
  

Learning Theorem Proving by 
Example

— Implementing JavaRes

Adam Pease
Articulate Software
apease@articulatesoftware.com

Stephan Schulz
DHBW Stuttgart
schulz@eprover.org

Talk for ThEdu
July 11, 2021



  

Overview
● Motivation 
● Algorithms
● Architecture and Data Structures
● Conclusion



  

What is this?
● We know some things about the world
● Encode that knowledge in logic
● Run a theorem prover to answer questions



  

Why First Order Logic
● Anything less than that leaves too much knowledge implicit and not accessible 

to computation
– Explanation, validation, GDPR etc

● In one study of ~7500 sentences from Brown Corpus and COCA, ~45% 
required at least FOL

● Sound – can’t derive something false from true premises
● Complete – will find an answer at least in infinite time

– But FOL isn’t decidable – not guaranteed to terminate in finite time – oh well….
– but a typical case with modern provers is answers in under a second, even with large 

theories



  

Why Automated Theorem Proving?
● Definitions fix shared meaning of terms
● Large numbers of definitions are impractical to check by 

hand for consistency – “dictionary for computers to read”
● Question answering with explanation of deductions is 

potentially very powerful
● I have a big theory – Suggested Upper Merged Ontology 

(SUMO)– and I want to do practical computation with it



  

Why Another Prover?
● Understanding ATP is hard (at least it was for me)
● Barrier to entry is high – papers and textbooks on 

ATP have lots of math, and not a lot on data 
structures and architecture

● Maybe if more people understood the power of FOL 
ATP, more would use it – create a simple example 
FOL ATP for education



  

Process
● Stephan Schulz is the developer of Eprover

– One of the top performing FOL provers in the yearly CASC 
competitions for decades

● Stephan wrote PyRes – FOL ATP in Python while I 
“shadowed” him, asking for explanations and writing the 
same algorithms in Java – JavaRes

● Goal – explain ATP from a programmer’s perspective, not a 
logician’s



  

What was hard?
● One of the CNF algorithms

– Need examples for each step
– Distinction between literals and clauses makes things more complicated

● Integration testing
– Needed to develop a small and fast set of problems

● Heuristics and optimizations
– Needed more examples

● Result – lots more unit and integration tests



  

The Core Algorithms



  

Resolution Theorem Proving
● a | ~b | ~c 
● ~a | d 
● ~b | ~c | d 

“a or not b or not c” is true



  

Clausification
● FOL has and, or, not, exists, forall, implies, iff, equals
● Conjunctive Normal Form (CNF) has and, or, not, equals

– Relatively flat structure – a set of clauses, where a clause is a set 
of literals

● Simpler to write a prover with fewer operators
● “classical” algorithm described in Russel&Norvig AIMA

– And also SmallCNF from (Nonnengart&Weidenbach, 2001)



  

Clause

ClauseSet

SimpleProofState

Literal

Substitutions

apply() 
 applyList() 

 composeBinding() 
 freshVarSubst()

Prover1

ResControl

computeAllFactors() 
 computeAllResolvants()

Resolution

resolution() 
 factor()

Unification

mgu()

Term

Simple Architecture

calls contained



  

Clause

ClauseSet

SimpleProofState

Literal

Substitutions

apply() 
 applyList() 

 composeBinding() 
 freshVarSubst()

Prover1

ResControl

computeAllFactors() 
 computeAllResolvants()

Resolution

resolution() 
 factor()

Unification

mgu()

Term

Term

a     – a constant
?A   – a variable
governmentFn(unitedStates) – a functional term

calls contained



  

Clause

ClauseSet

SimpleProofState

Literal

Substitutions

apply() 
 applyList() 

 composeBinding() 
 freshVarSubst()

Prover1

ResControl

computeAllFactors() 
 computeAllResolvants()

Resolution

resolution() 
 factor()

Unification

mgu()

Term

Literal

instance(koko, gorilla) 
memberSize(governmentFn(unitedStates),1000000)
~likes(mary,bill)

Literals have truth values, terms denote something and 
don’t have a truth value

calls contained



  

Clause

ClauseSet

SimpleProofState

Literal

Substitutions

apply() 
 applyList() 

 composeBinding() 
 freshVarSubst()

Prover1

ResControl

computeAllFactors() 
 computeAllResolvants()

Resolution

resolution() 
 factor()

Unification

mgu()

Term

Clause

~likes(A,B) | likes(B,A)

A disjunction of (possibly negated) literals

calls contained



  

