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A fractal is a never-ending pattern.
Fractals are infinitely complex patterns
that are self-similar across different
scales. They are created by repeating a
simple process over and over in an
ongoing feedback loop. Driven by
recursion, fractals are images of
dynamic systems — the pictures of
Chaos. ... Fractal patterns are extremely
familiar, since nature is full of fractals.
For instance: trees, rivers, coastlines,
mountains, clouds, seashells,
hurricanes, etc. Abstract fractals — such
as the Mandelbrot Set — can be
generated by a computer calculating a
simple equation over and over.

Credit: Fractal Foundation




“Popular (more or less...) fractals

Mathematics:
e Mandelbrot and Julia sets

* Botanics:
* Trees, Cauliflower, Romanesco cabbage, ...

* Life sciences:
* Lungs, blood vessels

* Sciences of Earth:
e Coastal lines, lightings, ....

e Structure of time in the Jewish calendar
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Construction of a Sierpinski triangle with
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Working in opposite direction

Kids Inspiring Kids for STEAM - Pythagorean tree (Etienne Ghys,

Erasmus+ @ European Researchers' ENS, Lyon, France)

Night 2017 Budapest. Kristof Fenyvesi
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otting a fractal using a Maple package

Judaism LE

Mandelbrot set Julia set
> restart; with(Fractals:-EscapeTime); > bl, ur, c :=-2.0-1.5*%|, 2.0+1.5*|, -.8+.156%*];
_ > with(ImageTools); > M := Julia(300, bl, ur, c);
size
Se——
> M := Mandelbrot(300, -2.0-1.35%*|, >MAssignArray(%id =

18446744074392415014)
> Embed(M);

7+1.35*|);

%mbed(M .

Initial




“ JERUSALEM cet !27

A COLLEGE OF nal Technology
: TECHNOLOGY

EEEEEEEEEEEEEEEE

Building a fractal

Angela Gammella-Mathieu & Nicolas Mathieu: Algorithmique et programmation
graphique des fractales de Sierpinski, APMEP, France.
https://www.apmep.fr/Algorithmique-et-programmation

Exercise:

1. Take an equilateral triangle. We will build a Sierpinski triangle. Denote by U the
number of white triangles at step number n. Which kind of sequenceis ( )?

2. We build a Sierpinski pyramid. Denote by V. the number of white triangles on the
faces of the original tetrahedron at step n. Wh|ch kind of sequences is (V )



https://www.apmep.fr/Algorithmique-et-programmation
../../2018 - ACA - Santiago de Compostella/tessellations and fractals/sierpinski-triangle.mw
../../2018 - ACA - Santiago de Compostella/tessellations and fractals/sierpinski triangle  - stars.mw
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Exercise: Fractals meet Pascal

Astrid Dana-Picard
(i) Fill in the missing entries to complete Pascal’s triangle (we only use the upside triangles):
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(i1) Give a rule as to which triangles must be colored in order to retrieve Sierpinki’s triangle from Pascal’s

triangle (Sierpinski meets Pascal).
(iii) If n is an integer, write n E:::U n;2" with n; € {0,1} (we call this the binary expansion of n)
Similarly, for another integer m, we write m = Zf’_“ m;2'. Explain how Lucas formula

T k T
( ) = H ( "”) mod 2
T 0 g

1=

explains the “mod 2” pattern of the binomial coefficient (:a) in terms of the binary expansions of n

and m.
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Sierpinski curve: Finite-infinite interplay

TECHNOLOGY
Sierpinski curves are a recursively defined sequence of continuous closed plane fractal curves discovered by Wactaw

Sierpinski, which in the limit n — oo completely fill the unit square: thus their limit curve, also called the Sierpinski curve, is

an example of a space-filling curve.

