

Towards next-step guidance in triangle construction problems

Vesna Marinković, Filip Marić

Faculty of Mathematics, University of Belgrade, Serbia

ThEdu'21 11.7.2021.

Solving of construction problems in geometry

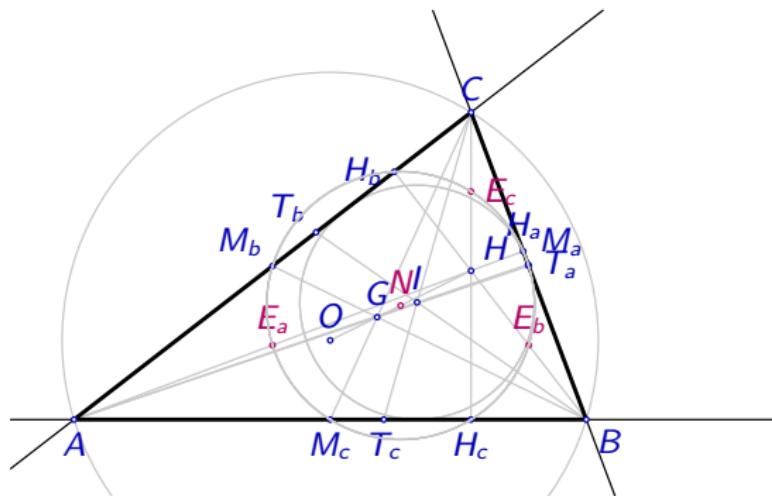
- ▶ One of the most studied problems in mathematical education
- ▶ **Task:** to describe a construction of geometrical figure which satisfies given set of constraints
"construct $\triangle ABC$ given α, β and $|AB|$ "
- ▶ Constructions are **procedures**
- ▶ Some instances are unsolvable (e.g. angle trisection)

Constructions using straightedge and compass

- ▶ **Tools:** straightedge and compass
- ▶ **Elementary steps:**
 - ▶ construction of an arbitrary point
 - ▶ construction of a line through two given points
 - ▶ construction of a circle centered at given point passing through another point
 - ▶ construction of an intersection of two circles, two lines, or a line and a circle
- ▶ We usually use **compound construction steps**
- ▶ The main problem in solving:
combinatorial explosion – huge search space

Motivating example

Problem: *Construct a triangle ABC given vertices A and B and a centroid G*


Solution: A, B, G

Overview of the goals

- ▶ systematization of the knowledge needed for solving one class of construction problems
- ▶ system for automated solving of location construction problems from the given corpus (ArgoTriCS, authors: V. Marinković, P. Janičić)
- ▶ adjusting the solver for usage in education is the subject of current work

Corpora of construction problems

- ▶ Wernick's corpus (1982)
- ▶ Connelly's corpus (2009), an extension of Wernick's corpus
- ▶ Task: construct triangle ABC if locations of three significant points in the triangle are given

Corpora of construction problems (2)

Wernick's corpus: in total $\binom{16}{3} = 560$ instances, 139 non-trivial, significantly different problems; 3 redundant (R); 23 locus dependent (L); 74 solvable (S); 39 unsolvable (U)