Clause

ClauseSet

SimpleProofState

Literal

Substitutions

apply() 
 applyList() 

 composeBinding() 
 freshVarSubst()

Prover1

ResControl

computeAllFactors() 
 computeAllResolvants()

Resolution

resolution() 
 factor()

Unification

mgu()

Term

ClauseSet

A set of clauses
Implicitly a conjunction

calls contained



  

Clause

ClauseSet

SimpleProofState

Literal

Substitutions

apply() 
 applyList() 

 composeBinding() 
 freshVarSubst()

Prover1

ResControl

computeAllFactors() 
 computeAllResolvants()

Resolution

resolution() 
 factor()

Unification

mgu()

Term

Prover1

Just initialize a proof state and start it

calls contained



  

Another Algorithm: Factoring

● g(X) | f(X) | g(a)
● Unifying the first and third literal yields the 

substitution
● {X→a}
● Return f(a) | g(a)

   c|a|b
----------       where sigma = mgu(a,b)
sigma(c|a)



  

Clause

ClauseSet

SimpleProofState

Literal

Substitutions

apply() 
 applyList() 

 composeBinding() 
 freshVarSubst()

Prover1

ResControl

computeAllFactors() 
 computeAllResolvants()

Resolution

resolution() 
 factor()

Unification

mgu()

Term

SimpleProofState

Iteration
  Picks a clause from the unprocessed list
    Call Compute factors
    Call Compute resolvants

calls contained



  

Clause

ClauseSet

SimpleProofState

Literal

Substitutions

apply() 
 applyList() 

 composeBinding() 
 freshVarSubst()

Prover1

ResControl

computeAllFactors() 
 computeAllResolvants()

Resolution

resolution() 
 factor()

Unification

mgu()

Term

ResControl

Compute all factors for a given clause
check all pairs of literals

Compute all resolvants for a given clause and clause set
check all literals in the given clause against all
   clauses in the clause set

calls contained



  

Clause

ClauseSet

SimpleProofState

Literal

Substitutions

apply() 
 applyList() 

 composeBinding() 
 freshVarSubst()

Prover1

ResControl

computeAllFactors() 
 computeAllResolvants()

Resolution

resolution() 
 factor()

Unification

mgu()

Term

Resolution

Compute factors for a given clause of a given pair of literals
Compute resolvant for a given pair of clauses and literals

calls contained



  

Clause

ClauseSet

SimpleProofState

Literal

Substitutions

apply() 
 applyList() 

 composeBinding() 
 freshVarSubst()

Prover1

ResControl

computeAllFactors() 
 computeAllResolvants()

Resolution

resolution() 
 factor()

Unification

mgu()

Term

Unification

Compare two terms (iterating over their sub-terms)
equal constants unify
a variable unifies with a constant or a sub-term or variable
apply substitution to the entire term upon unifying 

     a sub-term

calls contained



  

Clause

ClauseSet

SimpleProofState

Literal

Substitutions

apply() 
 applyList() 

 composeBinding() 
 freshVarSubst()

Prover1

ResControl

computeAllFactors() 
 computeAllResolvants()

Resolution

resolution() 
 factor()

Unification

mgu()

Term

Substitutions

Apply a substitution set to a term or list of terms
Compose two sets of substitutions
Rename variables

(variables have scope of a single clause)

calls contained



  

Extensions
● We have choices about which clause, literal or term 

to attempt to resolve in various steps - selection
– This choice can be optimized

● Removing clauses that are redundant can reduce the 
search space – subsumption

● We can optimize how we find the next thing to try - 
indexing



  

New Architecture
BacktrackSubstitution

backtrack() 
 backtractToState() 

 addBinding() 
 match

Substitutions

apply() 
 applyList() 

 composeBinding() 
 freshVarSubst()

Clause

ClauseSet

ClauseEvaluationFunction

hEval()

EvalStructure

evaluate() 
 nextEval()

ProofState

processClause() 
 saturate()

SimpleProofState

HeuristicClauseSet

addClause() 
 extractBest 

 extractBestByEval

FIFOEvaluation

Literal

ResControl

computeAllFactors() 
 computeAllResolvants()

Subsumption

subsumeLitLists() 
 subsumes() 

 backwardSubsumption() 
 forwardSubsumption()

Prover1

Prover2

Resolution

resolution() 
 factor()

Unification

mgu()

