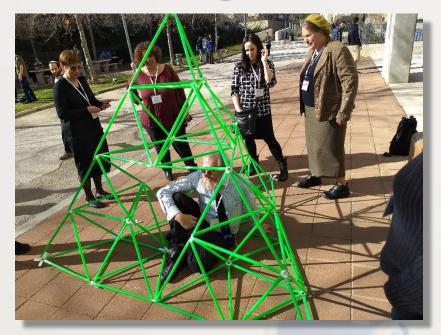


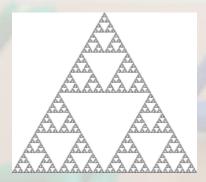
Fractals and tessellations: from K's to cosmology

Thierry Dana-Picard and Sara Hershkovitz

CADGME 6
Coimbra, Portugal
June 26th, 2018

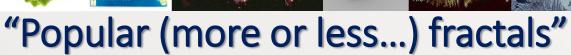
"Doing mathematics" with low tech



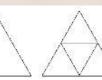


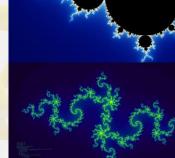
A fractal is a never-ending pattern. Fractals are infinitely complex patterns that are self-similar across different scales. They are created by repeating a simple process over and over in an ongoing feedback loop. Driven by recursion, fractals are images of dynamic systems – the pictures of Chaos. ... Fractal patterns are extremely familiar, since nature is full of fractals. For instance: trees, rivers, coastlines, mountains, clouds, seashells, hurricanes, etc. Abstract fractals – such as the Mandelbrot Set - can be generated by a computer calculating a simple equation over and over.

Credit: Fractal Foundation



- Mathematics:
 - Mandelbrot and Julia sets
- Botanics:
 - Trees, Cauliflower, Romanesco cabbage, ...
- Life sciences:
 - Lungs, blood vessels
- Sciences of Earth:
 - Coastal lines, lightings,
- Structure of time in the Jewish calendar



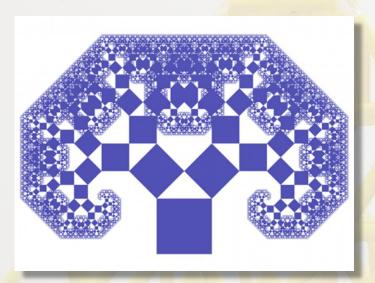


Construction of a Sierpinski triangle with

Working in opposite direction

Kids Inspiring Kids for STEAM -Erasmus+ @ European Researchers' Night 2017 Budapest. Kristof Fenyvesi

Pythagorean tree (Etienne Ghys, ENS, Lyon, France)



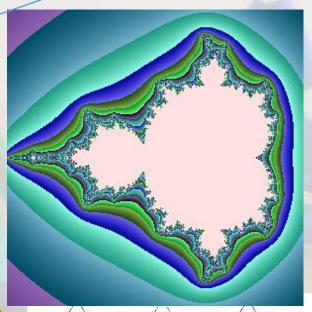
Plotting a fractal using a Maple package

Mandelbrot set

- > restart; with(Fractals:-EscapeTime);
- > with(ImageTools);
- > M := Mandelbrot(300, -2.0-1.35*I,
- .7+1.35*I);
- >/Embed(M);

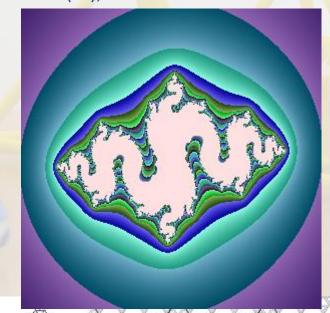
Initial points

size



Julia set

- > bl, ur, c := -2.0-1.5*l, 2.0+1.5*l, -.8+.156*l;
- > M := Julia(300, bl, ur, c);
- >MAssignArray(%id = 18446744074392415014)
- > Embed(M);



Building a fractal

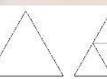
Angela Gammella-Mathieu & Nicolas Mathieu: Algorithmique et programmation graphique des fractales de Sierpinski, APMEP, France.

https://www.apmep.fr/Algorithmique-et-programmation

Exercise:

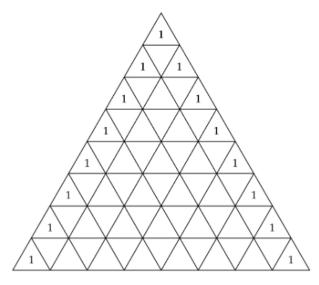
- 1. Take an equilateral triangle. We will build a Sierpinski triangle. Denote by u_n the
- number of white triangles at step number n. Which kind of sequence is (u_n) ?

