

CADGME 7

COIMBRA, 26-29 JUNE 2018

CHANGING PLANS: HOW DYNAMIC MERLO ITEMS CAN

SUPPORT STUDENTS' UNDERSTANDING IN 3D GEOMETRY

THE PROJECT: A JOINT EFFORT

TEACHERS' PROFESSIONAL DEVELOPMENT

GEOMETRY WITH GEOGEBRA: MEANINGS AND REPRESENTATIONS (PLSTO 04)

NOV 2017-MAY 2018

GERMANA TRINCHERO

ORNELLA ROBUTTI

GIULIA BINI

THEORETICAL FRAMEWORK:

M.E.R.L.O. PEDAGOGY

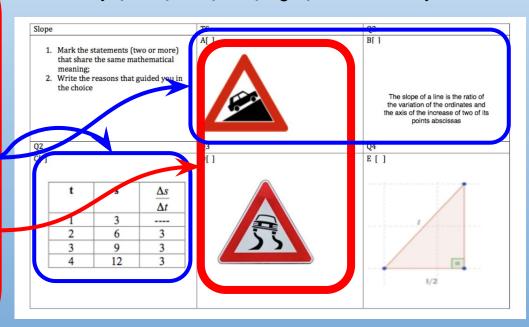
MEANING EQUIVALENCE REUSABLE LEARNING

FOSTER STUDENTS' ATTENTION ON CONCEPTUAL MEANING, THROUGH INTERACTIVE/FORMATIVE ASSESSMENT BASED ON:

- UNSTRUCTURED TASKS
- FREQUENT AND DETAILED FEEDBACK

<u>COMPOSITION</u>: one task and five statements

- IN THE BOXES **DIFFERENT REGISTERS** ARE USED: NATURAL LANGUAGE, GRAPHIC, NUMERICAL, ...
- EACH BOX CONTAINS A CORRECT STATEMENT / REPRESENTATION FROM A MATHEMATICAL POINT OF VIEW
- SOME BOXES SHARE THE SAME MEANING (MEANING


EQUIVALENCE) OTHERS ONLY HAVE A SIMILARITY IN

THE REPRESENTATION (<mark>SURFACE SIMILARITY</mark>

- THE TASK IS: <u>"TICK THE REPRESENTATIONS THAT SHARE THE</u> SAME MEANING (TWO OR MORE); INDICATE THE REASONS

THAT GUIDE YOUR CHOICE"

M.E.R.L.O. ITEM

THEORETICAL FRAMEWORK: M.E.R.L.O. PEDAGOGY

MERLO APPROACH TO PARSING AND ANALYSING CONCEPTS IS APPLICABLE TO VARIOUS SUBJECTS FOR RECOGNIZING, REPRESENTING, ORGANIZING, EXPLORING AND MANIPULATING KNOWLEDGE. IT IS PARTICULARLY RECOMMENDED IN MATHEMATICS, WHERE THE ABILITY TO SHIFT FROM ONE TO ANOTHER REPRESENTATION OF THE SAME OBJECT AND THE COORDINATION OF MULTIPLE REPRESENTATIONS IN MORE THAN ONE SEMIOTIC REGISTER ARE FUNDAMENTAL COMPETENCIES, IN ORDER TO ACCESS THE UNDERLYING MEANING AND TO UNDERSTAND MATHEMATICS.

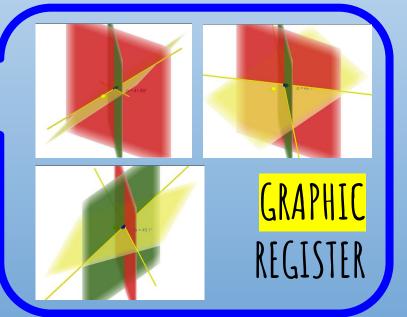
ARZARELLO, F., ROBUTTI O. & CARANTE P. (2015), MERLO: A NEW TOOL AND A NEW CHALLENGE IN MATHEMATICS TEACHING
AND LEARNING, PROCEEDINGS OF PME 39,

ADDED VALUE & ADJUSTMENTS

WHAT'S NEW

DYNAMIC CONTENT IS ADDED TO THE MERLO ITEMS ALLOWING STUDENTS' INTERACTION WITH THE MATHEMATICAL OBJECTS THROUGH A CONNECTED DEVICE

THE CLASSICAL MERLO PROTOCOL IS STRENGTHENED ASKING STUDENTS TO GIVE ARGUMENTATIONS FOR BOTH INCLUSIONS AND EXCLUSIONS AND TO CHOOSE A TITLE


GEOMETRY & DYNAMISM

REGISTERS OF SEMIOTIC REPRESENTATIONS ONLY

Α

The amplitude of a dihedral is defined as the measurement of the angle obtained by cutting the dihedral with a plane perpendicular to the edge of the dihedral.

