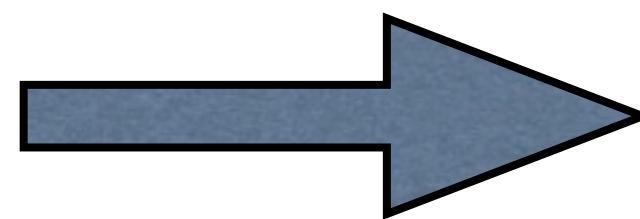


A Drag-and-Drop Proof Tactic

Pablo Donato, Pierre-Yves Strub and Benjamin Werner

LIX, Ecole polytechnique, France

ThEdu'21


Disclaimers !

- ▶ This is *ongoing* work
 - ⇒ About the *interface*
- ▶ Education : prime goal
 - (possibly more applications later)

Outline

- ▶ Basic idea : in propositional calculus
- ▶ The rules
- ▶ Quantifiers / predicate calculus

$$[A \Rightarrow \underline{B} \vdash C \vee (D \wedge \underline{B})]$$

$$C \vee (D \wedge A)$$

▼ Rv_2

$$C \vee [A \Rightarrow B \vdash (D \wedge B)]$$

▼

$$C \vee (D \wedge [A \Rightarrow B \vdash B])$$

▼

$$C \vee (D \wedge A \wedge [B \vdash B])$$

$$C \vee (D \wedge A \wedge T)$$

$$C \vee (D \wedge A)$$

deep inference
(Calculus of Structures :
see K. Chaudhuri's CADE talk)

Our set of rules
subsumes all the
given examples

Conclusions

<https://prover.dioxygen.io/>

- ▶ Prototype : Actema - runs in JavaScript
Continuation of Proof-by-pointing
- ▶ Started as very practical effort, but fruitful links with proof theory

Possible future work

- ▶ Scaling up : add on a real theorem prover
- ▶ How to deal with lemmas and proof libraries, "Replay proofs"...
- ▶ Use of more complex actions (multi-touch...)
- ▶ Proof-theoretical properties (which forms of completeness...)
- ▶ Extending to classical logic, Higher-Order Logic, Type Theories