SymbolCountEvaluation

Term

● Backtrack substitution
● HeuristicClauseSet

– EvalStructure
– ClauseEvaluationFunction

● FIFOEvaluation, SymbolCountEvaluation

● ProofState – displays proofs
● IndexedClauseSet – index by 

predicate name and whether negated



  

HeuristicClauseSet
● Backtrack substitution
● HeuristicClauseSet

– EvalStructure
– ClauseEvaluationFunction

● FIFOEvaluation, SymbolCountEvaluation



  

SymbolCountEvaluation
● termWeight(f(a,b), 1, 1) = 3  - three symbols, weight of 1 = 1*3=3

● termWeight(f(a,b), 2, 1) = 6  - three symbols, weight of 2 = 2*3=6

● termWeight(X, 2, 1)      = 1  - one variable with a weight of one = 1

● termWeight(g(a), 3, 1)   = 6  - two symbols with a weight of 3 = 6

● We use function weight of 2, variable weight of 1



  

Literal Selection
● FIRST just leaves the literals in the order they appear in the clause
● SMALLEST sorts literals by their weight (see 10 above)
● LARGEST sorts literals by their weight (see 10 above) but in the 

opposite order from SMALLEST
● LEASTVARS sorts by the number of variables in the literal
● EQLEASTVARS sorts by whether a literal is a pure equality 

statement between variables (such as X=Y) and then by the literal 
with the smallest number of variables



  

Indexing
● Given

– p(a, X) | p(X, a))
– ~p(a, b) | p(f(Y), a))

● Positive
– p -> { {p(a, X) | p(X, a)), {0,1}},
–        { {~p(a, b) | p(f(Y), a))}, {1}}

● Negative
– p -> { {~p(a, b) | p(f(Y), a))}, {0}}



  

Equality Axioms
● Reflexivity:  ![X]:X=X
● Symmetry:     ![X,Y]:(X=Y -> Y=X)
● Transitivity: ![X,Y,Z]:((X=Y & Y=Z) -> X=Z)



  

Equality Axioms
● Given functions f and a and predicate p
● cnf(funcompat0,plain,~X1=Y1|~X2=Y2|~X3=Y3|

f(X1,X2,X3)=f(Y1,Y2,Y3)).
● cnf(predcompat1,plain,~X1=Y1|~X2=Y2|~X3=Y3|~X4=Y4|

~X5=Y5|~p(X1,X2,X3,X4,X5)|p(Y1,Y2,Y3,Y4,Y5)).
● [cnf(funcompat2,plain,~X1=Y1|~X2=Y2|f(X1,X2)=f(Y1,Y2))., 

cnf(predcompat3,plain,~X1=Y1|~X2=Y2|~X3=Y3|
~p(X1,X2,X3)|p(Y1,Y2,Y3)).]



  

Metrics and Validation
● TPTP problem set – the yearly ATP competition

Number of problems
answered correctly,
by category
(16094 total problems)



  

Size and Effort
● About three months of full-time effort in done in two chunks, for 

JavaRes
● JavaRes adds another CNF module, SinE axiom selection 

algorithm, proof graph generation etc
● JavaRes is 19,334 total lines of code, versus 8553 lines for 

PyRes (including comments, docstrings, and unit tests). 
● actual production code, there are 7508 lines of effective code 

for JavaRes and only 3681 lines of effective code in PyRes



  

Conclusion
● It’s feasible for a novice to ATP (but experienced in FOL) to 

write an ATP system using PyRes as a model
● It performs pretty well, although not compared to the best FOL 

ATP systems
● It lacks superposition calculus for equality handling, which 

should make a big difference – maybe that’s our next effort
● Faster languages help – C++ would likely be better than Java 

or Python



  

Thanks Stephan!



  

Links
● https://www.ontologyportal.org
● https://github.com/ontologyportal

– https://github.com/ontologyportal/JavaRes
– https://github.com/eprover/PyRes

● https://www.youtube.com/user/peaseadam
● Schulz, S., Pease, A., (2020). Teaching Automated Theorem Proving by Example: 

PyRes 1.2 (system description). Proc. of IJCAR-2020: Vol. 12167, Lecture Notes 
in Computer Science, Springer. https://adampease.org

● Pease, A., Schulz, S., (2021). Learning Automated Theorem Proving from an 
Example: JavaRes, ThEdu workshop at CADE-21.

https://www.ontologyportal.org/
https://github.com/ontologyportal
https://github.com/ontologyportal/JavaRes
https://github.com/eprover/PyRes
https://www.youtube.com/user/peaseadam
https://adampease.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

