Learning Theorem Proving by
Example
— Implementing JavaRes

Stephan Schulz Talk for ThEdu Adam Pease
DHBW Stuttgart July 11, 2021 Articulate Software

schulz@eprover.org apease@atrticulatesoftware.com

Overview

* Motivation

* Algorithms

* Architecture and Data Structures
e Conclusion

What Is this?

* We know some things about the world
* Encode that knowledge In logic
* Run a theorem prover to answer guestions

Why First Order Logic

Anything less than that leaves too much knowledge implicit and not accessible
to computation

- Explanation, validation, GDPR etc

In one study of ~7500 sentences from Brown Corpus and COCA, ~45%
required at least FOL

Sound — can’t derive something false from true premises

Complete — will find an answer at least in infinite time
- But FOL isn’'t decidable — not guaranteed to terminate in finite time — oh well....

- but a typical case with modern provers is answers in under a second, even with large
theories

Why Automated Theorem Proving?

e Definitions fix shared meaning of terms

* Large numbers of definitions are impractical to check by
nand for consistency — “dictionary for computers to read”

* Question answering with explanation of deductions is
potentially very powerful

* | have a big theory — Suggested Upper Merged Ontology
(SUMO)- and | want to do practical computation with it

Why Another Prover?

* Understanding ATP iIs hard (at least it was for me)

* Barrier to entry

IS high — papers and textbooks on

ATP have lots of math, and not a lot on data
structures and architecture

* Maybe If more
ATP, more wou
FOL ATP for ed

people understood the power of FOL
d use it — create a simple example

ucation

Process

* Stephan Schulz is the developer of Eprover

— One of the top performing FOL provers in the yearly CASC
competitions for decades

e Stephan wrote PyRes — FOL ATP in Python while |
“shadowed” him, asking for explanations and writing the
same algorithms in Java — JavaRes

* Goal — explain ATP from a programmer’s perspective, not a
logician’s

What was hard?

One of the CNF algorithms
- Need examples for each step
— Distinction between literals and clauses makes things more complicated

Integration testing
— Needed to develop a small and fast set of problems

Heuristics and optimizations
- Needed more examples

Result — lots more unit and integration tests

The Core Algorithms

Resolution Theorem Proving

° a | ~b | ~C “a or not b or not ¢” is true
e ~a|d
. ~b|~c|d

Clausification

FOL has and, or, not, exists, forall, implies, iff, equals

Conjunctive Normal Form (CNF) has and, or, not, equals

- Relatively flat structure — a set of clauses, where a clause is a set
of literals

Simpler to write a prover with fewer operators

“classical” algorithm described in Russel&Norvig AIMA
- And also SmallCNF from (Nonnengart&Weidenbach, 2001)

Simple Architecture

Substitutions

apply()
applyList()
composeBinding()
freshVarSubst()

/

Unification

mgu()

/

Resolution

resolution()
factor()

i

ResControl

computeAllFactors()
computeAllResolvants()

SimpleProofState

/N

ClauseSet Proverl

<

Clause

T

Literal

I

Term

calls

contained

Substitutions

apply()
applyList()

I composeBinding()
e r m freshVarSubst()

Unification

mgu()

a —aconstant f

Resolution

?A - a Varl ab | e resolution()

factor()

governmentFn(unitedStates) — a functional term f

ResControl

computeAllFactors()
computeAllResolvants()

SimpleProofState

/N

ClauseSet Proverl

<

Clause

T

Literal

I

> Term

calls contained

Literal

iInstance(koko, gorilla)
memberSize(governmentFn(unitedStates),1000000)
~likes(mary,bill)

Literals have truth values, terms denote something and
don’t have a truth value

Substitutions

apply()
applyList()
composeBinding()
freshVarSubst()

/

Unification

mgu()

i

Resolution

resolution()
factor()

i

ResControl

computeAllFactors()
computeAllResolvants()

[

SimpleProofState

/N

ClauseSet Proverl

<

Clause

T

P | Literal

I

Term

calls

contained

Substitutions

apply()
applyList()

Clause compescBinding0

Unification

mgu()

~likes(A,B) | likes(B,A) /

Resolution

resolution()
factor()

A disjunction of (possibly negated) literals Resc()zm

computeAllFactors()
computeAllResolvants()