LINGUISTIC REGISTER

THEORETICAL FRAMEWORK:

THE COGNITIVE ROLE OF DRAGGING

TECHNOLOGY & PROOF

EXPLORING DRAWINGS BY MOVING THEM. LOOKING AT THE WAYS AFTER WHICH THEIR FORMS CHANGE (OR DO NOT CHANGE), ALLOWS USERS TO DISCOVER PROPERTIES. THE POSSIBILITY OF DRAGGING OFFERS A FEEDBACK TO THE DISCOVERING PHASE, AND IN THIS WAY IT PROVIDES SUPPORT TO THE ROLE OF PROOFS AS REAL

ARZARELLO, F., OLIVERO, F., PAOLA, D. ET AL., (2002) A COGNITIVE ANALYSIS OF DRAGGING PRACTICES IN CABRI ENVIRONMENTS. 2DM

CONJECTURES WILL BE MADE [AND] WHAT KINDS OF PROPERTIES WILL BE IDENTIFIED AND THEN ORGANIZED. IN THIS SENSE THE DIAGRAM CONSTRUCTED IN DGE AND THE SCHEMES OF ACTIVATED ON IT BY THE STUDENTS (AN BE CONSIDERED AN ACTUAL PROVIDING EPISTEMOLOGICAL DISCONTINUITY BETWEEN A CONTECTURE AND THE CORRESPONDING PROOF

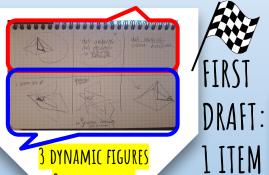
SINCLAIR N., ROBUTTI O. (2012), TECHNOLOGY AND THE ROLE OF PROOF: THE CASE OF DYNAMIC GEOMETRY.

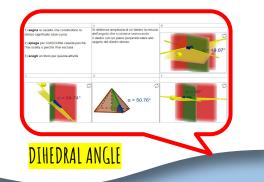
RESEARCH QUESTIONS

IS THE <u>DYNAMIC ELEMENT</u> ADDED TO MERLO ITEMS USING THE GEOGEBRA SW EFFECTIVE IN HELPING STUDENTS <u>UNDERSTAND GEOMETRIC CONCEPTS</u>?

ARE <u>DIGITAL TOOLS</u> ADDING EFFICACY TO MERLO ITEMS IN THE DIRECTION OF ENHANCING STUDENTS' CONCEPTUAL THINKING & ARGUMENTATION?

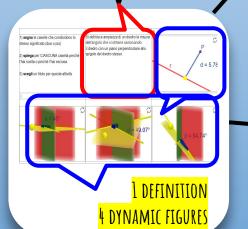
THE CONTENT CHOICE: THE AMPLITUDE OF

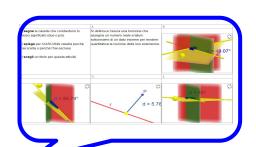

A DIHEDRAL ANGLE


A TRICKY POINT IN 3D
EUCLIDEAN GEOMETRY
WHOSE KNOWLEDGE IS
FOCAL WITHIN THE ITALIAN
NATIONAL CURRICULUM

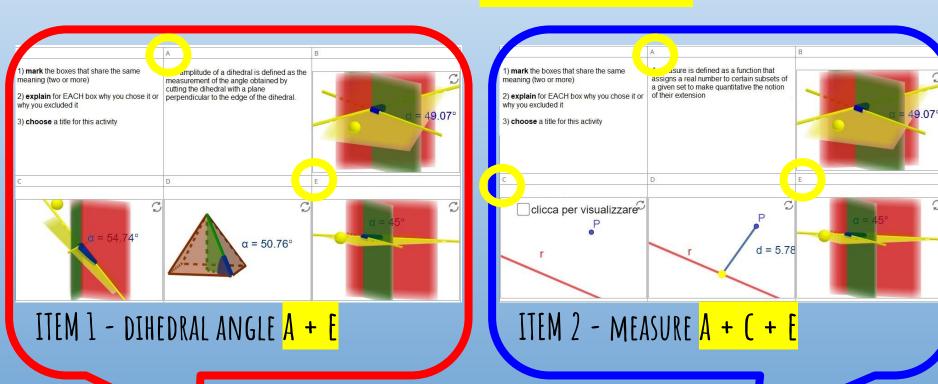
"...THE STUDY OF GEOMETRY WILL CONTINUE WITH THE EXTENSION TO SPACE OF SOME OF THE THEMES OF PLANE GEOMETRY, ALSO TO DEVELOP GEOMETRIC INTUITION. IN PARTICULAR, THE RECIPROCAL POSITIONS OF LINES AND PLANES IN SPACE, THE PARALLELISM AND THE PERPENDICULARITY, AS WELL AS THE PROPERTIES OF THE MAIN GEOMETRIC SOLIDS (IN PARTICULAR OF THE POLYHEDRA AND ROTATION SOLIDS) WILL BE STUDIED..."