1. A, B, O	L, A, T_a, T_b \cap, T_a, T_b	S [9]	85. M_a, M_b, H_a S	113. M_a, T_b, T_c
2. A, B, M_a	S	S [9]	86. M_a, M_b, H_a S	114. M_a, T_b, I U [9]
3. A, B, M_c	R	S [9]	87. M_a, M_b, H S	115. G, H_a, H_b U [9]
4. A, B, G	S	S [9]	88. M_a, M_b, T_a U [9]	116. G, H_a, H S
5. A, B, H_a	L	S [9]	89. M_a, M_b, T_c U [9]	117. G, H_a, T_a S
6. A, B, H_c	L	S [9]	90. M_a, M_b, I U [10]	118. G, H_a, T_b
7. A, B, H	S	S [9]	91. M_a, G, H_a L	119. G, H_a, I
8. A, B, T_a	S	S [9]	92. M_a, G, H_b S	120. G, H, T_a U [9]
9. A, B, T_c	S	S [9]	93. M_a, G, H S	121. G, H, I U [9]
25. A, T_a, T_b	R	S [9]	94. M_a, G, T_a S	122. G, T_a, T_b
26. A, M_a, I	R	S [9]	95. M_a, G, T_b U [9]	123. G, T_a, I
27. A, M_a, I S [9]	R	S [9]	96. M_a, G, I S [9]	124. H_a, H_b, H S
28. A, M_b, M_c S	R	S [9]	97. M_a, H_a, H_b S	125. H_a, H_b, H S
			98. M_a, H_a, H L	126. H_a, H_b, T_a S
			99. M_a, H_a, T_a L	127. H_a, H_b, T_c
			100. M_a, H_a, T_b U [9]	128. H_a, H_b, I
			101. M_a, H_a, I S	129. H_a, H, T_a L
			102. M_a, H_b, H_c L	130. H_a, H, T_b U [9]
			103. M_a, H_b, H S	131. H_a, H, I S [9]
			104. M_a, H_b, T_a S	132. H_a, T_a, T_b
			105. M_a, H_b, T_b S	133. H_a, T_a, I S
			106. M_a, H_b, T_c U [9]	134. H_a, T_b, T_c
			107. M_a, H_b, I U [9]	135. H_a, T_b, I
			108. M_a, H, T_a U [9]	136. H, T_a, T_b
			109. M_a, H, T_b U [10]	137. H, T_a, I
			110. M_a, H, I U [10]	138. T_a, T_b, T_c U [11]
			111. M_a, T_a, T_b U [10]	139. T_a, T_b, I S
			112. M_a, T_a, I S	

Connelly's corpus: 580 new instances, 140 significantly different problems; 5 R; 19 L; 74 S; 42 U

Knowledge representation

Motivating example: Construct the midpoint M_c of the segment AB , and then construct a point C such that it holds $\overrightarrow{M_cC}/\overrightarrow{M_cG} = 3$ uses following knowledge:

- ▶ M_c is the midpoint of the segment AB (definition of the point M_c)
- ▶ G is the centroid of the triangle ABC (definition of the point G)
- ▶ it holds: $\overrightarrow{M_cG} = 1/3\overrightarrow{M_cC}$ (lemma)
- ▶ given points X and Y , one can construct the midpoint of the segment XY (primitive construction)
- ▶ given points X and Y , one can construct a point Z , such that it holds: $\overrightarrow{XZ}/\overrightarrow{XY} = m/n$, for integers m, n (primitive construction)

