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What Is this?

* We know some things about the world
* Encode that knowledge In logic
* Run a theorem prover to answer guestions



Why First Order Logic

Anything less than that leaves too much knowledge implicit and not accessible
to computation

- Explanation, validation, GDPR etc

In one study of ~7500 sentences from Brown Corpus and COCA, ~45%
required at least FOL

Sound — can’t derive something false from true premises

Complete — will find an answer at least in infinite time
- But FOL isn’'t decidable — not guaranteed to terminate in finite time — oh well....

- but a typical case with modern provers is answers in under a second, even with large
theories



Why Automated Theorem Proving?

e Definitions fix shared meaning of terms

* Large numbers of definitions are impractical to check by
nand for consistency — “dictionary for computers to read”

* Question answering with explanation of deductions is
potentially very powerful

* | have a big theory — Suggested Upper Merged Ontology
(SUMO)- and | want to do practical computation with it



Why Another Prover?

* Understanding ATP iIs hard (at least it was for me)

* Barrier to entry

IS high — papers and textbooks on

ATP have lots of math, and not a lot on data
structures and architecture

* Maybe If more
ATP, more wou
FOL ATP for ed

people understood the power of FOL
d use it — create a simple example

ucation



Process

* Stephan Schulz is the developer of Eprover

— One of the top performing FOL provers in the yearly CASC
competitions for decades

e Stephan wrote PyRes — FOL ATP in Python while |
“shadowed” him, asking for explanations and writing the
same algorithms in Java — JavaRes

* Goal — explain ATP from a programmer’s perspective, not a
logician’s



What was hard?

One of the CNF algorithms
- Need examples for each step
— Distinction between literals and clauses makes things more complicated

Integration testing
— Needed to develop a small and fast set of problems

Heuristics and optimizations
- Needed more examples

Result — lots more unit and integration tests



The Core Algorithms



Resolution Theorem Proving

° a | ~b | ~C “a or not b or not ¢” is true
e ~a|d
. ~b|~c|d




Clausification

FOL has and, or, not, exists, forall, implies, iff, equals

Conjunctive Normal Form (CNF) has and, or, not, equals

- Relatively flat structure — a set of clauses, where a clause is a set
of literals

Simpler to write a prover with fewer operators

“classical” algorithm described in Russel&Norvig AIMA
- And also SmallCNF from (Nonnengart&Weidenbach, 2001)



Simple Architecture
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Literal

iInstance(koko, gorilla)
memberSize(governmentFn(unitedStates),1000000)
~likes(mary,bill)

Literals have truth values, terms denote something and
don’t have a truth value
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ClauseSet

A set of clauses
Implicitly a conjunction
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Proverl

Just initialize a proof state and start it
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Another Algorithm: Factoring

---------- where sigma = mgu(a,b)
sigma(c|a)

* 9(X) [1(X) | 9(a)
* Unifying the first and third literal yields the
substitution

° {X—> a}
* Return f(a) | g(a)



SimpleProofState

Iteration
Picks a clause from the unprocessed list
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Call Compute resolvants
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Substitutions
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Unification

Compare two terms (iterating over their sub-terms)
equal constants unify
a variable unifies with a constant or a sub-term or variable
apply substitution to the entire term upon unifying
a sub-term

Substitutions

apply()
applyList()
composeBinding()
freshVarSubst()

/

Unification

mgu()

i

Resolution

resolution()
factor()

i

ResControl

computeAllFactors()
computeAllResolvants()

[

SimpleProofState

/N

ClauseSet Proverl

<

Clause

T

Literal

I

Term

calls

contained



Substitutions

Apply a substitution set to a term or list of terms
Compose two sets of substitutions
Rename variables

(variables have scope of a single clause)
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Extensions

 \WWe have choices about which clause, literal or term
to attempt to resolve in various steps - selection

