
Automated Instantiation of Control Flow
Tracing Exercises
ThEdu ’21

Clemens Eisenhofer Martin Riener

Technische Universität Wien, Austria

Context

• Introduction to programming course (CS 1)
• Understanding and writing Java code
• Course consists of 3 parts:

• Lab classes - discussion of homework
• Programming exams
• Auto-graded tests about given code

1

Automatically Graded Tests

• Done via Moodle (e-Learning platform)
• What is the result/output of the code?
• Which of these code fragments produces . . . as result/output?
• Which programs have the same (concrete) results/outputs?
• Does the result/output change if we replace line . . . by . . . ?
• Which starting value of . . . produces the given result?
• . . .

• Question pool is limited
• Writing new ones is error-prone and tedious
• Hard to guarantee same difficulty
• Should have didactic value

2

Automatically Graded Tests: Example

3

Aim of Tatsu

• Generate multiple instances of a program/exercises
• As little additional (manual) effort required as possible
• Exercises should be approx. equally difficult

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;

for (int i = start; i < limit; i += inc) {
 // Loop A
 if (i % 2 == 0) a++;
 if (i % 3 == 0) a++;
}

for(int i = start; i < limit; i += inc) {
 // LOOP B
 if (i % 2 == 0) b++;
 else if (i % 3 == 0) b++;
}

System.out.print(a+” “+b);

int a = 0;
int b = 0;
int limit = 1743;
int inc = 13;
int start = 17;

for (int i = start; i < limit; i += inc) {
 // Loop A
 if (i % 2 == 0) a++;
 if (i % 3 == 0) a++;
}

for(int i = start; i < limit; i += inc) {
 // LOOP B
 if (i % 2 == 0) b++;
 else if (i % 3 == 0) b++;
}

System.out.print(a+” “+b);

 LOOP(range(10, 15));
 while (loop-condition) {
 stmts;
 }

 ASSERT(loop-condition);
 stmts;

 ASSERT(loop-condition);
 stmts;
 if (loop-cond) {
 stmts;
 if (loop-cond) {

 if (loop-cond) ASSERT(false);
 }
 }

4

From Idea to Moodle

public static int main() {
 if (cond) {
 ASSERT(1 == 1);
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += INT(range(0, 100));
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = INT(range(0, 5));

 ASSERT(i % 2 == 0);

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

public static int main() {
 if (cond) {
 assert(1 == 1);
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += 10;
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = 4;

 assert(i % 2 == 0);

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

public static int main() {
 if (cond) {
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += 10;
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = 4;

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

(declare-const s@0 (_ BitVec 32))
(declare-const s@1 (_ BitVec 32))
(declare-const s@2 (_ BitVec 32))
(declare-const s@3 (_ BitVec 32))
(declare-const s@4 (_ BitVec 32))
(declare-const s@5 (_ BitVec 32))

....

(assert
 (and
 (bvlt |1_10| 0xf0)
 (bvgt |1_10| 0x00)
 (=
 s@1
 (bvadd
 s@0
 |1_10|
)
)
)
 ...
)

(check-sat)
(get-model)

SMT
(define-fun !ret@0 () (_ BitVec 32)
 #x0000000d)
(define-fun !s@0 () String îabcî)
(define-fun !s@1 () String îabcî)
(define-fun !s@2 () String îabcî)
(define-fun !s@3 () String îabcî)
(define-fun !s@4 () String îabcî)
(define-fun !s@5 () String îabcî)
(define-fun !s@6 () String îabcî)
(define-fun !s@7 () String îabcî)
(define-fun !s@8 () String îabcî)
(define-fun !s@9 () String îabcî)
(define-fun !s@10 () String îabcî)
(define-fun !s@11 () String îabcî)
(define-fun !s@12 () String îabcî)
(define-fun !s@13 () String îabcî)
(define-fun !s@14 () String îabcî)
(define-fun !s@15 () String îabcî)
(define-fun !s@16 () String îabcî)
(define-fun !|1_10| () (_ BitVec 32)
 #x0000000d)

SMT

int a = ;0
b = ;int 0
limit = ;int 20
inc = ;int 2
start = ;int 0

(i = start; i < limit; i += inc) {for int
 // Loop A
 if (i % ==) a++;2 0
 (i % ==) a++;if 3 0
}

(i = start; i < limit; i += inc) {for int
 // LOOP B
 if (i % ==) b++;2 0
 (i % ==) b++;else if 3 0
}

System.out.print(a+” “+b);

5

From Idea to Moodle

public static int main() {
 if (cond) {
 ASSERT(1 == 1);
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += INT(range(0, 100));
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = INT(range(0, 5));

 ASSERT(i % 2 == 0);

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

public static int main() {
 if (cond) {
 assert(1 == 1);
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += 10;
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = 4;

 assert(i % 2 == 0);

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

public static int main() {
 if (cond) {
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += 10;
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = 4;

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

(declare-const s@0 (_ BitVec 32))
(declare-const s@1 (_ BitVec 32))
(declare-const s@2 (_ BitVec 32))
(declare-const s@3 (_ BitVec 32))
(declare-const s@4 (_ BitVec 32))
(declare-const s@5 (_ BitVec 32))

....

