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Motivation

Motivation

Deterministic and stochastic problems are usually taught
separately, without linking.

Monte Carlo simulations (MCSs) are procedures for solving
nonprobabilistic-type problems (problems whose outcome does
not depend on chance) by probabilistic-type methods (methods
whose outcome depends on chance).

MCSs can be a valuable pedagogical tool for several types of
courses - probability, statistics, econometrics but also basic and
advanced courses in mathematical analysis.

Today’s, the using MCSs can help to understand the basic
principles of some real problem but it also supports to train
students to practical programming in computers.
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The basic philosophy of Monte Carlo methods

A Brief History of Monte Carlo Methods

The term ”Monte Carlo“ was apparently first used by Ulam and
von Neumann as a Los Alamos code word for the stochastic
simulations they applied to building better atomic bombs.

One of the first documented Monte Carlo experiments is Buffon’s
needle experiment (1733).

In physics or economical-related problems, Monte Carlo methods
are useful for simulating systems with many coupled degrees of
freedom, such as fluids, disordered materials, strongly coupled
solids, cellular structures or calculation of trade price of the
derivatives.
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The basic philosophy of Monte Carlo methods

The basic philosophy of Monte Carlo methods

MCSs is a part of experimental mathematics.

At the first step, the problem is described in the deterministic and
the stochastic formulation and the connection between this two
views are established.

Next the repeated numerical experiments based on the random
number are proceeded.

By the law of large numbers, the expected value of some random
variable can be approximated by taking the empirical mean (the
sample mean) of independent samples of the variable.
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The basic philosophy of Monte Carlo methods

Random samples

For MCSs we need to be able to reproduce randomness by a
computer algorithm.

A pseudo-random number generator (RNG) is an algorithm for
whose output the U [0,1] distribution is a suitable model.

The number generated by the pseudo-random number generator
should have the same relevant statistical properties as
independent realisations of a U [0,1] random variable.

The ability of a Monte Carlo method to work depends on the
quality random numbers used.

Random Number Generators in SW Excel: =rand(), GeoGebra:
RandomBetween[ 1, 10 ], MATLAB: rand(), rng(seed),
PYTHON: random(), seed(), C++ rand()
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The classic Monte Carlo applications Calculation of area

Calculation of area

To compute an MCSs of π using a simple experiment.

Assume that we could produce ”uniform rain“ on the square
[−1,1]× [−1,1] such that the probability of a raindrop falling into a
region Ω ⊂ [−1,1]2 is proportional to the area of Ω, but
independent of the position of Ω.

The probability that a raindrop falls into the unit circle is

P (drop within circle) =
area of the unit circle

area of the square
=

π

2 · 2
.

π = 4 · P (drop within circle)

The probability P is estimated using our raindrop experiment.

P̂ =
number of drops inside the circle

total number of drops
.
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The classic Monte Carlo applications Calculation of area

Calculation of area, cont.

MCSs of π (with 95% confidence interval)
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The classic Monte Carlo applications Demonstration of unbiasedness and interval estimation

Demonstration of unbiasedness

If random variables Xi are normally distributed iid with mean µ and
standard deviation σ then x is the unbias estimators of µ and s is
bias estimator of σ.

(µ̂ =) . . . x =
1
n

n∑
i=1

xi , (σ̂ =) . . . s =

√√√√1
n

n∑
i=1

(xi − x)2

In statistics, the bias (or bias function) of an estimator is the
difference between this estimator’s expected value and the true
value of the parameter being estimated. An estimator or decision
rule with zero bias is called unbiased.
https://en.wikipedia.org/wiki/Bias_of_an_estimator

E
(

X
)
− µ = 0 E (S)− σ 6= 0 E (S) =

n
n − 1

σ
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The classic Monte Carlo applications Demonstration of unbiasedness and interval estimation

Demonstration of unbiasedness, cont.

For fixed n we simulate x1, x2, . . . , xn as a realization of
X ∼ N(µ, σ)

We compute x and s as a estimation of parameters µ and σ.

We repeat simulation process and at the end, we calculate mean
of your estimated µ̂ and σ̂.

simulation sample µ̂ σ̂

1 x11, x12, . . . , x1n x1 s1
2 x21, x22, . . . , x2n x2 s1
. . . . . . . . . . . .
k xk1, xk2, . . . , xkn xk s1

mean ÊX ÊS
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The classic Monte Carlo applications Demonstration of unbiasedness and interval estimation

Demonstration of unbiasedness, cont.