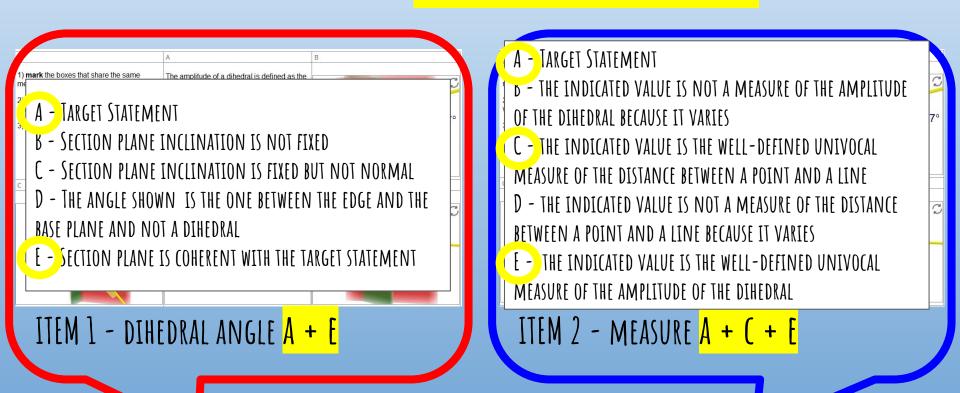
DYNAMIC FIGURES 2 DEFINITIONS


THE TASK DESIGN



FINAL VERSION: 2 ITEMS


- > 1 DEFINITION EACH
- 4 DYNAMIC FIGURES

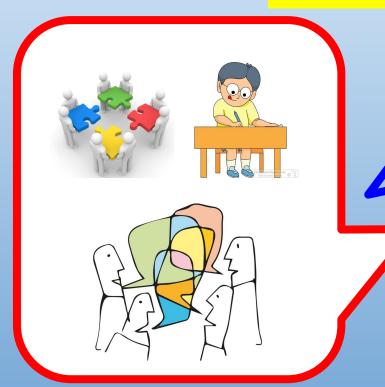


FINAL VERSION: EXPECTED CHOICES

FINAL VERSION: **EXPECTED ARGUMENTATIONS**

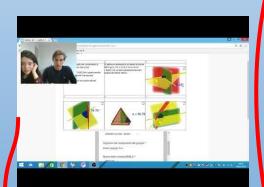
TEACHING EXPERIMENTS SITUATED IN A REAL EDUCATIONAL CONTEXT

LICEO SCIENTIFICO


LEONARDO DA VINCI

WE OBSERVED 4 TEACHING EXPERIMENTS
INVOLVING DYNAMIC MERLO ITEMS
CARRIED OUT AT THE SECONDARY SCHOOL
LEVEL (12TH GRADE) IN 3 HIGH
SCHOOLS IN TURIN AND MILAN

M.E.R.L.O. SETTING AND TEACHING PRACTICE

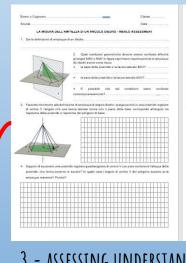

A TYPICAL LESSON BASED ON THE USE OF MERLO ITEMS ENGAGES STUDENTS IN:

- A) SMALL GROUP DISCUSSIONS
- B) RESPONSES
- c) class discussion MEDIATED BY THE TEACHER

ARZARELLO, F., KENETT, R. S., ROBUTTI, O., SHAFRIR, U., PRODROMOU, T., & CARANTE, P. (2015), TEACHING AND ASSESSING WITH NEW METHODOLOGICAL TOOLS (MERLO): A NEW PEDAGOGY?

COMBINING QUALITATIVE RESEARCH METHODS

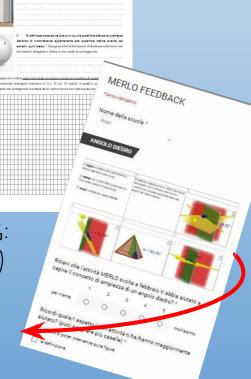
Integrative



l - OBSERVING PROCESSES: AUDIO & VIDEO + SCREEN ACTIVITY RECORDING WITH Open Broadcaster

*Campo obbligatorio	
Nome della scuola	1 *
Scegil	w
Cognomi dei comp	ponenti del gruppo *
La tua risposta	
Nome della sched	a MERLO *
Scegil +	
Quali caselle seco matematico? (due	ndo te condividono lo stesso significato o più) *
□ A	
□ 8	
□ c	
□ D	
□ E	
Per ogni casella sı esclusa	piega perché l'hai scelta o perché l'hai
Casella A *	

ANSWER FORMS


BINI & TRINCHERO - CADGME 2018

3 - ASSESSING UNDERSTANDING: WRITTEN TEST (1 MONTH AFTER)

4 - WRAPPING IT AL

UP: FEEDBACK FORMS

FIRST & SECOND TEACHING EXPERIMENTS: LICEO SCIENTIFICO LEONARDO DA VINCI, MILAN & LICEO DELLE SCIENZE UMANE SANTORRE DI SANTAROSA, TURIN

TEACHER & RESEARCHER PRESENT 15 STUDENTS SPLIT INTO GROUPS OF 3 PEOPLE EACH

60 MIN GROUP WORK

- 2 GROUPS WORK ON ITEM 1
- 3 GROUPS WORK ON ITEM 2

30 MIN GUIDED CLASS DISCUSSION

DATA COLLECTED THROUGH VIDEO REGISTRATION AND WRITTEN OUESTIONNAIRE

BINI & TRINCHERO - CADGME 2018

TEACHER/RESEARCHER PRESENT
15 STUDENTS SPLIT INTO GROUPS OF 3
PEOPLE EACH

<u>60 MIN GROUP WORK</u>

- 2 GROUPS WORK ON ITEM 1
- 3 GROUPS WORK ON ITEM 2

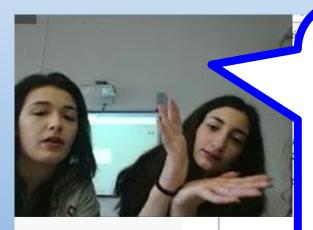
30 MIN GUIDED CLASS DISCUSSION

DATA COLLECTED THROUGH VIDEO REGISTRATION AND WRITTEN QUESTIONNAIRE

DATA: OBSERVING SIGNS AND PROTOCOLS

THE UNPREDICTED GIFTS OF MERLO PEDAGOGY

EXAMPLE 1:

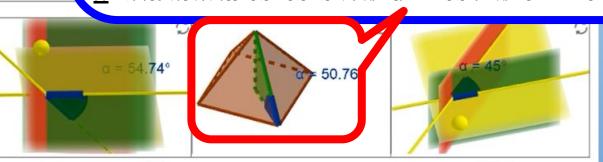

AN UNEXPECTED
(WRONG??) CHOICE
WITH RIGHT
ARGUMENTATIONS


EXAMPLE 2:

AN EXPECTED
(RIGHT??) CHOICE
WITH WRONG
ARGUMENTATIONS

EXAMPLE 3:

SMALLER EXPECTATIONS
ALLOW LARGER
PERCEPTIONS



- <u>52</u> MAKES A GESTURE MIMICKING THE TWO PLANES DESCRIBED BY \$1
- 53 "I DO NOT KNOW IF WE CAN INCLUDE IT AND THEN WRITE THAT THE PLANE IS NOT THERE"
- 52 "BECAUSE IT SEEMS TO ME THAT THERE IS EVERYTHING"
- 53 "THERE IS EVERYTHING WHAT?"
- <u>52</u> "THERE IS EVERYTHING WE NEED"
- 53 "NO BECAUSE YOU SEE HERE THERE ARE TWO PLANES AND HERE IS A PLANE AND AN EDGE"

<u>item 1</u> Dihedral angle

A GESTURAL AND VERBAL
THOUGHT EXPERIMENT
TAKES PLACE
(SINCLAIR ET AL., 2013)

<u>ITEM 1</u> Dihedral angle $\alpha = 50.76^{\circ}$

PRODUCTIVE REASONING [...] INCLUDES A PERMANENT INTERPLAY BETWEEN CONCEPTUAL AND IMAGINATIVE DYNAMICS (FISCHBEIN, 1993)

THE THIRD GROUP MAKES THE EXPECTED CHOICE, BUT ARGUMENTATIONS REVEAL

THEY MISMATCHED DOMAIN AND RANGE OF THE MEASURE FUNCTION:

BOX A: WE START FROM THE DEFINITION TO GET TO THE GRAPHICAL

REPRESENTATION.

<u>BOX B:</u> DOES NOT CORRESPOND TO DEFINITION A BECAUSE A SINGLE SUBSET CORRESPONDS TO A REAL NUMBER.

BOX C: MANY SUBSETS CORRESPOND TO A REAL NUMBER D (DISTANCE)

BOX D: THERE ARE TOO MANY VARIABLES TO DEFINE A FUNCTION

BOX E: CALLING X THE HEIGHT OF THE YELLOW PLANE, WHEN X VARIES THERE IS

ONLY ONE REAL NUMBER WHICH IS ALPHA= 45 $^\circ$

<u>item 2</u> <u>measuri</u>

SUGGESTED TITLE:

<u>FUNCTIONS</u> APPLIED TO TWO-DIMENSIONAL AND THREE-DIMENSIONAL FIGURES

that share the same ore)

H box why you chose it or

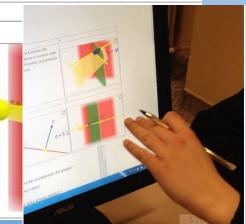
or this activity

A measure is defined as a function that assigns a quantity to a positive real number obtained by comparing the quantity with a unit of measurement

BY MOVING THE BALL, WE NOTICE THAT THE

ALPHA ANGLE VARIES: *If the plane* on which the ball rests *is perpendicular* to the other two planes, *the angle*

WILL BE THE BIGGEST; ON THE CONTRARY,


IF THE *Plane* with the ball is in a *more* inclined position, the *amplitude of* the angle will decrease more and