(assert
 (and
 (bvlt |1_10| 0xf0)
 (bvgt |1_10| 0x00)
 (=
 s@1
 (bvadd
 s@0
 |1_10|
)
)
)
 ...
)

(check-sat)
(get-model)

SMT
(define-fun !ret@0 () (_ BitVec 32)
 #x0000000d)
(define-fun !s@0 () String îabcî)
(define-fun !s@1 () String îabcî)
(define-fun !s@2 () String îabcî)
(define-fun !s@3 () String îabcî)
(define-fun !s@4 () String îabcî)
(define-fun !s@5 () String îabcî)
(define-fun !s@6 () String îabcî)
(define-fun !s@7 () String îabcî)
(define-fun !s@8 () String îabcî)
(define-fun !s@9 () String îabcî)
(define-fun !s@10 () String îabcî)
(define-fun !s@11 () String îabcî)
(define-fun !s@12 () String îabcî)
(define-fun !s@13 () String îabcî)
(define-fun !s@14 () String îabcî)
(define-fun !s@15 () String îabcî)
(define-fun !s@16 () String îabcî)
(define-fun !|1_10| () (_ BitVec 32)
 #x0000000d)

SMT

int a = ;0
b = ;int 0
limit = ((,));int INT range 10 20
inc = ((,));int INT range 2 5
start = ((,));int INT range 0 3

((,));LOOP range 1 20
(i = start; i < limit; i += inc) {for int

 // Loop A
 if (i % ==) a++;2 0
 (i % ==) a++;if 3 0
}

((,));LOOP range 1 20
(i = start; i < limit; i += inc) {for int

 // LOOP B
 if (i % ==) b++;2 0
 (i % ==) b++;else if 3 0
}

(a != b);ASSERT
System.out.print(a+” “+b);

5

From Idea to Moodle

public static int main() {
 if (cond) {
 ASSERT(1 == 1);
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += INT(range(0, 100));
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = INT(range(0, 5));

 ASSERT(i % 2 == 0);

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

public static int main() {
 if (cond) {
 assert(1 == 1);
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += 10;
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = 4;

 assert(i % 2 == 0);

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

public static int main() {
 if (cond) {
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += 10;
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = 4;

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

(declare-const s@0 (_ BitVec 32))
(declare-const s@1 (_ BitVec 32))
(declare-const s@2 (_ BitVec 32))
(declare-const s@3 (_ BitVec 32))
(declare-const s@4 (_ BitVec 32))
(declare-const s@5 (_ BitVec 32))

....

(assert
 (and
 (bvlt |1_10| 0xf0)
 (bvgt |1_10| 0x00)
 (=
 s@1
 (bvadd
 s@0
 |1_10|
)
)
)
 ...
)

(check-sat)
(get-model)

SMT
(define-fun !ret@0 () (_ BitVec 32)
 #x0000000d)
(define-fun !s@0 () String îabcî)
(define-fun !s@1 () String îabcî)
(define-fun !s@2 () String îabcî)
(define-fun !s@3 () String îabcî)
(define-fun !s@4 () String îabcî)
(define-fun !s@5 () String îabcî)
(define-fun !s@6 () String îabcî)
(define-fun !s@7 () String îabcî)
(define-fun !s@8 () String îabcî)
(define-fun !s@9 () String îabcî)
(define-fun !s@10 () String îabcî)
(define-fun !s@11 () String îabcî)
(define-fun !s@12 () String îabcî)
(define-fun !s@13 () String îabcî)
(define-fun !s@14 () String îabcî)
(define-fun !s@15 () String îabcî)
(define-fun !s@16 () String îabcî)
(define-fun !|1_10| () (_ BitVec 32)
 #x0000000d)