 2. We build a Sierpinski pyramid. Denote by v_n the number of white triangles on the faces of the original tetrahedron at step n. Which kind of sequences is (v_n)



Exercise: Fractals meet Pascal

(i) Fill in the missing entries to complete Pascal's triangle (we only use the upside triangles):



- (ii) Give a rule as to which triangles must be colored in order to retrieve Sierpinki's triangle from Pascal's triangle (Sierpinski meets Pascal).
- (iii) If n is an integer, write $n = \sum_{i=0}^k n_i 2^i$ with $n_i \in \{0,1\}$ (we call this the binary expansion of n) Similarly, for another integer m, we write $m = \sum_{i=0}^k m_i 2^i$. Explain how Lucas formula

$$\binom{n}{m} \equiv \prod_{i=0}^k \binom{n_i}{m_i} \mod 2$$

explains the "mod 2" pattern of the binomial coefficient $\binom{n}{m}$ in terms of the binary expansions of n and m.

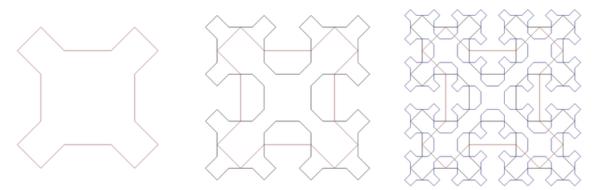
Sierpinski curve: Finite-infinite interplay

Sierpiński curves are a recursively defined sequence of continuous closed plane fractal curves discovered by Wacław Sierpiński, which in the limit $n \to \infty$ completely fill the unit square: thus their limit curve, also called **the Sierpiński curve**, is an example of a space-filling curve.

Because the Sierpiński curve is space-filling, its Hausdorff dimension (in the limit $n \to \infty$) is 2. The Euclidean length of

$$S_n ext{ is } l_n = rac{2}{3}(1+\sqrt{2})2^n - rac{1}{3}(2-\sqrt{2})rac{1}{2^n},$$

i.e., it grows exponentially with n beyond any limit, whereas the limit for $n \to \infty$ of the area enclosed by S_n is 5/12 that of the square (in Euclidean metric).

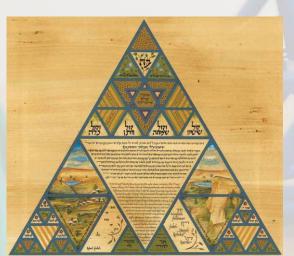


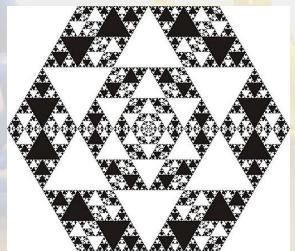
Sierpiński curve of first order Sierpiński curves of orders 1 and 2 Sierpiński curves of orders 1 to 3

Art pieces based on Sierpinski triangle and

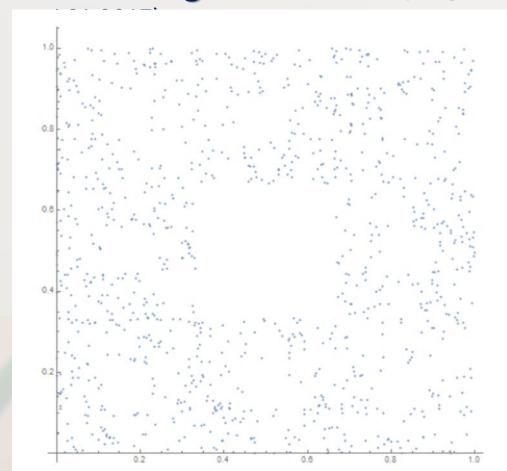
pyramid

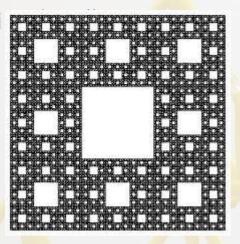
Jewish contract of marriage (Norman Slepkov, Jerusalem)