MORE

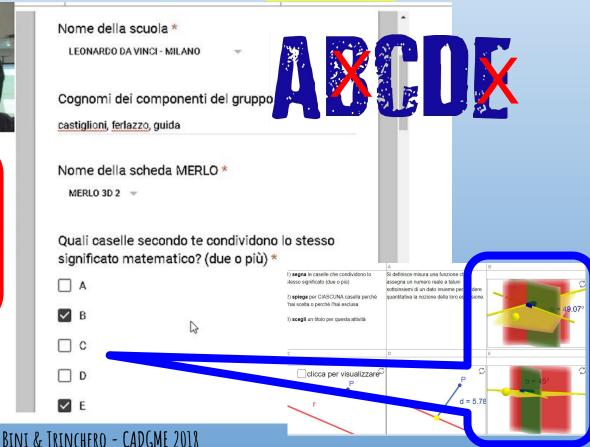
_clicca per visualiz

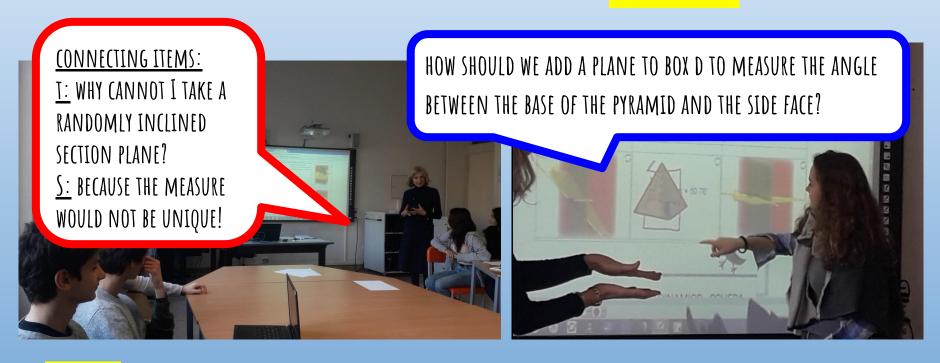
<u>item 2</u> Measure

DATA: OBSERVING SIGNS AND PROTOCOLS

THE COGNITIVE VALUE OF MERLO PEDAGOGY

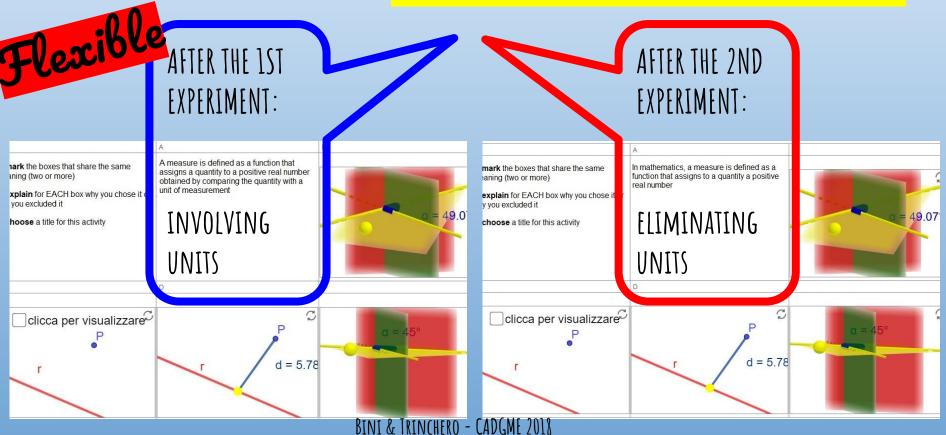
EXAMPLE 4: BRINGING OUT STUDENTS'

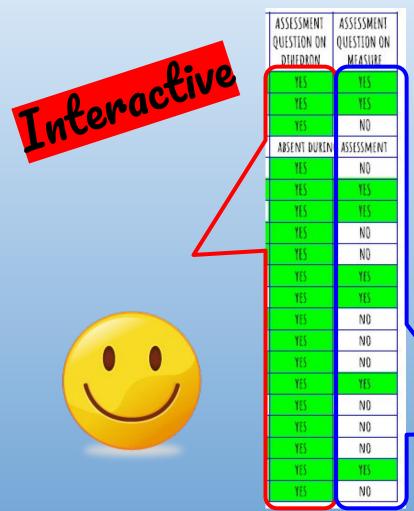

MISCONCEPTIONS ABOUT ARGUMENTATION



IN THEIR QUESTIONNAIRE,
STUDENTS MIX UP DESCRIPTION
WITH ARGUMENTATION: ACCORDING
TO THIS, <u>SURFACE SIMILARITY</u> LEADS
TO THE FIRST WRONG CHOICE

<u>item 2</u> Measure



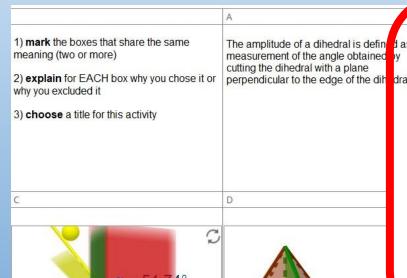


REFLECTIVE DISCUSSION

MERLO PEDAGOGY APPROACH AS AN "OPPORTUNITY TO DISCUSS"

THE FIFTH & SIXTH DRAFT: ADJUSTING THE DEFINITION OF MEASURE

CHANGING PLANS


THE ASSESSMENT TEST ADMINISTERED ONE MONTH AFTER THE TEACHING EXPERIMENTS SHOWED THAT THE TOTALITY OF THE STUDENTS IN MILAN AND THE MAJORITY IN TURIN MASTERED THE CONCEPT OF DIHEDRAL ANGLE, WHILE THE LIDEA OF MEASURE AS A FUNCTION WAS PROBLEMATIC: THIS LEAD TO A RADICAL SHIFT IN THE TASK DESIGN AND EVENTUALLY IN A CHANGE OF THE SECOND ITEM TS

BACK TO SQUARE 1: THE DIHEDRAL ANGLE ALONE

dral.

DEVOLUTION: ELICITING THE CONCEPT OF MEASURE of Market States of the Measure of the Measu

Why is it necessary to choose a particular inclination of the section plane to define the amplitude of a dihedral angle?

Testo risposta lunga

Why is the particular inclination chosen precisely the one perpendicular to the egde of the dihedral?

Testo risposta lunga

 $\alpha = 50.7$

THIRD TEACHING EXPERIMENT: ISTITUTO TECNICO CHIMICO SANTORRE DI SANTAROSA, TURIN

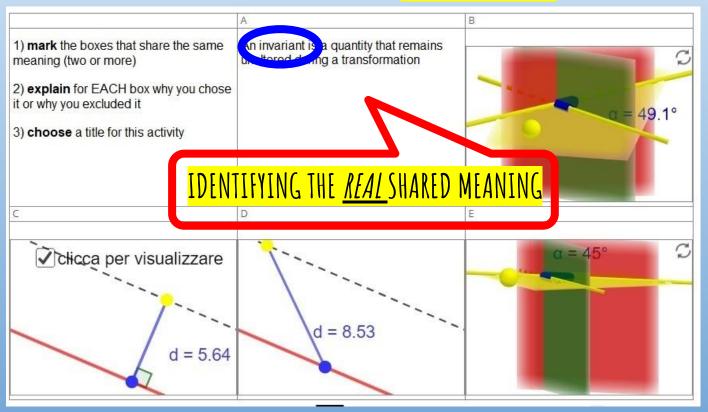
TEACHER PRESENT
18 STUDENTS SPLIT INTO GROUPS OF 3
PEOPLE EACH

60 MIN GROUP WORK

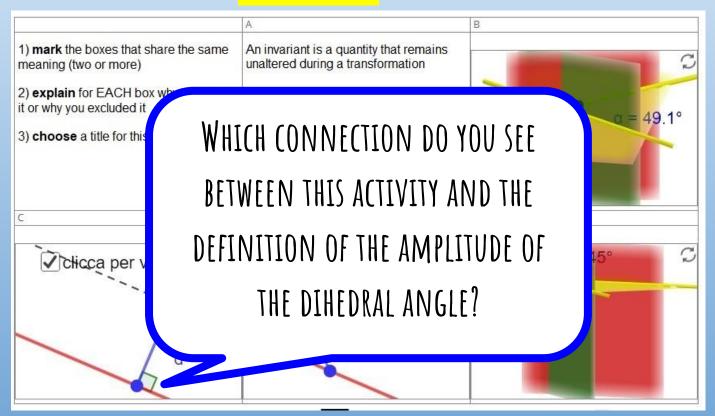
• 6 GROUPS WORK ON ITEM 1
30 MIN GUIDED CLASS DISCUSSION