Because the Sierpinski curve is space-filling, its Hausdorff dimension (in the limit n — oo)is 2.
The Euclidean length of

9 1 1
S, isl, = §(1 + 4/2)2" — 5(2 — \/f)z—n,

i.e., it grows exponentially with n beyond any limit, whereas the limit for n — oo of the area enclosed by S,, is 5/12 that of

the square (in Euclidean metric).
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Art pieces based on Sierpinski triangle and
.pyramir*
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Jewish
contract
of

marriage
(Norman
Slepkov,
Jerusalem)
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Cosmologic simulation (Benjamin, Mylléri
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Tessellations

A tessellation of a flat surface is the tiling of a plane
using one or more geometric shapes, called tiles, with
no overlaps and no gaps. In mathematics,
tessellations can be generalized to higher dimensions
and a variety of geometries.

3 N,
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Sierpinski
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Hens

Plymouth rock Speckled Sussex Chicken IR Q1Y
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Tessellations using envelopes
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A living tessellation

Dana-Picard
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3D extensions

Andrea Russo, Italy

Resch pattern
(Paper works)

Origami tessellation —
generalization of a Resch
pattern

Every point on the surface has
zero Gaussian curvature.
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Tessellations on a hyperbolic plane
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Triangulation, not a tessellation
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Triangulation of an implicit surface of genus 3
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Isoptic curves

Let be given a plane curve C and an angle ©.

If it exists, the geometric locus of points through
which passes a pair of tangents to C making an angle
equal to O is called an isoptic curve of C.

The name comes from the fact that from points on
this geometric locus the curve Cis seen under an

angle equal to O.
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~ Example: isoptics of a Fermat curve

x8+y8=1

The Center for Educational Technology

=2

Floor at in the lobby of an
old synagogue in Budapest

Ref: Th. D-P and A. Naiman (2017): Isoptics of Fermat Curves, ACA 2017
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Low tech building of a tessellation
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" Non periodic tiling — Penrose tiling

Made of two kinds
of quadrilaterals

/ /g\i‘gfszy Inductiveload * Own work, Public Domain, \
48 curids

hitp<://commons.wikimedia.org/w/indexX:phip?
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Voronoi (or Dirichlet) tessellation

= ahnY
A Voronoi diagramis a partitioning
of a plane into regions based on
distance to points in a specific
subset of the plane. That set of
points (called seeds, sites, or
generators) is specified beforehand,
and for each seed thereis a
corresponding region consisting of
all points closer to that seed than to
any other. These regions are called

Voronoi cells.
(Wikipedia)

Here all the cells are convex
polygonial cells



https://commons.wikimedia.org/w/index.php?curid=4290269
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Can a Voronoi diagram solve a biblical
problem?

Deuteronomy 21:

1. If a slain person be found in the land which the Lord, your
God is giving you to possess, lying in the field, [and] it is not

known who slew him,

2. then your elders and judges shall go forth, and they shall

measure to the cities around the corpse.

Ref: Deuteronomy Chapter 21 - E. Merzbach, Higayon
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—manoioer Tessellations on a surface topologically equivalent
No pattern l:ggea plane With pattern change

llkhanid Emamzadeh-ye-Abd al-Samad, Natanz, Iran Jame (Friday) Mosque, Yazd, Iran

The
rosette
changes
bottom-
up from
10-fold to
5-fold
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Solar System Solar Interstellar Neighborhood Milky Way Galaxy

Local Galactic Group Virgo Supercluster Local Superclusters Observable Universe

Menger sponge




Bees and hives

Icosehedral honey comb

IC Space

hyperboli
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Is the universe finite?

FOUR-SIDED PRISM REGULAR OCIAHEDRON TRUNCATED CUBE REGUIAR DOOECAHEDRON

The Poincaré dodecahedron

exit

Expected lempesatuie variation ab various angular scales

SOURCE A NARCMOW WAL (DL $NDON

For each of the topologies above, the ellipses show the
expected lull-sky pattern of hot and cold spots in the CMB at
given resolutions or “angular scalles”. Angular scale simply
means comparing points at 3 fixed angubar separation, so hot
areas in, say, the 60" maps represent areas that ase hotter on
average than points 60" away. NASA's map of the real (M8
(right) reveals a muddle of hot and cold splotches., By
viewing it at diffesent angular scales, cesmologists hope 1o
pick out telltale patterns like those above, thus revealing
the shape of our universe
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A cosmic hall of fame (J. P. Lumlnet)
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Thank you for your attention

and good appetite!