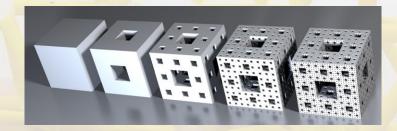


Cosmologic simulation (Benjamin, Mylläri



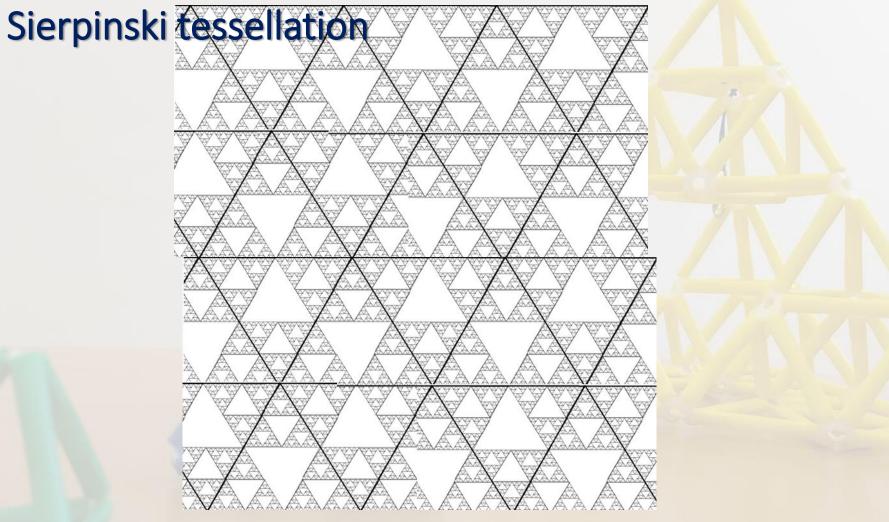


Sierpinski carpet



Tessellations

A **tessellation** of a flat surface is the tiling of a plane using one or more geometric shapes, called tiles, with no overlaps and no gaps. In mathematics, tessellations can be generalized to higher dimensions and a variety of geometries.



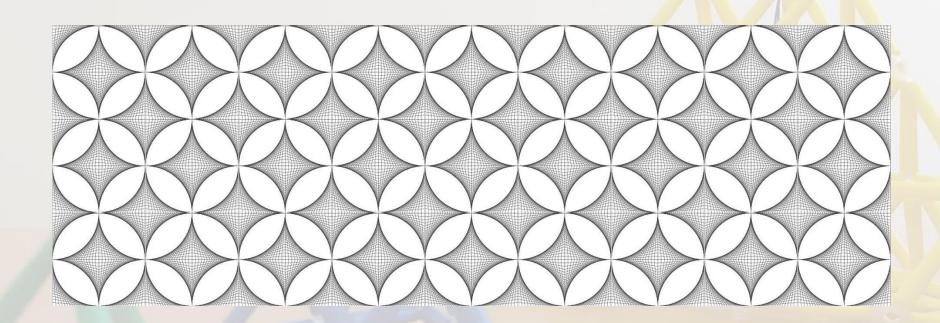
Hens

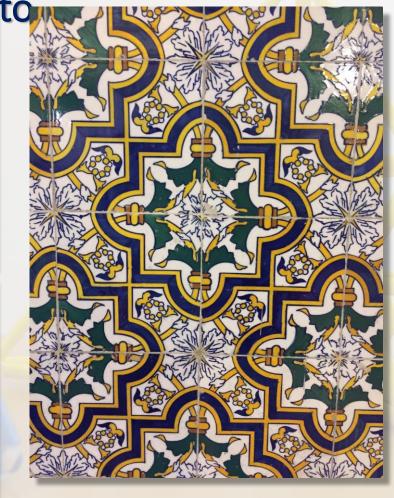
Plymouth rock

Speckled Sussex Chicken

עוף בראקל

Tessellations using envelopes





A living tessellation (Places applausally)