SMT

(declare-fun b@0@10 () (_ BitVec 32))
(declare-fun a@0@20 () (_ BitVec 32))
(declare-fun i@1@2 () (_ BitVec 32))
(declare-fun i@1@10 () (_ BitVec 32))
(declare-fun b@0@2 () (_ BitVec 32))
..........
(assert (let ((a!1 (and (ite (=
 (bvsrem i@0@9 #x00000002) #x00000000)
 (= a@0@19 (bvadd a@0@18 #x00000001))
 (= a@0@19 a@0@18))
 (ite (= (bvsrem i@0@9 #x00000003)
 #x00000000)

 (and (bvsge |3_13| #x0000000a)
 (bvsle |3_13| #x00000014)

 a!26
 (not (= a@0@20 b@0@10)))))))))))))
(check-sat)
(get-model)

5

From Idea to Moodle

public static int main() {
 if (cond) {
 ASSERT(1 == 1);
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += INT(range(0, 100));
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = INT(range(0, 5));

 ASSERT(i % 2 == 0);

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

public static int main() {
 if (cond) {
 assert(1 == 1);
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += 10;
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = 4;

 assert(i % 2 == 0);

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

public static int main() {
 if (cond) {
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += 10;
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = 4;

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

(declare-const s@0 (_ BitVec 32))
(declare-const s@1 (_ BitVec 32))
(declare-const s@2 (_ BitVec 32))
(declare-const s@3 (_ BitVec 32))
(declare-const s@4 (_ BitVec 32))
(declare-const s@5 (_ BitVec 32))

....

(assert
 (and
 (bvlt |1_10| 0xf0)
 (bvgt |1_10| 0x00)
 (=
 s@1
 (bvadd
 s@0
 |1_10|
)
)
)
 ...
)

(check-sat)
(get-model)

SMT
(define-fun !ret@0 () (_ BitVec 32)
 #x0000000d)
(define-fun !s@0 () String îabcî)
(define-fun !s@1 () String îabcî)
(define-fun !s@2 () String îabcî)
(define-fun !s@3 () String îabcî)
(define-fun !s@4 () String îabcî)
(define-fun !s@5 () String îabcî)
(define-fun !s@6 () String îabcî)
(define-fun !s@7 () String îabcî)
(define-fun !s@8 () String îabcî)
(define-fun !s@9 () String îabcî)
(define-fun !s@10 () String îabcî)
(define-fun !s@11 () String îabcî)
(define-fun !s@12 () String îabcî)
(define-fun !s@13 () String îabcî)
(define-fun !s@14 () String îabcî)
(define-fun !s@15 () String îabcî)
(define-fun !s@16 () String îabcî)
(define-fun !|1_10| () (_ BitVec 32)
 #x0000000d)

SMT

(define-fun b@0@5 () (_ BitVec 32)
 #x00000005)
(define-fun a@0@17 () (_ BitVec 32)
 #x0000000c)
(define-fun b@0@10 () (_ BitVec 32)
 #x0000000a)
(define-fun a@0@15 () (_ BitVec 32)
 #x0000000b)
(define-fun i@1@7 () (_ BitVec 32)
 #x0000000e)
(define-fun a@0@20 () (_ BitVec 32)
 #x0000000e)
..............
(define-fun i@1@1 () (_ BitVec 32)
 #x00000002)
(define-fun i@0@5 () (_ BitVec 32)
 #x0000000a)
(define-fun a@0@11 () (_ BitVec 32)
 #x00000008)

5

From Idea to Moodle

public static int main() {
 if (cond) {
 ASSERT(1 == 1);
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += INT(range(0, 100));
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = INT(range(0, 5));

 ASSERT(i % 2 == 0);

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

public static int main() {
 if (cond) {
 assert(1 == 1);
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += 10;
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = 4;

 assert(i % 2 == 0);

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

public static int main() {
 if (cond) {
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += 10;
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = 4;

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

(declare-const s@0 (_ BitVec 32))
(declare-const s@1 (_ BitVec 32))
(declare-const s@2 (_ BitVec 32))
(declare-const s@3 (_ BitVec 32))
(declare-const s@4 (_ BitVec 32))
(declare-const s@5 (_ BitVec 32))

....