SimpleProofState

/N

ClauseSet Proverl

<

. Clause

T

Literal

I

Term

calls contained

ClauseSet

A set of clauses
Implicitly a conjunction

Substitutions

apply()
applyList()
composeBinding()
freshVarSubst()

/

Unification

mgu()

/

Resolution

resolution()
factor()

i

ResControl

computeAllFactors()
computeAllResolvants()

SimpleProofState

/N

ClauseSet Proverl

<

Clause

T

Literal

I

Term

calls

contained

Proverl

Just initialize a proof state and start it

Substitutions

apply()
applyList()
composeBinding()
freshVarSubst()

/

Unification

mgu()

/

Resolution

resolution()
factor()

i

ResControl

computeAllFactors()
computeAllResolvants()

SimpleProofState

/N

ClauseSet Proverl

<

Clause

T

Literal

I

Term

calls

contained

Another Algorithm: Factoring

---------- where sigma = mgu(a,b)
sigma(c|a)

* 9(X) [1(X) | 9(a)
* Unifying the first and third literal yields the
substitution

° {X—> a}
* Return f(a) | g(a)

SimpleProofState

Iteration
Picks a clause from the unprocessed list
Call Compute factors
Call Compute resolvants

Substitutions

apply()
applyList()
composeBinding()
freshVarSubst()

/

Unification

mgu()

i

Resolution

resolution()
factor()

i

ResControl

computeAllFactors()
computeAllResolvants()

[

SimpleProofState

/N

ClauseSet Proverl

<

Clause

T

Literal

I

Term

calls

contained

Substitutions

apply()
applyList()

ResControl compescBinding0

Unification

mgu()

Compute all factors for a given clause /

Resolution

check all pairs of literals resoltion()

factor()

Compute all resolvants for a given clause and clause set f
check all literals in the given clause against all RexContol

clauses in the clause set Sompucllfacors) | A

[

SimpleProofState

/N

ClauseSet Proverl

<

Clause

T

Literal

I

Term

calls contained

Substitutions

apply()
applyList()

Resolution compocBindngl)

Unification

mgu()

Compute factors for a given clause of a given pair of literals /

Resolution

Compute resolvant for a given pair of clauses and literals resoltion()

factor()

i

ResControl

-

computeAllFactors()
computeAllResolvants()

[

SimpleProofState

/N

ClauseSet Proverl

<

Clause

T

Literal

I

Term

calls contained

Unification

Compare two terms (iterating over their sub-terms)
equal constants unify
a variable unifies with a constant or a sub-term or variable
apply substitution to the entire term upon unifying
a sub-term

Substitutions

apply()
applyList()
composeBinding()
freshVarSubst()

/

Unification

mgu()

i

Resolution

resolution()
factor()

i

ResControl

computeAllFactors()
computeAllResolvants()

[

SimpleProofState

/N

ClauseSet Proverl

<

Clause

T

Literal

I

Term

calls

contained

Substitutions

Apply a substitution set to a term or list of terms
Compose two sets of substitutions
Rename variables

(variables have scope of a single clause)

Substitutions

apply()
applyList()
composeBinding()
freshVarSubst()

/

Unification

mgu()

i

Resolution

resolution()
factor()

i

ResControl

computeAllFactors()
computeAllResolvants()

[

SimpleProofState

/N

ClauseSet Proverl

<

Clause

T

Literal

I

Term

calls

contained

Extensions

 \WWe have choices about which clause, literal or term
to attempt to resolve in various steps - selection

— This choice can be optimized

* Removing clauses that are redundant can reduce the
search space — subsumption

* We can optimize how we find the next thing to try -
Indexing

Substitutions

apply()
applyList()
composeBinding()

New Architecture

BacktrackSubstitution

backtrack() Unification
backtractToState()
addBinding()
match

mgu()

Backtrack substitution

HeuristicClauseSet P

- EvalStructure SompueAFacont) mog
- ClauseEvaluationFunction AN t
« FIFOEvaluation, SymbolCountEvaluation \(
c

ProofState — displays proofs

HeuristicClauseSet

IndexedClauseSet — index by

predicate name and whether negated e

evaluate()
nextEval()

