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What is this?
● We know some things about the world
● Encode that knowledge in logic
● Run a theorem prover to answer questions



  

Why First Order Logic
● Anything less than that leaves too much knowledge implicit and not accessible 

to computation
– Explanation, validation, GDPR etc

● In one study of ~7500 sentences from Brown Corpus and COCA, ~45% 
required at least FOL

● Sound – can’t derive something false from true premises
● Complete – will find an answer at least in infinite time

– But FOL isn’t decidable – not guaranteed to terminate in finite time – oh well….
– but a typical case with modern provers is answers in under a second, even with large 

theories



  

Why Automated Theorem Proving?
● Definitions fix shared meaning of terms
● Large numbers of definitions are impractical to check by 

hand for consistency – “dictionary for computers to read”
● Question answering with explanation of deductions is 

potentially very powerful
● I have a big theory – Suggested Upper Merged Ontology 

(SUMO)– and I want to do practical computation with it



  

Why Another Prover?
● Understanding ATP is hard (at least it was for me)
● Barrier to entry is high – papers and textbooks on 

ATP have lots of math, and not a lot on data 
structures and architecture

● Maybe if more people understood the power of FOL 
ATP, more would use it – create a simple example 
FOL ATP for education



  

Process
● Stephan Schulz is the developer of Eprover

– One of the top performing FOL provers in the yearly CASC 
competitions for decades

● Stephan wrote PyRes – FOL ATP in Python while I 
“shadowed” him, asking for explanations and writing the 
same algorithms in Java – JavaRes

● Goal – explain ATP from a programmer’s perspective, not a 
logician’s



  

What was hard?
● One of the CNF algorithms

– Need examples for each step
– Distinction between literals and clauses makes things more complicated

● Integration testing
– Needed to develop a small and fast set of problems

● Heuristics and optimizations
– Needed more examples

● Result – lots more unit and integration tests



  

The Core Algorithms



  

Resolution Theorem Proving
● a | ~b | ~c 
● ~a | d 
● ~b | ~c | d 

“a or not b or not c” is true



  

Clausification
● FOL has and, or, not, exists, forall, implies, iff, equals
● Conjunctive Normal Form (CNF) has and, or, not, equals

– Relatively flat structure – a set of clauses, where a clause is a set 
of literals

● Simpler to write a prover with fewer operators
● “classical” algorithm described in Russel&Norvig AIMA

– And also SmallCNF from (Nonnengart&Weidenbach, 2001)
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Another Algorithm: Factoring

● g(X) | f(X) | g(a)
● Unifying the first and third literal yields the 

substitution
● {X→a}
● Return f(a) | g(a)

   c|a|b
----------       where sigma = mgu(a,b)
sigma(c|a)
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equal constants unify
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Extensions
● We have choices about which clause, literal or term 

to attempt to resolve in various steps - selection
– This choice can be optimized

● Removing clauses that are redundant can reduce the 
search space – subsumption

● We can optimize how we find the next thing to try - 
indexing



  

New Architecture
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● Backtrack substitution
● HeuristicClauseSet

– EvalStructure
– ClauseEvaluationFunction

● FIFOEvaluation, SymbolCountEvaluation

● ProofState – displays proofs
● IndexedClauseSet – index by 

predicate name and whether negated



  

HeuristicClauseSet
● Backtrack substitution
● HeuristicClauseSet

– EvalStructure
– ClauseEvaluationFunction

● FIFOEvaluation, SymbolCountEvaluation



  

SymbolCountEvaluation
● termWeight(f(a,b), 1, 1) = 3  - three symbols, weight of 1 = 1*3=3

● termWeight(f(a,b), 2, 1) = 6  - three symbols, weight of 2 = 2*3=6

● termWeight(X, 2, 1)      = 1  - one variable with a weight of one = 1

● termWeight(g(a), 3, 1)   = 6  - two symbols with a weight of 3 = 6

● We use function weight of 2, variable weight of 1



  

Literal Selection
● FIRST just leaves the literals in the order they appear in the clause
● SMALLEST sorts literals by their weight (see 10 above)
● LARGEST sorts literals by their weight (see 10 above) but in the 

opposite order from SMALLEST
● LEASTVARS sorts by the number of variables in the literal
● EQLEASTVARS sorts by whether a literal is a pure equality 

statement between variables (such as X=Y) and then by the literal 
with the smallest number of variables



  

Indexing
● Given

– p(a, X) | p(X, a))
– ~p(a, b) | p(f(Y), a))

● Positive
– p -> { {p(a, X) | p(X, a)), {0,1}},
–        { {~p(a, b) | p(f(Y), a))}, {1}}

● Negative
– p -> { {~p(a, b) | p(f(Y), a))}, {0}}



  

Equality Axioms
● Reflexivity:  ![X]:X=X
● Symmetry:     ![X,Y]:(X=Y -> Y=X)
● Transitivity: ![X,Y,Z]:((X=Y & Y=Z) -> X=Z)



  

Equality Axioms
● Given functions f and a and predicate p
● cnf(funcompat0,plain,~X1=Y1|~X2=Y2|~X3=Y3|

f(X1,X2,X3)=f(Y1,Y2,Y3)).
● cnf(predcompat1,plain,~X1=Y1|~X2=Y2|~X3=Y3|~X4=Y4|

~X5=Y5|~p(X1,X2,X3,X4,X5)|p(Y1,Y2,Y3,Y4,Y5)).
● [cnf(funcompat2,plain,~X1=Y1|~X2=Y2|f(X1,X2)=f(Y1,Y2))., 

cnf(predcompat3,plain,~X1=Y1|~X2=Y2|~X3=Y3|
~p(X1,X2,X3)|p(Y1,Y2,Y3)).]



  

Metrics and Validation
● TPTP problem set – the yearly ATP competition

Number of problems
answered correctly,
by category
(16094 total problems)



  

Size and Effort
● About three months of full-time effort in done in two chunks, for 

JavaRes
● JavaRes adds another CNF module, SinE axiom selection 

algorithm, proof graph generation etc
● JavaRes is 19,334 total lines of code, versus 8553 lines for 

PyRes (including comments, docstrings, and unit tests). 
● actual production code, there are 7508 lines of effective code 

for JavaRes and only 3681 lines of effective code in PyRes



  

Conclusion
● It’s feasible for a novice to ATP (but experienced in FOL) to 

write an ATP system using PyRes as a model
● It performs pretty well, although not compared to the best FOL 

ATP systems
● It lacks superposition calculus for equality handling, which 

should make a big difference – maybe that’s our next effort
● Faster languages help – C++ would likely be better than Java 

or Python



  

Thanks Stephan!



  

Links
● https://www.ontologyportal.org
● https://github.com/ontologyportal

– https://github.com/ontologyportal/JavaRes
– https://github.com/eprover/PyRes

● https://www.youtube.com/user/peaseadam
● Schulz, S., Pease, A., (2020). Teaching Automated Theorem Proving by Example: 

PyRes 1.2 (system description). Proc. of IJCAR-2020: Vol. 12167, Lecture Notes 
in Computer Science, Springer. https://adampease.org

● Pease, A., Schulz, S., (2021). Learning Automated Theorem Proving from an 
Example: JavaRes, ThEdu workshop at CADE-21.

https://www.ontologyportal.org/
https://github.com/ontologyportal
https://github.com/ontologyportal/JavaRes
https://github.com/eprover/PyRes
https://www.youtube.com/user/peaseadam
https://adampease.org/
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