(assert
 (and
 (bvlt |1_10| 0xf0)
 (bvgt |1_10| 0x00)
 (=
 s@1
 (bvadd
 s@0
 |1_10|
)
)
)
 ...
)

(check-sat)
(get-model)

SMT
(define-fun !ret@0 () (_ BitVec 32)
 #x0000000d)
(define-fun !s@0 () String îabcî)
(define-fun !s@1 () String îabcî)
(define-fun !s@2 () String îabcî)
(define-fun !s@3 () String îabcî)
(define-fun !s@4 () String îabcî)
(define-fun !s@5 () String îabcî)
(define-fun !s@6 () String îabcî)
(define-fun !s@7 () String îabcî)
(define-fun !s@8 () String îabcî)
(define-fun !s@9 () String îabcî)
(define-fun !s@10 () String îabcî)
(define-fun !s@11 () String îabcî)
(define-fun !s@12 () String îabcî)
(define-fun !s@13 () String îabcî)
(define-fun !s@14 () String îabcî)
(define-fun !s@15 () String îabcî)
(define-fun !s@16 () String îabcî)
(define-fun !|1_10| () (_ BitVec 32)
 #x0000000d)

SMT

int a = ;0
 b = ;int 0
 limit = ;int 16
 inc = int 2;

0int start = ;
int __cnt_7_1 = 0;
for int (i = start; i < limit; i += inc) {
 __cnt_7_1++;
 (i % ==)if 2 0
 a++;
 (i % ==)if 3 0
 a++;
}
if (!(((__cnt_7_1 >= 1) &&
 (__cnt_7_1 <= 20))))
 throw new AssertionError("1");
........
if (!(a != b))
 throw new AssertionError("0");
__out += a + “ ” + b;

5

From Idea to Moodle

public static int main() {
 if (cond) {
 ASSERT(1 == 1);
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += INT(range(0, 100));
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = INT(range(0, 5));

 ASSERT(i % 2 == 0);

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

public static int main() {
 if (cond) {
 assert(1 == 1);
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += 10;
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = 4;

 assert(i % 2 == 0);

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

public static int main() {
 if (cond) {
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += 10;
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = 4;

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

(declare-const s@0 (_ BitVec 32))
(declare-const s@1 (_ BitVec 32))
(declare-const s@2 (_ BitVec 32))
(declare-const s@3 (_ BitVec 32))
(declare-const s@4 (_ BitVec 32))
(declare-const s@5 (_ BitVec 32))

....

(assert
 (and
 (bvlt |1_10| 0xf0)
 (bvgt |1_10| 0x00)
 (=
 s@1
 (bvadd
 s@0
 |1_10|
)
)
)
 ...
)

(check-sat)
(get-model)

SMT
(define-fun !ret@0 () (_ BitVec 32)
 #x0000000d)
(define-fun !s@0 () String îabcî)
(define-fun !s@1 () String îabcî)
(define-fun !s@2 () String îabcî)
(define-fun !s@3 () String îabcî)
(define-fun !s@4 () String îabcî)
(define-fun !s@5 () String îabcî)
(define-fun !s@6 () String îabcî)
(define-fun !s@7 () String îabcî)
(define-fun !s@8 () String îabcî)
(define-fun !s@9 () String îabcî)
(define-fun !s@10 () String îabcî)
(define-fun !s@11 () String îabcî)
(define-fun !s@12 () String îabcî)
(define-fun !s@13 () String îabcî)
(define-fun !s@14 () String îabcî)
(define-fun !s@15 () String îabcî)
(define-fun !s@16 () String îabcî)
(define-fun !|1_10| () (_ BitVec 32)
 #x0000000d)

SMT

Returned value: null
Printed value: “11 8”
Process finished with exit code 0.

5

From Idea to Moodle

public static int main() {
 if (cond) {
 ASSERT(1 == 1);
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += INT(range(0, 100));
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = INT(range(0, 5));

 ASSERT(i % 2 == 0);

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

public static int main() {
 if (cond) {
 assert(1 == 1);
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += 10;
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = 4;

 assert(i % 2 == 0);

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

public static int main() {
 if (cond) {
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += 10;
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = 4;

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

(declare-const s@0 (_ BitVec 32))
(declare-const s@1 (_ BitVec 32))
(declare-const s@2 (_ BitVec 32))
(declare-const s@3 (_ BitVec 32))
(declare-const s@4 (_ BitVec 32))
(declare-const s@5 (_ BitVec 32))

....