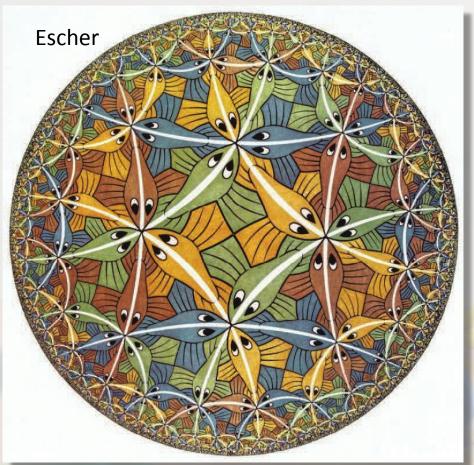
3D extensions

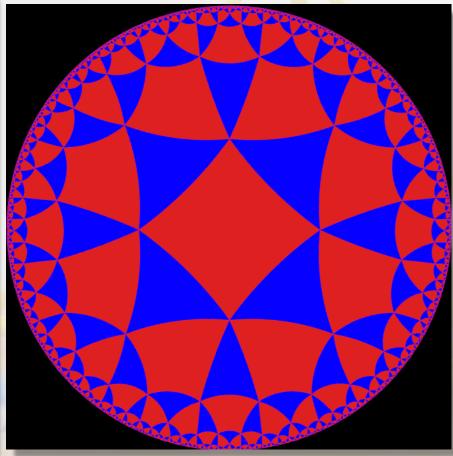
Andrea Russo, Italy (Paper works)

Resch pattern

Origami tessellation – generalization of a Resch pattern
Every point on the surface has zero Gaussian curvature.

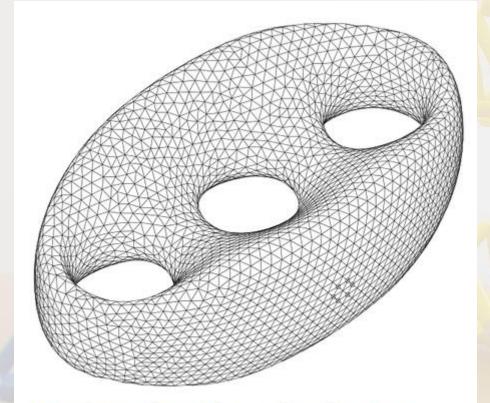
Tessellations on a hyperbolic plane





Tomruen at en.wikipedia

Triangulation, not a tessellation



Triangulation of an implicit surface of genus 3

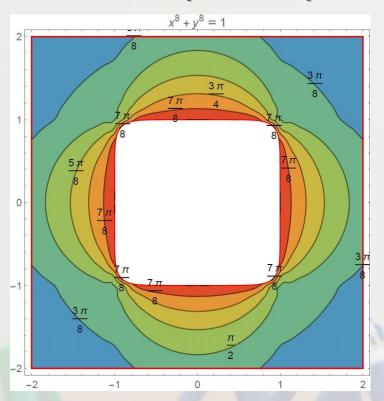
Isoptic curves

Let be given a plane curve C and an angle θ .

If it exists, the geometric locus of points through which passes a pair of tangents to C making an angle equal to θ is called an *isoptic curve* of C.

The name comes from the fact that from points on this geometric locus the curve C is seen under an angle equal to θ .

