Automated Instantiation of Control Flow

Tracing Exercises

ThEdu 21

Clemens Eisenhofer Martin Riener

Technische Universitat Wien, Austria

= Introduction to programming course (CS 1)

= Understanding and writing Java code
= Course consists of 3 parts:

= Lab classes - discussion of homework
= Programming exams
= Auto-graded tests about given code

Automatically Graded Tests

= Done via Moodle (e-Learning platform)
= What is the result/output of the code?
= Which of these code fragments produces ... as result/output?
= Which programs have the same (concrete) results/outputs?
= Does the result/output change if we replace line ... by ...7?
= Which starting value of ... produces the given result?

.
= Question pool is limited
= Writing new ones is error-prone and tedious
= Hard to guarantee same difficulty
= Should have didactic value

Automatically Graded Tests: Example

Consider the following code fragment:

int a = 0;
int b = 0;
int limit = /* ? */;
int inc = /¥ ? */;

int start = /* ? */;
for (int i = start; i < limit; i += inc) {
// Loop A
if (i %2 ==0)
at+;
if (i %3 ==0)
at+;

for (int i = start; i < limit; i += inc) {
// LOOP B
if (1 %2 ==0)
b++;
else if (i % 3 == 0)
bt+;

}
System.out.print(a+" "+b);
Which of the values for limit, inc, start lead to different outputs of a and b in the end?
Select one or more:
[int limit = 10; int inc = 5; int start = 3;
O intlimit = 17; int inc = 5; int start = 1;
O int limit = 15; int inc = 5; int start = 3;
(m]

int limit = 14; int inc = 3; int start = 3;

Aim of Tatsu

= Generate multiple instances of a program /exercises
= As little additional (manual) effort required as possible

= Exercises should be approx. equally difficult

int a = @; int a = @;
int b = 0; int b = 0;
int limit = 20; int limit = 1743;
int inc = 2; int inc = 13;
int start = 0; int start = 17;
for (int i = start; i < limit; i += inc) { for (int i = start; i < limit; i += inc) {
// Loop A // Loop A
if (i %2 ==0) a+t+; if (i % 2 ==0) at++;
if (%3 ==0) att; if (i %3 ==0) att;
} ¥
for(int i = start; i < limit; i += inc) { for(int i = start; i < limit; i += inc) {
// LOOP B // LOOP B
if (i % 2 == 0) b++; if (i %2 == 0) b++;
else if (i % 3 == @) b++; else if (i % 3 == @) b++;
}
System.out.print(a+” “+b); System.out.print(a+” “+b);

From ldea to Moodle

2 = 0;
nt b = o;
int limit = 20;
int inc = 2;
t start = 0;
(int i = start; i < limit; i
Loop A
if (1% 2 ==0) at+;
if (i %3 ==0) at+;

From ldea to Moodle

ta=0;
nt b = 0;
limit = ((10, 20));

((2, 5));
((@, 3));
» 20));
start; i < limit; i += inc) {
== 0) at+;
== 0) a++;
or i += inc) {

From ldea to Moodle

(declare-fun b@e@1e () (_ BitVec 32))
(declare-fun a@0@20 () (_ BitVec 32))
(declare-fun i@1@2 () (_ BitVec 32))
(declare-fun i@1@1@ () (_ BitVec 32))
(declare-fun b@e@2 () (_ BitVec 32))
(assert (let ((a!l (and (ite (=
(bvsrem i@0@9 #x00000002) #x00000000)
(= a@0@19 (bvadd a@0@18 #x00000801))
(= a@0@19 2@0@18))
(ite (= (bvsrem i@0@9 #x00000003)
#x00000000)
(and (bvsge |3_13| #x0000000a)
(bvsle |3_13| #x00000014)
al26
(not (= a@e@20 b@eE1e)))))))))))))
(check-sat)
(get-model)

From ldea to Moodle

(define-fun b@e@s () (_ Bitvec 32)

#x00000005)

(define-fun a@e@17 () (_ BitVec 32)
#x0000000C)

(define-fun b@e@ie () (_ BitVec 32)
#x0000000a)

(define-fun a@e@15 () (_ BitVec 32)
#x0000000b)

(define-fun i@1@7 () (_ BitVec 32)
#x0000000e)

(define-fun a@e@20 () (_ BitVec 32)
#x0000000e)

(define-fun i@1@1 () (_ Bitvec 32)
#x00000002)

(define-fun i@e@s () (_ BitVec 32)
#x00000002)

(define-fun a@e@11 () (_ Bitvec 32)
#x00000008)

From ldea to Moodle

tb=0;
int limit = 16;
ti

if (1(((_cnt_7.1 >= 1) &&
(_cnt_7_1 <= 20))))
throw new AssertionError("1");

if (1(a != b))
throw new AssertionError("e");
_out+=a+ “”+b

From ldea to Moodle

T

Returned value: null
Printed value: “11 8”
Process finished with exit code @.