[

ClauseEvaluationFunction

’ FIFOEvaluation ‘ ’ SymbolCountEvaluation ‘

HeuristicClauseSet

e Backtrack substitution

e HeuristicClauseSet
- EvalStructure

- ClauseEvaluationFunction
* FIFOEvaluation, SymbolCountEvaluation

SymbolCountEvaluation

termWeight(f(a,b), 1, 1) = 3 - three symbols, weight of 1 = 1*3=3
termWelight(f(a,b), 2, 1) = 6 - three symbols, weight of 2 = 2*3=6
termWeight(X, 2,1) =1 - one variable with a weight of one =1

termWeight(g(a), 3, 1) =6 - two symbols with a weight of 3 =6

We use function weight of 2, variable weight of 1

Literal Selection

FIRST just leaves the literals in the order they appear in the clause
SMALLEST sorts literals by their weight (see 10 above)

LARGEST sorts literals by their weight (see 10 above) but in the
opposite order from SMALLEST

LEASTVARS sorts by the number of variables in the literal

EQLEASTVARS sorts by whether a literal is a pure equality
statement between variables (such as X=Y) and then by the literal
with the smallest number of variables

Indexing

* Glven
- p(a, X) | p(X, a))
- ~p(a, b) | p(f(Y), a))
* Positive
- p->{{p(a X) [p(X, a)),{0,1}},
- {{~p(a, b) | p(i(Y), a))}, {1}}
* Negative
- p->{{~p(a, b) | p(i(Y), a))}, {0}

Equality Axioms
* Reflexivity: ![X]:X=X
e Symmetry: X, Y]:(X=Y -> Y=X)
* Transitivity: ![X,Y,Z]:(X=Y & Y=2) -> X=2)

Equality Axioms

* Given functions f and a and predicate p

* cnf(funcompatO,plain,~X1=Y1|~X2=Y2|~X3=Y 3|
f(X1,X2,X3)=f(Y1,Y2,Y3)).

* cnf(predcompatl,plain,~X1=Y1|~X2=Y2|~X3=Y3|~X4=Y4|
~X5=Y5|~p(X1,X2,X3,X4,X5)|p(Y1,Y2,Y3,Y4,Y5)).

* [enf(funcompat2,plain,~X1=Y1|~X2=Y2|f(X1,X2)=f(Y1,Y2)).,
cnf(predcompat3,plain,~X1=Y1|~X2=Y2|~X3=Y 3|
~p(X1,X2,X3)|p(Y1,Y2,Y3)).]

Metrics and Validation
* TPTP problem set — the yearly ATP competition

Category UEQ CNE CEQ FNE FEQ All

Class size (1183) (2383) (4442} (1771) (6305) (16094)
Number of problems PyRes 113 945 499 632 725 2914
answered correctly, JavaRes 73 1081 615 737 1589 4195
by category E 2.4 813 1939 2648 1484 4054 10938

(16094 total problems) = 10-1109a 728 1316 1678 709 2001 6432

LeanCoP 2.2 G () (b 969 1526 2801

Size and Effort

 About three months of full-time effort in done in two chunks, for
JavaRes

e JavaRes adds another CNF module, SInE axiom selection
algorithm, proof graph generation etc

 JavaRes is 19,334 total lines of code, versus 8553 lines for
PyRes (including comments, docstrings, and unit tests).

 actual production code, there are 7508 lines of effective code
for JavaRes and only 3681 lines of effective code in PyRes

Conclusion

* It's feasible for a novice to ATP (but experienced in FOL) to
write an ATP system using PyRes as a model

* It performs pretty well, although not compared to the best FOL
ATP systems

* It lacks superposition calculus for equality handling, which
should make a big difference — maybe that’s our next effort

* Faster languages help — C++ would likely be better than Java
or Python

Thanks Stephan!

Links

https://www.ontologyportal.org

https://github.com/ontologyportal

- https://github.com/ontologyportal/JavaRes

- https://github.com/eprover/PyRes
https://www.youtube.com/user/peaseadam

Schulz, S., Pease, A., (2020). Teaching Automated Theorem Proving by Example:
PyRes 1.2 (system description). Proc. of IJCAR-2020: Vol. 12167, Lecture Notes
In Computer Science, Springer. hitps://adampease.org

Pease, A., Schulz, S., (2021). Learning Automated Theorem Proving from an
Example: JavaRes, ThEdu workshop at CADE-21.

https://www.ontologyportal.org/
https://github.com/ontologyportal
https://github.com/ontologyportal/JavaRes
https://github.com/eprover/PyRes
https://www.youtube.com/user/peaseadam
https://adampease.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