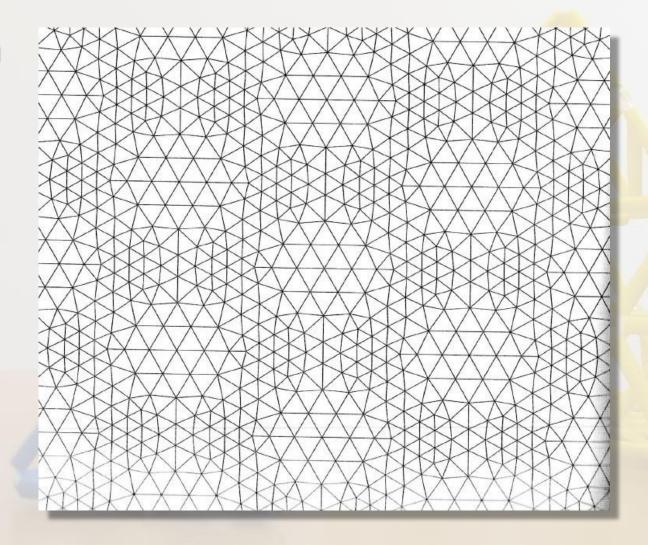
Example: isoptics of a Fermat curve



Floor at in the lobby of an old synagogue in Budapest

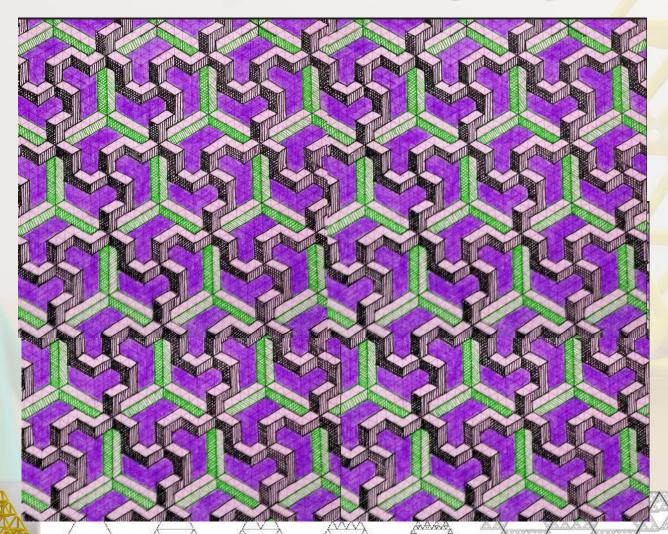
Ref: Th. D-P and A. Naiman (2017): Isoptics of Fermat Curves, ACA 2017

Low tech



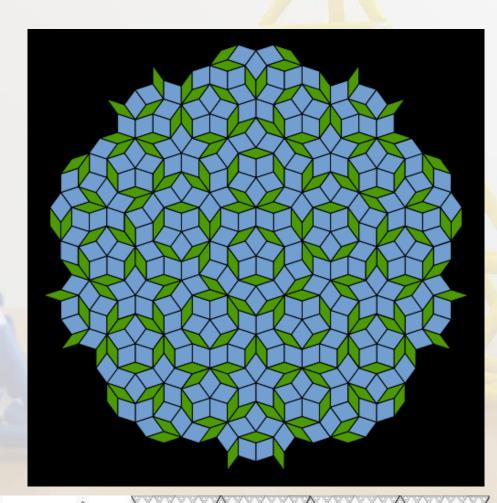
Low tech building of a tessellation – doing

A tessellation built on a triangular grid



Non periodic tiling – Penrose tiling

Made of two kinds of quadrilaterals



Voronoi (or Dirichlet) tessellation

A Voronoi diagram is a partitioning of a plane into regions based on distance to points in a specific subset of the plane. That set of points (called seeds, sites, or generators) is specified beforehand, and for each seed there is a corresponding region consisting of all points closer to that seed than to any other. These regions are called Voronoi cells.

(Wikipedia)

Here all the cells are convex polygonial cells

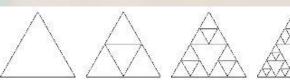
By Mysid (SVG), Cyp (original) - Manually vectorized in Inkscape by Mysid, based on Image:Coloured Voronoi 2D.png., CC BY-SA 3.0,

Can a Voronoi diagram solve a biblical problem?

Deuteronomy 21:

- 1. If a slain person be found in the land which the Lord, your God is giving you to possess, lying in the field, [and] it is not known who slew him,
- 2. then your elders and judges shall go forth, and they shall measure to the cities around the corpse.