— This choice can be optimized

* Removing clauses that are redundant can reduce the
search space — subsumption

* We can optimize how we find the next thing to try -
Indexing



Substitutions
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HeuristicClauseSet

e Backtrack substitution

e HeuristicClauseSet
- EvalStructure

- ClauseEvaluationFunction
* FIFOEvaluation, SymbolCountEvaluation



SymbolCountEvaluation

termWeight(f(a,b), 1, 1) = 3 - three symbols, weight of 1 = 1*3=3
termWelight(f(a,b), 2, 1) = 6 - three symbols, weight of 2 = 2*3=6
termWeight(X, 2,1) =1 - one variable with a weight of one =1

termWeight(g(a), 3, 1) =6 - two symbols with a weight of 3 =6

We use function weight of 2, variable weight of 1



Literal Selection

FIRST just leaves the literals in the order they appear in the clause
SMALLEST sorts literals by their weight (see 10 above)

LARGEST sorts literals by their weight (see 10 above) but in the
opposite order from SMALLEST

LEASTVARS sorts by the number of variables in the literal

EQLEASTVARS sorts by whether a literal is a pure equality
statement between variables (such as X=Y) and then by the literal
with the smallest number of variables



Indexing

* Glven
- p(a, X) | p(X, a))
- ~p(a, b) | p(f(Y), a))
* Positive
- p->{{p(a X) [ p(X, a)),{0,1}},
- {{~p(a, b) | p(i(Y), a))}, {1}}
* Negative
- p->{{~p(a, b) | p(i(Y), a))}, {0}



Equality Axioms
* Reflexivity: ![X]:X=X
e Symmetry: X, Y]:(X=Y -> Y=X)
* Transitivity: ![X,Y,Z]:(X=Y & Y=2) -> X=2)



Equality Axioms

* Given functions f and a and predicate p

* cnf(funcompatO,plain,~X1=Y1|~X2=Y2|~X3=Y 3|
f(X1,X2,X3)=f(Y1,Y2,Y3)).

* cnf(predcompatl,plain,~X1=Y1|~X2=Y2|~X3=Y3|~X4=Y4|
~X5=Y5|~p(X1,X2,X3,X4,X5)|p(Y1,Y2,Y3,Y4,Y5)).

* [enf(funcompat2,plain,~X1=Y1|~X2=Y2|f(X1,X2)=f(Y1,Y2)).,
cnf(predcompat3,plain,~X1=Y1|~X2=Y2|~X3=Y 3|
~p(X1,X2,X3)|p(Y1,Y2,Y3)).]



Metrics and Validation
* TPTP problem set — the yearly ATP competition

Category UEQ CNE CEQ FNE FEQ All

Class size (1183) (2383) (4442} (1771) (6305) (16094)
Number of problems PyRes 113 945 499 632 725 2914
answered correctly, JavaRes 73 1081 615 737 1589 4195
by category E 2.4 813 1939 2648 1484 4054 10938

(16094 total problems) = 10-1109a 728 1316 1678 709 2001 6432

LeanCoP 2.2 G () (b 969 1526 2801




Size and Effort

 About three months of full-time effort in done in two chunks, for
JavaRes

e JavaRes adds another CNF module, SInE axiom selection
algorithm, proof graph generation etc

 JavaRes is 19,334 total lines of code, versus 8553 lines for
PyRes (including comments, docstrings, and unit tests).

 actual production code, there are 7508 lines of effective code
for JavaRes and only 3681 lines of effective code in PyRes



Conclusion

* It's feasible for a novice to ATP (but experienced in FOL) to
write an ATP system using PyRes as a model

* It performs pretty well, although not compared to the best FOL
ATP systems

* It lacks superposition calculus for equality handling, which
should make a big difference — maybe that’s our next effort

* Faster languages help — C++ would likely be better than Java
or Python



Thanks Stephan!




Links

https://www.ontologyportal.org

https://github.com/ontologyportal

- https://github.com/ontologyportal/JavaRes

- https://github.com/eprover/PyRes
https://www.youtube.com/user/peaseadam

Schulz, S., Pease, A., (2020). Teaching Automated Theorem Proving by Example:
PyRes 1.2 (system description). Proc. of IJCAR-2020: Vol. 12167, Lecture Notes
In Computer Science, Springer. hitps://adampease.org

Pease, A., Schulz, S., (2021). Learning Automated Theorem Proving from an
Example: JavaRes, ThEdu workshop at CADE-21.
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