(assert
 (and
 (bvlt |1_10| 0xf0)
 (bvgt |1_10| 0x00)
 (=
 s@1
 (bvadd
 s@0
 |1_10|
)
)
)
 ...
)

(check-sat)
(get-model)

SMT
(define-fun !ret@0 () (_ BitVec 32)
 #x0000000d)
(define-fun !s@0 () String îabcî)
(define-fun !s@1 () String îabcî)
(define-fun !s@2 () String îabcî)
(define-fun !s@3 () String îabcî)
(define-fun !s@4 () String îabcî)
(define-fun !s@5 () String îabcî)
(define-fun !s@6 () String îabcî)
(define-fun !s@7 () String îabcî)
(define-fun !s@8 () String îabcî)
(define-fun !s@9 () String îabcî)
(define-fun !s@10 () String îabcî)
(define-fun !s@11 () String îabcî)
(define-fun !s@12 () String îabcî)
(define-fun !s@13 () String îabcî)
(define-fun !s@14 () String îabcî)
(define-fun !s@15 () String îabcî)
(define-fun !s@16 () String îabcî)
(define-fun !|1_10| () (_ BitVec 32)
 #x0000000d)

SMT

int a = ;0
 b = ;int 0
 limit = ;int 16
 inc = int 2;

0int start = ;

 (i = start; i < limit; i += inc) {for int
 // Loop A
 (i % ==) a++; if 2 0
 (i % ==) a++; if 3 0
}

 (i = start; i < limit; i += inc) {for int
 // LOOP B
 (i % ==) b++; if 2 0
 (i % ==) b++; else if 3 0
}
System.out.print(a+” “+b);

5

From Idea to Moodle

public static int main() {
 if (cond) {
 ASSERT(1 == 1);
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += INT(range(0, 100));
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = INT(range(0, 5));

 ASSERT(i % 2 == 0);

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

public static int main() {
 if (cond) {
 assert(1 == 1);
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += 10;
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = 4;

 assert(i % 2 == 0);

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

public static int main() {
 if (cond) {
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += 10;
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = 4;

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

(declare-const s@0 (_ BitVec 32))
(declare-const s@1 (_ BitVec 32))
(declare-const s@2 (_ BitVec 32))
(declare-const s@3 (_ BitVec 32))
(declare-const s@4 (_ BitVec 32))
(declare-const s@5 (_ BitVec 32))

....

(assert
 (and
 (bvlt |1_10| 0xf0)
 (bvgt |1_10| 0x00)
 (=
 s@1
 (bvadd
 s@0
 |1_10|
)
)
)
 ...
)

(check-sat)
(get-model)

SMT
(define-fun !ret@0 () (_ BitVec 32)
 #x0000000d)
(define-fun !s@0 () String îabcî)
(define-fun !s@1 () String îabcî)
(define-fun !s@2 () String îabcî)
(define-fun !s@3 () String îabcî)
(define-fun !s@4 () String îabcî)
(define-fun !s@5 () String îabcî)
(define-fun !s@6 () String îabcî)
(define-fun !s@7 () String îabcî)
(define-fun !s@8 () String îabcî)
(define-fun !s@9 () String îabcî)
(define-fun !s@10 () String îabcî)
(define-fun !s@11 () String îabcî)
(define-fun !s@12 () String îabcî)
(define-fun !s@13 () String îabcî)
(define-fun !s@14 () String îabcî)
(define-fun !s@15 () String îabcî)
(define-fun !s@16 () String îabcî)
(define-fun !|1_10| () (_ BitVec 32)
 #x0000000d)

SMT

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start;
 i < limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)
 a++;
}

int a = 0;
int b = 0;
int limit = 16;
int inc = 4;
int start = 0;
for (int i = start;
 i < limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)
 a++;
}

int a = 0;
int b = 0;
int limit = 10;
int inc = 4;
int start = 2;
for (int i = start;
 i < limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)
 a++;
}

int a = 0;
int b = 0;
int limit = 13;
int inc = 5;
int start = 1;
for (int i = start;
 i < limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)
 a++;
}

int a = 0;
int b = 0;
int limit = 10;
int inc = 5;
int start = 0;
for (int i = start;
 i < limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)
 a++;
}

int a = 0;
int b = 0;
int limit = 16;
int inc = 5;
int start = 2;
for (int i = start;
 i < limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)
 a++;
}

int a = 0;
int b = 0;
int limit = 17;
int inc = 5;
int start = 1;
for (int i = start;
 i < limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)
 a++;
}

int a = 0;
int b = 0;
int limit = 14;
int inc = 5;
int start = 1;
for (int i = start;
 i < limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)
 a++;
}

int a = 0;
int b = 0;
int limit = 10;
int inc = 2;
int start = 2;
for (int i = start;
 i < limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)
 a++;
}

int a = 0;
int b = 0;
int limit = 10;
int inc = 5;
int start = 1;
for (int i = start;
 i < limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)
 a++;
}

5

From Idea to Moodle

public static int main() {
 if (cond) {
 ASSERT(1 == 1);
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += INT(range(0, 100));
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = INT(range(0, 5));

 ASSERT(i % 2 == 0);

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

public static int main() {
 if (cond) {
 assert(1 == 1);
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += 10;
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = 4;

 assert(i % 2 == 0);

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

public static int main() {
 if (cond) {
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += 10;
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = 4;

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

(declare-const s@0 (_ BitVec 32))
(declare-const s@1 (_ BitVec 32))
(declare-const s@2 (_ BitVec 32))
(declare-const s@3 (_ BitVec 32))
(declare-const s@4 (_ BitVec 32))
(declare-const s@5 (_ BitVec 32))

....