From ldea to Moodle

~ (int i = start; i < limit; i += inc) {

if (0) a++;

if (1% 3 == 0) ar+;

(int i = start; i < limit; i += inc) {
/ LOOP B

if (i %2 == @) b+;

else if (i % 3 == @) b++;

System.out.print(a+” “+b);

From ldea to Moodle

oopA LoapA
%2 f(1%2==0)
(%3==0)

for (int i = start.
I <limit | += inc)

2
S
o
o
2
o
-
[}
0
=
£
S
S
w

» Tnoodle

po [=

| T e P | [

From ldea to Moodle

Consider the following code fragment:

inta
int b =0;

int Umit = /* 7 */;
int inc = /* 7%/

i1 = dno) {

for (int i = start; 1 < linit; 1 += inc) {
7/ Loop B
if (152

0)

bie;
else if (i
b+

)

Systen.out.print(a+" "+b);
Which of the values for imit, inc, start lead to different outputs of a and b in the end?

Select one or more:
O intlimit = 10;int inc = 5; int start = 3;

O intlimit = 17; intinc = 5; int start =

O intlimit = 15; intin

5 int star

O intlimit = 14; intinc = 3; int start =

The supported language

= Subset of the Java programming language

= Variables (including common operations)
boolean, byte, short, int, long, int[]
(int [1[1, String, Stringl[])

= if-else, while, do-while, for, ternary-operator
= return, break, continue

= function calls, recursion

Tatsu specific keywords/annotations (Java compatible syntax)

The supported language

= Subset of the Java programming language

= Roughly speaking:

= Variables (including common operations)
boolean, byte, short, int, long, int[]
(int[1[], String, String[])

= if-else, while, do-while, for, ternary-operator
= return, break, continue
= function calls, recursion

» Tatsu specific keywords/annotations (Java compatible syntax)

Additional keywords/annotations

= ASSERT(x) ;
. eliminates all instantiations where x is not satisfied when
reached
e.g., ASSERT((x % 2) == 0);

Additional keywords/annotations

= Placeholders: INT(v), INTARRAY(1, v), BOOLEANQ), ...
. represents a constant of the corresponding type that is
constrained by its arguments
e.g., INT(range(0, 100)) - an integer constant in [0, 100]
e.g., INTARRAY (range(0, 100), range(3, 5) - an integer array
with 3, 4, or 5 elements being in [0, 100]

Additional keywords/annotations

= LOOP(x);, GREC(x)
... determines how many recursive calls/loop iterations should be
considered — User-defined upper bounds
e.g., LOOP(range (0, 5)) - the the following loop might iterate
between [0, 5] times

Additional keywords/annotations

= ASSERT(x);
. eliminates all instantiations where z is not satisfied when
reached
e.g., ASSERT((x % 2) == 0);
= Placeholders: INT(v), INTARRAY(1, v), BOOLEANQ), ...
. represents a constant of the corresponding type that is
constrained by its arguments
e.g., INT(range(0, 100)) - an integer constant in [0, 100]
e.g., INTARRAY (range(0, 100), range(3, 5) - an integer array
with 3, 4, or 5 elements being in [0, 100]
= LOOP(x);, GREC(x)
... determines how many recursive calls/loop iterations should be
considered — User-defined upper bounds
e.g., LOOP(range (0, 5)) - the the following loop might iterate
between [0, 5] times

= and some more ...

= Generating logical representation:
= Add assertions for the placeholders
= Eliminate break, continue, and return by program
transformation
= Loop unwinding and function call inlining
= Conversion to a variant of SSA form
= Optimization during transformation

= SSA form — logical representation — SMT solver

= Generated model — AST transformation

= Loops are unwinded a given number of times:

LOOP(range (10, 15)); ASSERT (loop-condition) ;
while (loop-condition) { stmts;
stmts;
} ASSERT (loop-condition) ;
stmts;
j if (loop-cond) {
stmts;
if (loop-cond) {

10x

if (loop-cond) ASSERT(false);
}
}

10

Function calls are inlined a given number of times:

GREC(5)
static int recFunc(int x) {
stmtsl;
z = recFunc(y);
stmts2;
return val;