MCSs demonstration of estimation µ and σ based on iid n samples of
normal distributed variable X ∼ N(0,1)
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The classic Monte Carlo applications Demonstration of unbiasedness and interval estimation

Demonstration of interval estimation

Confidence intervals consist of a range of potential values of the
unknown population parameter.
A 95% confidence interval does not mean that 95% of the sample
data lie within the interval.

For Gaussian distribution P
(

x̄ − t∗
s√
n
< µ < x̄ + t∗

s√
n

)
= 1− α
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The classic Monte Carlo applications Buffon’s needle

Buffon’s needle

In 1733, the Comte de Buffon, George Louis Leclerc, asked the
following question (Buffon, 1733): Consider a floor with equally spaced
lines, a distance δ apart. What is the probability that a needle of length
l < δ dropped on the floor will intersect one of the lines? Buffon
answered the question himself in 1777 (Buffon, 1777).
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The classic Monte Carlo applications Buffon’s needle

Solution of the problem ”Buffon’n needle“

Assume the needle landed such that its angle is θ (see previous
figure 1.5).

Then the question whether the needle intersects a line is
equivalent to the question whether a box of width l sin θ intersects
a line.

The probability of this happened is P(intersect) = l sin θ
δ

Assuming that the angle θ is uniform on [0, π) we obtain

P(intersect) =

∫ π

0
P(intersect|θ)

1
π

dθ =

∫ π

0

l sin θ

δ

1
π

dθ =
2l
πδ

When dropping n needles the expected number of needles
crossing a line is thus X = n 2l

πδ .
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Modern Monte Carlo applications

Modern Monte Carlo applications

Methods for the solving partial differential and integral equations
based on random walks.

Credit Risk and the Valuation of Corporate Securities. Valuation of
Credit Insurance Portfolios

Computing ValueAtRisk (VaR) and Principal Components
Analysis (PCA) by MCSs.

Stochastic DEs and PDEs. For example calculation of pricing
options (European, American and Exotic options).

Application in Linear Algebra, that MCSs can be used to
approximate sums of huge number of terms such as
high-dimensional inner products.

. . .
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Modern Monte Carlo applications Monte Carlo Solution of PDEs

Monte Carlo Solution of PDEs

Approximate solution of the Dirichlet problem.

Problem : to find u(x , y) that satisfies
PDE: uxx + uyy = 0 x ∈ Ω
BC: u(x , y) = g(x , y) x ∈ ∂Ω

Ω =
{

[x , y ] ⊂ R2 : 0 < x < 1,0 < y < 1
}

g(x , y) =

{
1 on the top of the square
0 on the sides and bottom of the square

To illustrate the Monte Carlo method in this problem, we introduce a
game called tour du wino. To play it, we need a board on which grid
lines are drown on the next slide.
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Modern Monte Carlo applications Monte Carlo Solution of PDEs

Random walk process

The process starts from an arbitrary point (fill red point).
At each stage of the game, the wino staggers off randomly to one
of the four neighbouring points.
The process wandering from point to point until eventually hitting a
boundary point (blue point).
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Modern Monte Carlo applications Monte Carlo Solution of PDEs

Simulation process

For every interior point we repeat many random walk.

Keep track of how many times you hit each boundary point.

Compute the fraction of times you have ended at each boundary
points pi .

Suppose that the goal of the game is to compute his average
value U(A) for all this walks.

The average reward is

U(A) =
∑

giP(pi)

where
gi is value of function g(x , y) at boundary point pi ,
P(pi) is probability that random walk finish at point pi

Probability is estimated by the fraction of times.
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Modern Monte Carlo applications Monte Carlo Solution of PDEs

Results of simulation process

The ending points for n = 100 simulation random walk started at the
red point.
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Modern Monte Carlo applications Monte Carlo Solution of PDEs

The relation between the MCSs and solving of the
Laplace problem.

Average value U(A) is clearly the average of the four average
values of the four neighbours.

U(A) = 1
4 (U(AN) + U(AS) + U(AW ) + U(AE ))

U(A) corresponds to ui;j in the finite difference equations
ui;j = 1

4

(
ui−1;j + ui+1;j + ui;j−1 + ui;j+1

)
for (i ; j) interior point

ui;j = gi;j for (i ; j) boundary point

U(A) will approximate the true solution of the PDE at the point A.
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Modern Monte Carlo applications Monte Carlo Solution of PDEs

The Monte Carlo solution of PDEs

The step for grid 0.025 and number of simulations s = 100

The step for grid 0.025 and number of simulations s = 500
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Conclusion

Conclusion

The Monte Carlo methods are useful for explain not only probabilistic
and statistics problems but also for geometric interpretations problems
from mathematical analysis.

Thank you for your attention.
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