(assert
 (and
 (bvlt |1_10| 0xf0)
 (bvgt |1_10| 0x00)
 (=
 s@1
 (bvadd
 s@0
 |1_10|
)
)
)
 ...
)

(check-sat)
(get-model)

SMT
(define-fun !ret@0 () (_ BitVec 32)
 #x0000000d)
(define-fun !s@0 () String îabcî)
(define-fun !s@1 () String îabcî)
(define-fun !s@2 () String îabcî)
(define-fun !s@3 () String îabcî)
(define-fun !s@4 () String îabcî)
(define-fun !s@5 () String îabcî)
(define-fun !s@6 () String îabcî)
(define-fun !s@7 () String îabcî)
(define-fun !s@8 () String îabcî)
(define-fun !s@9 () String îabcî)
(define-fun !s@10 () String îabcî)
(define-fun !s@11 () String îabcî)
(define-fun !s@12 () String îabcî)
(define-fun !s@13 () String îabcî)
(define-fun !s@14 () String îabcî)
(define-fun !s@15 () String îabcî)
(define-fun !s@16 () String îabcî)
(define-fun !|1_10| () (_ BitVec 32)
 #x0000000d)

SMT

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

int a = 0;
int b = 0;
int limit = 20;
int inc = 2;
int start = 0;
for (int i = start; i <
limit; i += inc) {
 // Loop A
 if (i % 2 == 0)
 a++;
 if (i % 3 == 0)

5

From Idea to Moodle

public static int main() {
 if (cond) {
 ASSERT(1 == 1);
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += INT(range(0, 100));
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = INT(range(0, 5));

 ASSERT(i % 2 == 0);

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

public static int main() {
 if (cond) {
 assert(1 == 1);
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += 10;
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = 4;

 assert(i % 2 == 0);

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

public static int main() {
 if (cond) {
 }
 else {
 return 99;
 }

 String s = îABCî;

 while (s.length() < 10) {
 s += 10;
 }

 return rec(s);
}

private static int rec(String s) {
 System.out.println(s);

 int i = 4;

 return s.empy()
 ? 0
 : rec(s.substring(i));
}

Java

(declare-const s@0 (_ BitVec 32))
(declare-const s@1 (_ BitVec 32))
(declare-const s@2 (_ BitVec 32))
(declare-const s@3 (_ BitVec 32))
(declare-const s@4 (_ BitVec 32))
(declare-const s@5 (_ BitVec 32))

....

(assert
 (and
 (bvlt |1_10| 0xf0)
 (bvgt |1_10| 0x00)
 (=
 s@1
 (bvadd
 s@0
 |1_10|
)
)
)
 ...
)

(check-sat)
(get-model)

SMT
(define-fun !ret@0 () (_ BitVec 32)
 #x0000000d)
(define-fun !s@0 () String îabcî)
(define-fun !s@1 () String îabcî)
(define-fun !s@2 () String îabcî)
(define-fun !s@3 () String îabcî)
(define-fun !s@4 () String îabcî)
(define-fun !s@5 () String îabcî)
(define-fun !s@6 () String îabcî)
(define-fun !s@7 () String îabcî)
(define-fun !s@8 () String îabcî)
(define-fun !s@9 () String îabcî)
(define-fun !s@10 () String îabcî)
(define-fun !s@11 () String îabcî)
(define-fun !s@12 () String îabcî)
(define-fun !s@13 () String îabcî)
(define-fun !s@14 () String îabcî)
(define-fun !s@15 () String îabcî)
(define-fun !s@16 () String îabcî)
(define-fun !|1_10| () (_ BitVec 32)
 #x0000000d)

SMT

5

The supported language

• Subset of the Java programming language
• Variables (including common operations)

boolean, byte, short, int, long, int[]
(int[][], String, String[])

• if-else, while, do-while, for, ternary-operator
• return, break, continue

• function calls, recursion
• Tatsu specific keywords/annotations (Java compatible syntax)

6

The supported language

• Subset of the Java programming language
• Roughly speaking:
• Variables (including common operations)

boolean, byte, short, int, long, int[]
(int[][], String, String[])