}

static void func() {
recFunc (INT(range (0, 10)));
}

static void func() {
x_1 = INT(range(0, 10));

stmtsl;

x 2 =y_1; 5%
stmtsl;

ASSERT (false);

ret_5 = val_5;

z_4 = ret_5;

stmts2; 5%
stmts2;

11

Transformation

= break, continue, and return are eliminated by

transformation:

LOOP(...);
while (loopCond) {
if (ifCond) {
stmtsl;
break;
¥
stmts2;

i

=

LOOP(...);
while (loopCond && !_ifCond) {
if (ifCond) {
_ifCond = ifCond;
stmtsl;
}
if (!'_ifCond) {
stmts2;
}

12

Variable encoding

= Every state is represented by its own SMT constant (“SSA"):
x@[version]@[writecount]

= Allows reconstruction of complete data-flow
— Useful for post-processing

13

Variable encoding

= Non-Arrays:

Java boolean
SMT Bool

byte short
BitVec 8 | BitVec 16

int long String
BitVec 32 | BitVec 64

String

e.g., int 1

INT(range(0, 100)); i = i + 1;

0 A 10000 < 100 A i@001 = i@0Q0 + 1

— 100Q0 >

= Arrays (Pointer, Length) + Entry in global “heap-array(s)”

Java int[] [int[][] | String[]
SMT (BitVec 32, BitVec 32)

Array BitVec 32 ‘ 3 - (Array BitVec 32) ‘ Array String

14

Variable encoding - Arrays

e.g., int[] y = new int[4]; y[0] = 17;

= ¢
y@0@0.ptr = new@l A y@0@0.len = 4 A
new@2 = new@l + 4 A
gIntArr@001 = store(gIntArr@0@0, y@0QO0.ptr, 13)

5

Variable encoding - Arrays

e.g., int[] y = new int[4]; y[0] = 17;
= ¢
y@0@0.ptr = new@l A y@0@0.len = 4 A

new@2 = new@l + 4 A
gIntArr@0@1 = store(gIntArr@0@0, y@0Q0.ptr, 13)

new

kel

x = (ptr, 3)

5

Variable encoding - Arrays

e.g., int[] y = new int[4]; y[0] = 17;
= ¢
y@0@0.ptr = new@l A y@0@0.len = 4 A

new@2 = new@l + 4 A
gIntArr@0@1 = store(gIntArr@0@0, y@0Q0.ptr, 13)

new

kel

x = (ptr, 3) y = (ptr, 4)

5

= Switching to console ...

16

Conclusion and Future Work

= Tatsu is a open-source command-line tool and Java API to
automatically instantiate code templates:
https://git.logic.at/epl-tools/tatsu-generator

= Generates total correct Java codes

= Plans for the future:

= Support for Strings (and Characters) via integer arrays (C-like)

= More Java features (especially object-orientation)

= Automatically generating feedback for students via BMC

= Generating arbitrary number of iterations/recursive calls by
manually providing invariants

17

https://git.logic.at/ep1-tools/tatsu-generator

More Examples

@MAIN

static int[] start() {
int[] input = INTARRAY(1list(6), range(-25,25));
ASSERT(__distinct(input, 6));
return mystery(input, O, input.length-1);

}

QREC(5)

static int[] mystery(int[] data, int from, int to) {
if (from == to) return new int[] { datal[from], datal[from] };
int[] left = mystery(data, from, (from + to) / 2);
int[] right = mystery(data, (from + to) / 2 + 1, to);
int r[] = new int[2];
r[0] = left[0] < right[0] 7 left[0] : right[0];
r[1] = left[1] < right[1] ? right[1] : left[1];

ASSERT(r[1] - r[0] > 5);

return r;

}

18

More Examples

@MAIN

static int[] main() {
int[] values = INTARRAY(range(8,12), range(1,30));
ASSUME(__distinct(values, 100));
ASSUME(__asc(values, 100));
ASSUME (values[0] == 1);
ASSUME (values [values.length-1] == values.length);

int[] instr = INTARRAY(1list(10), range(0,12));
ASSUME(__distinct(instr, 100));

shuffle(values, instr, 0);
ASSERT (values[0] == 7);
return values;

GREC(20)
static void shuffle(int[] values, int[] instr, int start) {
if (start >= instr.length) return;
int t = values[0];
values[0] = values[instr[start]];
values[instr[start]] = t;
shuffle(values, instr, start+1);

19

Problem with Arrays

= Consider the following (unsat) code:

void test(int[] arr) {
arr [0] = 2;

}

void main(){
int[] arr = new int[1];
arr[0] = 1;
test(arr);
ASSERT (arr [0] = 1);

20

