · L, Mb L = 0, y 0 = 0, d
dx y 0 = 0], FunktionsVariable x ]

("Biegelinie", ["Biegelinien"], ["IntegrierenUndKonstanteBestimmen2" ] ) ) ]



Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Specification Language

• Principal benefits
• formal specification prepares mechanical solution
• pre-condition determines solvability
• post-condition makes essence of a problem explicit
• problems decomposed into sub-problems (with

specifications)
• Added value of implementation

• specifications can be easily searched and tried
• trees of specifications allow automated refinement
• successfully specified problems solved by key stroke
• sub-problems can be interactively arranged
• specifications as black boxes raises abstraction

in problem solving, see slide movie
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Start Example

Problem [area-of-circle]
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Start Example

Problem [area-of-circle]
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Problem modelled ok

Problem [area-of-circle]
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Start considering sub-problems

d cm,  φ l/s,  s cm

Find: h m

Problem [area-of-circle]
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Select sub-problems

d cm,  φ l/s,  s cm

Problem [rational, equation]

Find: h m

Problem [area-of-circle]
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Select sub-problems

d cm,  φ l/s,  s cm

Problem [rational, equation]

Problem [velocity-space-time, find-time]

Find: h m

Problem [area-of-circle]
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Select sub-problems

d cm,  φ l/s,  s cm

Problem [rational, equation]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Find: h m

Problem [area-of-circle]
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Select sub-problems

d cm,  φ l/s,  s cm

Problem [rational, equation]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]
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Delete irrelevant sub-problems

d cm,  φ l/s,  s cm

Problem [rational, equation]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]
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Select relevant sub-problems

d cm,  φ l/s,  s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]
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What is given / has to be found?

d cm,  φ l/s,  s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]
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d cm,  φ l/s,  s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

h  m

t  s

A  cm
v  m/s s  m

t  s

A  m φ  m3/s

v  m/s
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Connect “Given” and “Find”

d cm,  φ l/s,  s cm

Problem [flow-rate, find-velocity]
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Problem [free-fall]

Find: h m

Problem [area-of-circle]
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t  s

A  cm
v  m/s s  m

t  s

A  m φ  m3/s

v  m/s



Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Connect “Given” and “Find”

d cm,  φ l/s,  s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

h  m

t  s

A  cm
v  m/s s  m

t  s

A  m φ  m3/s

v  m/s

?



Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Connect “Given” and “Find”

d cm,  φ l/s,  s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

h  m

t  s

A  cm
v  m/s s  m

t  s

A  m φ  m3/s

v  m/s

?



Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Connect “Given” and “Find”

d cm,  φ l/s,  s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

h  m

t  s

A  cm
v  m/s s  m

t  s

A  m φ  m3/s

v  m/s

?



Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Connect “Given” and “Find”

d cm,  φ l/s,  s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

h  m

t  s

A  cm
v  m/s s  m

t  s

A  m φ  m3/s

v  m/s

?



Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Dangling connection ???

d cm,  φ l/s,  s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

h  m

t  s

A  cm
v  m/s s  m

t  s

A  m φ  m3/s

v  m/s

?

???



Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Rearrange sub-problems
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Flipped two sub-problems

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h  m

t  s

v  m/s

A  cm
A  m φ  m3/s

s  m

v  m/s

t  s

d cm,  φ l/s,  s cm



Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Connect “Given” and “Find”

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h  m

A  cm
A  m φ  m3/s

s  m

d cm,  φ l/s,  s cm

t  s

t  s

v  m/s

v  m/s



Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Connect “Given” and “Find”

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h  m

A  cm φ  l/s

A  m φ  m3/s

s  m

d cm,  φ l/s,  s cm

t  s
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v  m/s

v  m/s



Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Connect “Given” and “Find”

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h  m

A  cm φ  l/s

A  m φ  m3/s

s  m
s  cm

d cm,  φ l/s,  s cm

t  s

t  s

v  m/s

v  m/s



Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Connect “Given” and “Find”

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h  m

v  m/s

A  cm φ  l/s

A  m φ  m3/s

s  m
s  cm

d cm,  φ l/s,  s cm



Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Connect “Given” and “Find”

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h  m

t  s

v  m/s

A  cm φ  l/s

A  m φ  m3/s

s  m
s  cm

d cm,  φ l/s,  s cm



Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

All connections finished

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h  m
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Care about unit conversions

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h  m

t  s

v  m/s

A  cm φ  l/s

A  m φ  m3/s

s  m
s  cm

d cm,  φ l/s,  s cm
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Solution with units only
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“Next step guidance” . . .

• . . . in specifying a problem:

If data for each variant for constructing a specification
(one variant shown above) are given,
then the system can guide the student in completing
a specification

• . . . in step-wise constructing a solution:

If a program describes how to solve a problem
defined by a formal specification,
then this program run by Lucas-Interpretation

• determines a next step (if requested by the student)
• checks input of the student using the logical context.
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Programming Language . . .

. . . for authors of mathematics knowledge.

Isabelle provides a “function package” for programming.
Added value of this implementation:

• syntax errors are indicated accurately
• type annotations shift into the initial signature
• less type annotations are required
• syntax highlighting specific for constants etc
• free variables on right-hand-sides are rejected

Students might watch progress within a solution
like in a debugger (on request).
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Conclusions

TP technology provides mechanical explanations due to

• principal benefits

• added value of implementation

• and “next step guidance”

of various kinds on different language layers — all explanations
come on users’ request!

Field tests will show, whether “systems that explain themselves”
meet the promise to make learning mathematics a game
like learning to play chess by software.

In order to get prototypes ready for field tests,
understanding by stakeholders in STEM education is needed,
private demos of Isabelle/ISAC are welcome.



Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Conclusions

TP technology provides mechanical explanations due to

• principal benefits

• added value of implementation

• and “next step guidance”

of various kinds on different language layers — all explanations
come on users’ request!

Field tests will show, whether “systems that explain themselves”
meet the promise to make learning mathematics a game
like learning to play chess by software.

In order to get prototypes ready for field tests,
understanding by stakeholders in STEM education is needed,
private demos of Isabelle/ISAC are welcome.



Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions

Conclusions

TP technology provides mechanical explanations due to

• principal benefits

• added value of implementation

• and “next step guidance”

of various kinds on different language layers — all explanations
come on users’ request!

Field tests will show, whether “systems that explain themselves”
meet the promise to make learning mathematics a game
like learning to play chess by software.

In order to get prototypes ready for field tests,
understanding by stakeholders in STEM education is needed,
private demos of Isabelle/ISAC are welcome.



Mechanised
Justification

Walther
Neuper

Explain itself?

Lang. Layers
Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions Thank you for Attention!


	``Systems that Explain Themselves''?
	Mechanical Explanation and Language Layers
	Term Language
	Proof Language
	Specification Language
	``Next step guidance''
	Programming Language

	Conclusions