Ref: Deuteronomy Chapter 21 - E. Merzbach, Higayon



Tessellations on a surface topologically equivalent to a plane

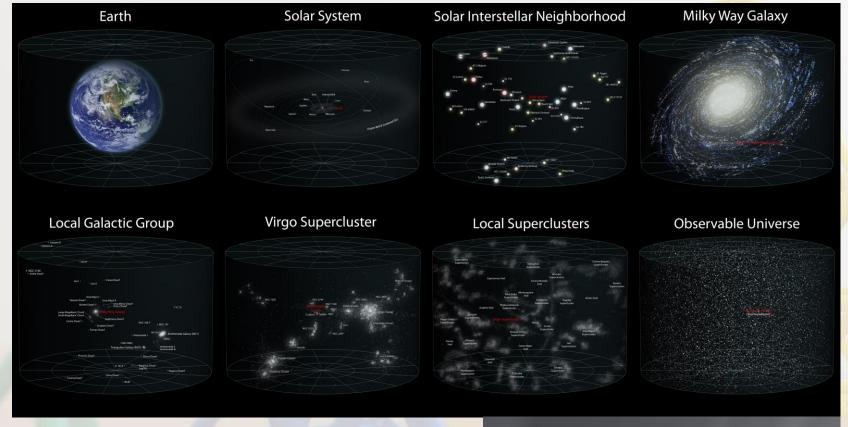
No pattern change

Ilkhanid Emamzadeh-ye-Abd al-Samad, Natanz, Iran

With pattern change

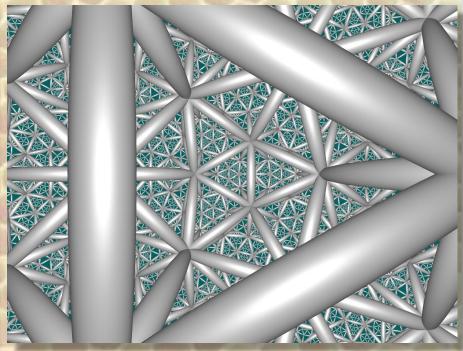
Jame (Friday) Mosque, Yazd, Iran

The rosette changes bottom-up from 10-fold to 5-fold



Menger sponge

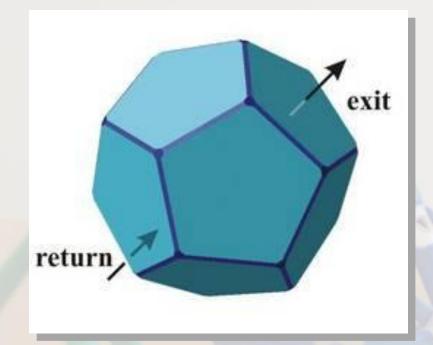
Bees and hives



Icosehedral honey comb in hyperbolic space

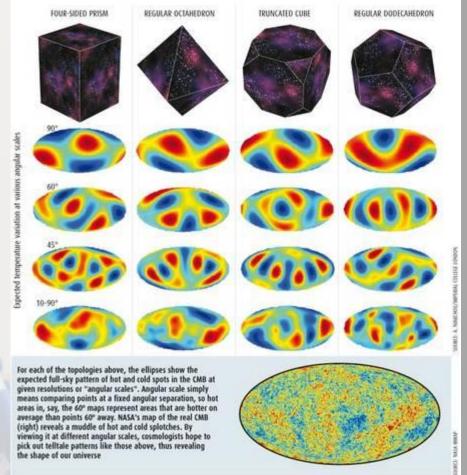
Is the universe finite?

The Poincaré dodecahedron

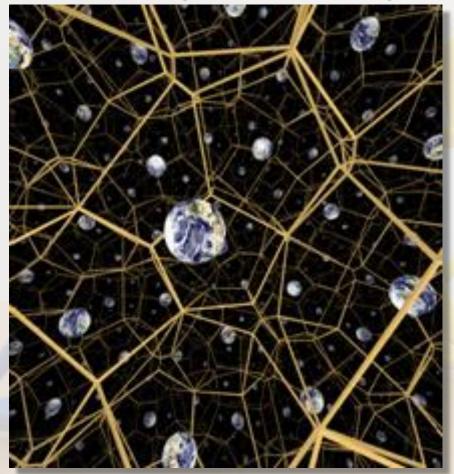


PICK YOUR UNIVERSE

The topology of the universe would leave its mark on sky maps of the cosmic microwave background (CMB)



A cosmic hall of fame (J.P. Luminet)



Thank you for your attention

and good appetite!