DATA COLLECTED THROUGH WRITTEN QUESTIONNAIRE

WHY IS THE INCLINATION
CHOSEN TO DEFINE THE
AMPLITUDE OF THE DIHEDRAL
ANGLE THE ONE PERPENDICULAR
TO THE EDGE OF THE DIHEDRAL?


THE ROLE OF DYNAMICITY & THE EMERGENCE OF NEW MATHEMATICAL IDEAS

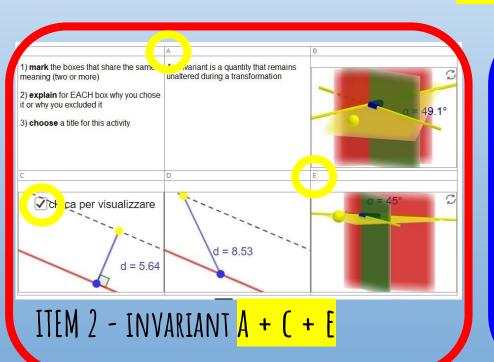
<u>ITEM 1</u> <u>Dihedral</u> <u>Angle</u> "CONSIDERING THAT BY VARYING THE INCLINATION THE MEASURE WOULD VARY, A STANDARD MEASURE WAS PROBABLY CHOSEN, IN ORDER TO MAKE ALL MEASUREMENTS OF THE DIHEDRAL WIDTHS COMPARABLE".


BECAUSE IN THIS WAY YOU HAVE THE MAXIMUM WIDTH

FROM MEASURE TO INVARIANTS

WRAPPING IT ALL UP

FOURTH TEACHING EXPERIMENT: LICEO SCIENTIFICO GALILEO FERRARIS, TURIN


20 STUDENTS SPLIT INTO GROUPS OF 2/3 PEOPLE EACH

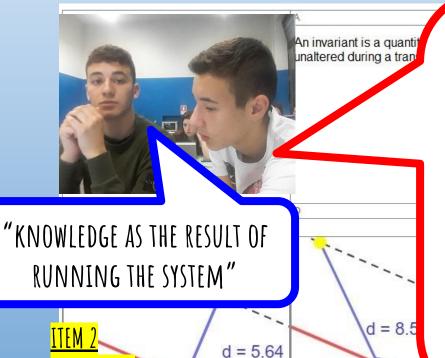
<u>60 MIN GROUP WORK</u>

7 GROUPS WORK ON ITEM 2
 30 MIN GUIDED CLASS DISCUSSION

DATA COLLECTED THROUGH VIDEO REGISTRATION AND WRITTEN QUESTIONNAIRE

ITEM 2 FINAL VERSION: **EXPECTED & MADE CHOICES**

ALL GROUPS HAVE SELECTED THE
EXPECTED BOXES, JUSTIFYING THEIR
CHOICES WITH APPROPRIATE
ARGUMENTS



DATA: OBSERVING SIGNS AND PROTOCOLS

DYNAMIC MERLO PEDAGOGY APPROACH AS A SETTING FOR TRANSFORMATIONAL REASONING (M.A.SIMON)

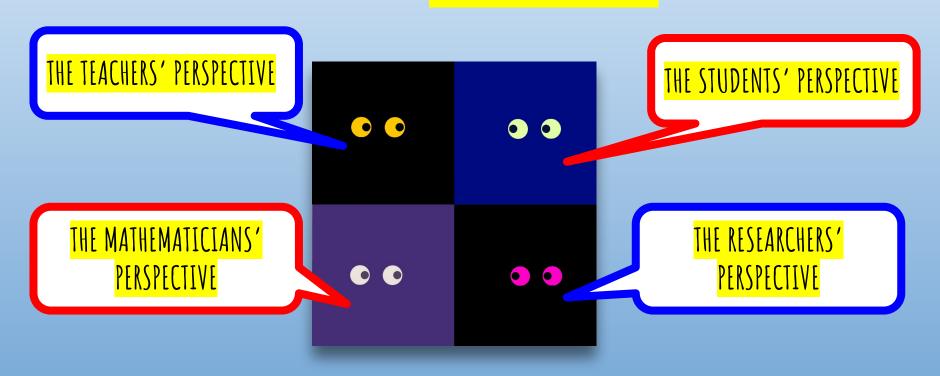
EXAMPLE 7: THE "ABILITY TO CONSIDER A DYNAMIC PROCESS BY WHICH A CONTINUUM OF STATES ARE GENERATED"

INVARIANTS

GROUP 1: RELEVANT STATIC ASPECTS IN SELECTED BOXES:

AMONG THE **STATIC** ASPECTS WE HAVE RECOGNIZED AS

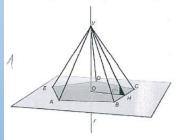
RELEVANT: IN BOX C THE DISTANCE BETWEEN THE TWO POINTS;

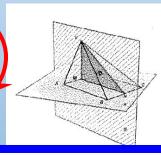

IN BOX E THE ANGLE BETWEEN THE PLANES

GROUP 2: RELEVANT DYNAMIC ASPECTS IN SELECTED BOXES:

THE CHOSEN BOXES REMAIN UNCHANGED DURING THE TRANSFORMATION. THE WIDTH OF THE DIHEDRAL ANGLE AND THE DISTANCE BETWEEN TWO PARALLEL LINES NEVER CHANGES.