• if-else, while, do-while, for, ternary-operator
• return, break, continue

• function calls, recursion
• Tatsu specific keywords/annotations (Java compatible syntax)

7

Additional keywords/annotations

• ASSERT(x);
. . . eliminates all instantiations where x is not satisfied when

reached
e.g., ASSERT((x % 2) == 0);

• Placeholders: INT(v), INTARRAY(l, v), BOOLEAN(), . . .
. . . represents a constant of the corresponding type that is

constrained by its arguments
e.g., INT(range(0, 100)) - an integer constant in [0, 100]
e.g., INTARRAY(range(0, 100), range(3, 5) - an integer array

with 3, 4, or 5 elements being in [0, 100]
• LOOP(x);, @REC(x)

. . . determines how many recursive calls/loop iterations should be
considered → User-defined upper bounds

e.g., LOOP(range(0, 5)) - the the following loop might iterate
between [0, 5] times

• and some more . . .

8

Additional keywords/annotations

• ASSERT(x);
. . . eliminates all instantiations where x is not satisfied when

reached
e.g., ASSERT((x % 2) == 0);

• Placeholders: INT(v), INTARRAY(l, v), BOOLEAN(), . . .
. . . represents a constant of the corresponding type that is

constrained by its arguments
e.g., INT(range(0, 100)) - an integer constant in [0, 100]
e.g., INTARRAY(range(0, 100), range(3, 5) - an integer array

with 3, 4, or 5 elements being in [0, 100]

• LOOP(x);, @REC(x)
. . . determines how many recursive calls/loop iterations should be

considered → User-defined upper bounds
e.g., LOOP(range(0, 5)) - the the following loop might iterate

between [0, 5] times
• and some more . . .

8

Additional keywords/annotations

• ASSERT(x);
. . . eliminates all instantiations where x is not satisfied when

reached
e.g., ASSERT((x % 2) == 0);

• Placeholders: INT(v), INTARRAY(l, v), BOOLEAN(), . . .
. . . represents a constant of the corresponding type that is

constrained by its arguments
e.g., INT(range(0, 100)) - an integer constant in [0, 100]
e.g., INTARRAY(range(0, 100), range(3, 5) - an integer array

with 3, 4, or 5 elements being in [0, 100]

• LOOP(x);, @REC(x)
. . . determines how many recursive calls/loop iterations should be

considered → User-defined upper bounds
e.g., LOOP(range(0, 5)) - the the following loop might iterate

between [0, 5] times

• and some more . . .

8

Additional keywords/annotations

• ASSERT(x);
. . . eliminates all instantiations where x is not satisfied when

reached
e.g., ASSERT((x % 2) == 0);

• Placeholders: INT(v), INTARRAY(l, v), BOOLEAN(), . . .
. . . represents a constant of the corresponding type that is

constrained by its arguments
e.g., INT(range(0, 100)) - an integer constant in [0, 100]
e.g., INTARRAY(range(0, 100), range(3, 5) - an integer array

with 3, 4, or 5 elements being in [0, 100]
• LOOP(x);, @REC(x)

. . . determines how many recursive calls/loop iterations should be
considered → User-defined upper bounds

e.g., LOOP(range(0, 5)) - the the following loop might iterate
between [0, 5] times

• and some more . . .
8

Encoding

• Generating logical representation:
• Add assertions for the placeholders
• Eliminate break, continue, and return by program

transformation
• Loop unwinding and function call inlining
• Conversion to a variant of SSA form
• Optimization during transformation

• SSA form → logical representation → SMT solver
• Generated model → AST transformation

9

Unwinding

• Loops are unwinded a given number of times:

LOOP(range(10, 15));
while (loop-condition) {

stmts;
}

⇒

ASSERT(loop-condition);
stmts;
...
ASSERT(loop-condition);
stmts;
if (loop-cond) {

stmts;
if (loop-cond) {

...
if (loop-cond) ASSERT(false);

}
}

}
10×

 5×

10

Inlining

• Function calls are inlined a given number of times:

@REC(5)
static int recFunc(int x) {

stmts1;
z = recFunc(y);
stmts2;
return val;

}

static void func() {
recFunc(INT(range(0, 10)));

}

⇒

static void func() {
x_1 = INT(range(0, 10));
stmts1;
x_2 = y_1;
stmts1;
...
ASSERT(false);
...
ret_5 = val_5;
z_4 = ret_5;
stmts2;
...
stmts2;

}

}
5×

}
5×

11

Transformation

• break, continue, and return are eliminated by
transformation:

LOOP(...);
while (loopCond) {

if (ifCond) {
stmts1;
break;

}
stmts2;

}

⇒

LOOP(...);
while (loopCond && !_ifCond) {

if (ifCond) {
_ifCond = ifCond;
stmts1;

}
if (!_ifCond) {

stmts2;
}

}

12

Variable encoding

• Every state is represented by its own SMT constant (“SSA”):
x@[version]@[writecount]

• Allows reconstruction of complete data-flow
→ Useful for post-processing

13

Variable encoding

• Non-Arrays:

Java boolean byte short int long String
SMT Bool BitVec 8 BitVec 16 BitVec 32 BitVec 64 String

e.g., int i = INT(range(0, 100)); i = i + 1;

→ i@0@0 ≥ 0 ∧ i@0@0 ≤ 100 ∧ i@0@1 = i@0@0 + 1

• Arrays (Pointer, Length) + Entry in global “heap-array(s)”:

Java int[] int[][] String[]

SMT (BitVec 32, BitVec 32)
Array BitVec 32 3 · (Array BitVec 32) Array String

14

Variable encoding - Arrays

e.g., int[] y = new int[4]; y[0] = 17;

→ :
y@0@0.ptr = new@1 ∧ y@0@0.len = 4 ∧
new@2 = new@1 + 4 ∧
gIntArr@0@1 = store(gIntArr@0@0, y@0@0.ptr, 13)

15

Variable encoding - Arrays

e.g., int[] y = new int[4]; y[0] = 17;

→ :
y@0@0.ptr = new@1 ∧ y@0@0.len = 4 ∧
new@2 = new@1 + 4 ∧
gIntArr@0@1 = store(gIntArr@0@0, y@0@0.ptr, 13)

}
x = (ptr, 3)

 x new

0 0 0 0 0 0 00 0 0

15

Variable encoding - Arrays

e.g., int[] y = new int[4]; y[0] = 17;

→ :
y@0@0.ptr = new@1 ∧ y@0@0.len = 4 ∧
new@2 = new@1 + 4 ∧
gIntArr@0@1 = store(gIntArr@0@0, y@0@0.ptr, 13)

} }
x = (ptr, 3) y = (ptr, 4)

 x y new

0 17 0 0 0 0 00 0 0

15

Live Demo

• Switching to console . . .

16

Conclusion and Future Work

• Tatsu is a open-source command-line tool and Java API to
automatically instantiate code templates:
https://git.logic.at/ep1-tools/tatsu-generator

• Generates total correct Java codes
• Plans for the future:

• Support for Strings (and Characters) via integer arrays (C-like)
• More Java features (especially object-orientation)
• Automatically generating feedback for students via BMC
• Generating arbitrary number of iterations/recursive calls by

manually providing invariants

17

https://git.logic.at/ep1-tools/tatsu-generator

More Examples

@MAIN
static int[] start() {

int[] input = INTARRAY(list(6), range(-25,25));
ASSERT(__distinct(input, 6));
return mystery(input, 0, input.length-1);

}

@REC(5)
static int[] mystery(int[] data, int from, int to) {

if (from == to) return new int[] { data[from], data[from] };

int[] left = mystery(data, from, (from + to) / 2);
int[] right = mystery(data, (from + to) / 2 + 1, to);

int r[] = new int[2];
r[0] = left[0] < right[0] ? left[0] : right[0];
r[1] = left[1] < right[1] ? right[1] : left[1];

ASSERT(r[1] - r[0] > 5);
return r;

}

18

More Examples

@MAIN
static int[] main() {

int[] values = INTARRAY(range(8,12), range(1,30));
ASSUME(__distinct(values, 100));
ASSUME(__asc(values, 100));
ASSUME(values[0] == 1);
ASSUME(values[values.length-1] == values.length);

int[] instr = INTARRAY(list(10), range(0,12));
ASSUME(__distinct(instr, 100));

shuffle(values, instr, 0);
ASSERT(values[0] == 7);
return values;

}

@REC(20)
static void shuffle(int[] values, int[] instr, int start) {

if (start >= instr.length) return;
int t = values[0];
values[0] = values[instr[start]];
values[instr[start]] = t;
shuffle(values, instr, start+1);

}

19

Problem with Arrays

• Consider the following (unsat) code:

void t e s t (i n t [] a r r) {
a r r [0] = 2 ;

}

void main (){
i n t [] a r r = new i n t [1] ;
a r r [0] = 1 ;
t e s t (a r r) ;
ASSERT(a r r [0] == 1) ;

}

20