<u>GROUP 3:</u> ONCE THE IMAGES WERE CHOSEN, WE NOTICED THE AFFINITY OF THE DEFINITION WITH THESE [IMAGES]


RESULTS & CONCLUSIONS


DID IT WORK? THE TEACHERS' PERSPECTIVE

IDENTIFYING THE DIHEDRAL ANGLE

 Facendo riferimento alla definizione di ampiezza di angolo diedro, spiega perché in una piramide regolare di vertice V l'angolo che una faccia laterale forma con il piano della base corrisponde all'angolo tra l'apotema della piramide e l'apotema del poligono di base.

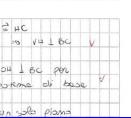
NH at	ote m	e (010=1)	BH =			1
=D VITE	= T	₹ VHC		0 V4 T	BC V	4
04 00	stema	base	=0 04	1 80	pen	+
		tiche de				t/
		the pas		0 =:		+

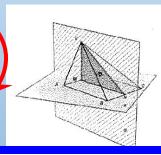
- 2. Quali condizioni geometriche devono essere verificate affinché gli angoli MNV e NMV in figura esprimano rispettivamente le ampiezze dei diedri aventi come facce
- la base della piramide e la faccia laterale ADV?
- . 51 & parper should selected AD

DEFINING THE MEASURE

6. "Si definisce distar dell'arco di circonforon estremi i po

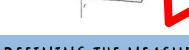
formulata è sbàs É erroles Partie II gy si troveno sulles sta cucon raenzo che si "THE DISTANCE BETWEEN TWO POINTS ON A SPHERICAL SURFACE IS DEFINED AS THE LENGTH OF THE ARC OF CIRCUMFERENCE BELONGING TO THE SPHERICAL SURFACE HAVING THE TWO POINTS AS EXTREMITIES" EXPLAIN WHY THIS DEFINITION OF DISTANCE ON THE SPHERE IS WRONG AND SUGGEST HOW YOU WOULD CORRECT IT


DID IT WORK? THE TEACHERS' PERSPECTIVE


IDENTIFYING THE DIHEDRAL ANGLE

 Facendo riferimento alla definizione di ampiezza di angolo diedro, spiega perché in una piramide regolare di vertice V l'angolo che una faccia laterale forma con il piano della base corrisponde all'angolo tra

ALTERNATIVE CONCEPTUAL THINKERS SCORE HIGHER THAN GOOD CONCEPTUAL THINKERS

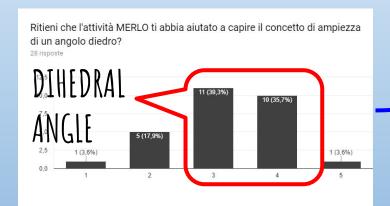

U. SHAFRIR

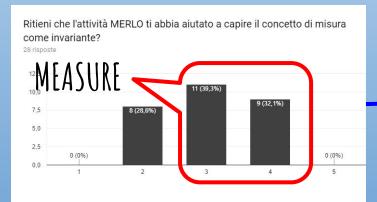
- 2. Quali condizioni geometriche devono essere verificate affinché gli angoli MNV e NMV in figura esprimano rispettivamente le ampiezze dei diedri aventi come facce
- la base della piramide e la faccia laterale ADV?

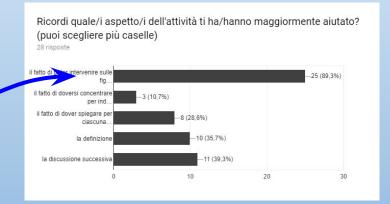
sid propodicular allo spigoto AD

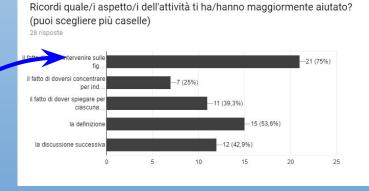
DEFINING THE MEASURE

6. "Si definisce distar dell'arco di circonforce estremi i pu

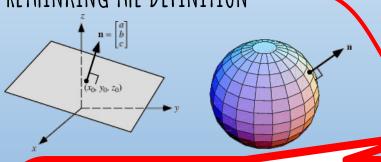

formulata è sbas É ellula Paché 1 gj 51 traveno sulla sfa accon farenza che si "THE DISTANCE BETWEEN TWO POINTS ON A SPHERICAL SURFACE IS DEFINED AS THE LENGTH OF THE ARC OF CIRCUMFERENCE BELONGING TO THE SPHERICAL SURFACE HAVING THE TWO POINTS AS EXTREMITIES"

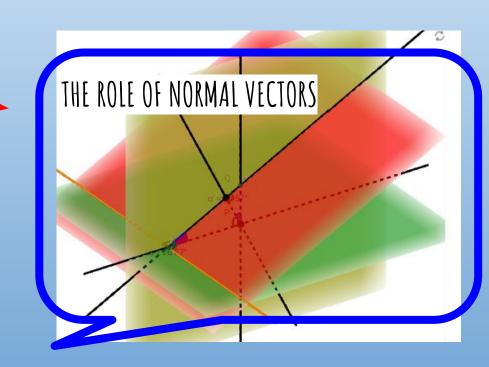

EXPLAIN WHY THIS DEFINITION OF DISTANCE ON THE SPHERE IS WRONG AND SUGGEST HOW YOU WOULD CORRECT IT:


IT IS WRONG BECAUSE GIVEN TWO POINTS WE HAVE INFINITE CIRCLES LYING ON THE SPHERE; WE MUST THEREFORE SPECIFY THAT THE CIRCUMFERENCE THAT WE CONSIDERED IS THAT OF MAXIMUM RADIUS


IN CONSIDERATIONS & HOUSE MINISTER

DID IT WORK? THE STUDENTS' PERSPECTIVE





DID IT WORK? THE MATHEMATICIANS' PERSPECTIVE

- 1. DOES THE ANGLE DEFINED THROUGH THE NORMAL SECTION CORRESPOND TO AN EXTREME VALUE OF THE AMPLITUDE?
- 2. CAN WE PROVE THAT THE PLANE CONTAINING THE TWO NORMAL VECTORS IS PERPENDICULAR TO THE DIHEDRAL EDGE?

DID IT WORK? THE RESEARCHERS' PERSPECTIVE

RQ1: IS THE <u>DYNAMIC ELEMENT</u> ADDED TO MERLO ITEMS USING THE GEOGEBRA SW EFFECTIVE IN HELPING STUDENTS UNDERSTAND GEOMETRIC CONCEPTS?

EXAMPLE 3 BIGGEST ANGLE

EXAMPLE 5 CLASS DISCUSSION

EXAMPLE 6 MEASURE

EXAMPLES 3, 5 AND 6 SHOW THAT THE PERCEPTION OF THE NECESSITY UNIQUENESS FOR A WELL DEFINED MEASURE AND THE GUESSING OF THE MAXIMUM VALUE FOR THE CHOSEN ONE WERE EFFECTIVELY DRIVEN BY THE DYNAMICITY OF THE ITEMS

DID IT WORK? THE RESEARCHERS' PERSPECTIVE

RQ2: ARE <u>DIGITAL TOOLS</u> ADDING EFFICACY TO MERLO ITEMS IN THE DIRECTION OF ENHANCING STUDENTS' CONCEPTUAL THINKING & ARGUMENTATION?

EXAMPLE 1 THOUGHT EXPERIMENT

EXAMPLE 2 RIGHT ANSWER, WRONG ARGUMENTATION

EXAMPLE 4 DESCRIPTION VS ARGUMENTATION

EXAMPLE 7 STATIC VS DYNAMIC INVARIANTS

EXAMPLES 1, 2, 4 AND 7 SHOW THAT ALLOWING STUDENTS TO INTERACT WITH MATHEMATICAL OBJECTS BY THE MEANS OF <u>DIGITAL TOOLS CAN PROMOTE VALID ARGUMENTATIONS</u>, HELP IN <u>FOCALIZING INCORRECT ONES AND FOSTER TRANSFORMATIONAL REASONING</u>

REFERENCES -

ARZARELLO, F., OLIVERO, F., PAOLA, D. ET AL., (2002) A COGNITIVE ANALYSIS OF DRAGGING PRACTICES IN CABRI ENVIRONMENTS, ZENTRALBLATT FÜR DIDAKTIK DER MATHEMATIK 34: 66.

ARZARELLO, F., ROBUTTI O. & CARANTE P. (2015), MERLO: A NEW TOOL AND A NEW CHALLENGE IN MATHEMATICS TEACHING AND LEARNING, PROCEEDINGS OF PME 39. 2 57-65

ARZARELLO, F., KENETT, R. S., ROBUTTI, O., SHAFRIR, U., PRODROMOU, T., & CARANTE, P. (2015), TEACHING AND ASSESSING WITH NEW METHODOLOGICAL TOOLS (MERLO): A NEW PEDAGOGY? PROCEEDINGS OF THE IMA INTERNATIONAL CONFERENCE ON BARRIERS AND ENABLERS TO LEARNING MATHS: ENHANCING LEARNING AND TEACHING FOR ALL LEARNERS, M.A. HERSH AND M.KOTECHA EDITORS, 10-12TH JUNE, GLASGOW, UK.

ETKIND, M., & SHAFRIR, U. (2013). TEACHING AND LEARNING IN THE DIGITAL AGE WITH PEDAGOGY FOR CONCEPTUAL THINKING AND PEER COOPERATION. IN:PROC. 7H INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT CONFERENCE (INTED) (PP. 5347-5352). VALENCIA, SPAIN.

FISCHBEIN. E. THE THEORY OF FIGURAL CONCEPTS. EDUC STUD MATH 24: 139. SPRINGER INTERNATIONAL

SIMON, M. (1996). BEYOND INDUCTIVE AND DEDUCTIVE REASONING: THE SEARCH FOR A SENSE OF KNOWING. EDUCATIONAL STUDIES IN MATHEMATICS, 30(2), 197-209

SINCLAIR N., ROBUTTI O. (2012), TECHNOLOGY AND THE ROLE OF PROOF: THE CASE OF DYNAMIC GEOMETRY. IN: CLEMENTS M., BISHOP A., KEITEL C., KILPATRICK J., LEUNG F. (EDS) THIRD INTERNATIONAL HANDBOOK OF MATHEMATICS EDUCATION. SPRINGER INTERNATIONAL HANDBOOKS OF EDUCATION, VOL 27. SPRINGER, NEW YORK. NY