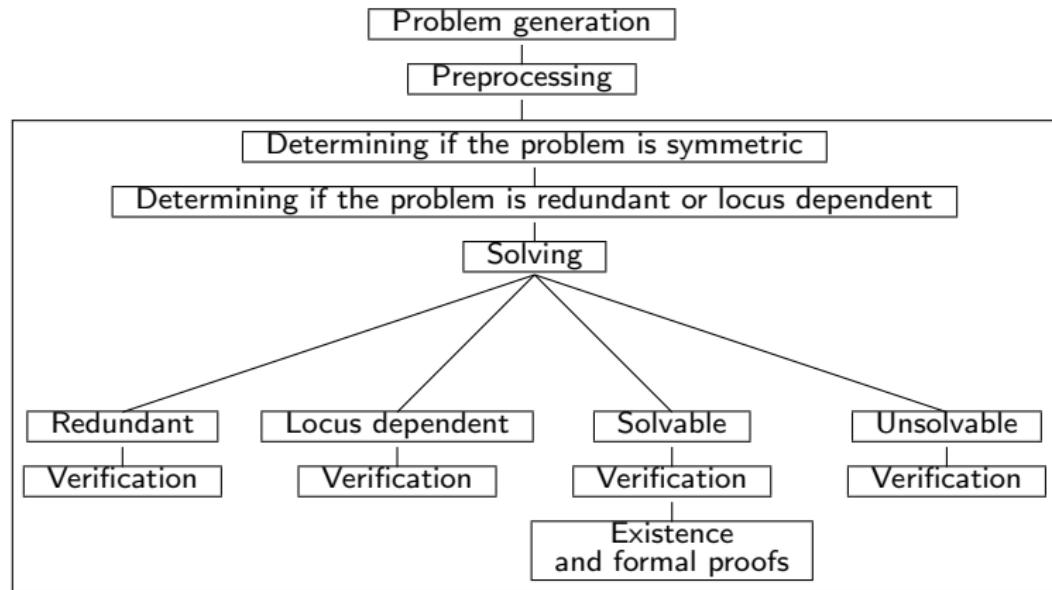
Definitions

- ▶ Instantiated definitions:
 - ▶ Centroid G is the intersection point of medians t_b and t_c
 - ▶ Points N_a , N_b , and N_c are intersection points of circumcircle with internal angle bisectors
 - ▶ Perpendicular bisectors of triangle m_a , m_b , and m_c are lines perpendicular to lines BC , AC , and AB and incident to side midpoints M_a , M_b , and M_c
- ▶ General definitions:
 - ▶ $\mathcal{C}(X, Y)$ is the circle centered at X passing through Y
 - ▶ $I(X, Y)$ is the line passing through points X and Y

Lemmas

► Instantiated lemmas:

- G belongs to median t_a
- A and B belongs to the circle $\mathcal{C}(O, C)$
- N_a, N_b , and N_c belong to bisectors of sides AB, BC, AC
- $\overrightarrow{AG}/\overrightarrow{AM_a} = 2/3$
- H, G , and O are collinear and it holds: $\overrightarrow{HG}/\overrightarrow{HO} = 2/3$
- altitudes of $\triangle ABC$ are internal angle bisectors of $\triangle H_aH_bH_c$


► General lemmas:

- the center of an arbitrary circle belongs to the perpendicular bisector of its arbitrary chord
- $\overrightarrow{XY}/\overrightarrow{ZW} = r \implies \overrightarrow{ZW}/\overrightarrow{XY} = 1/r$

Primitive constructions

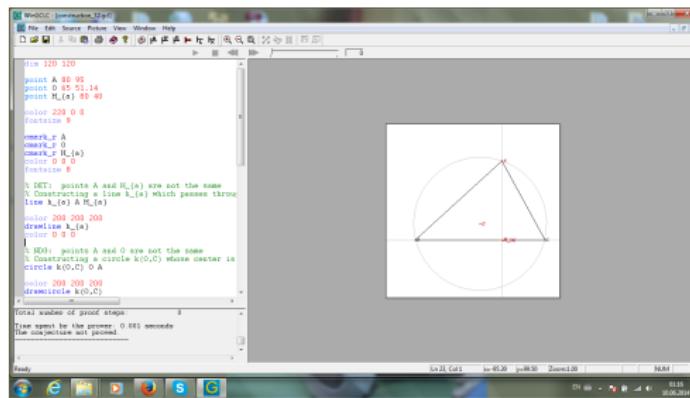
- ▶ Given in an **uninstantiated** form
- ▶ Accompanied by a set of **NDG conditions** and **DET conditions**
 1. Given points X and Y one can construct a line XY
 2. Given two distinct points X and Y one can construct a circle $\mathcal{C}(X, Y)$ centered at X which passes through Y
 3. Given a point X and a line p one can construct a line q which passes through X and which is perpendicular to p
 4. Given points X and Y one can construct perpendicular bisector of the segment \overline{XY}
 5. Given points X and Y one can construct a circle with diameter \overline{XY}
 6. Given points X , Z , and W , and a rational number r one can construct a point Y for which holds: $\frac{\overrightarrow{XY}}{\overrightarrow{ZW}} = r$

Algorithm

Algorithm - solving phase

- ▶ search starts from the objects given and stops once all vertices are constructed or no more applicable primitive construction
- ▶ **iterative procedure** with **forward chaining**
- ▶ primitive constructions are applied in a **waterfall manner**
- ▶ objects that can be constructed are only **relevant** ones
- ▶ definitions and lemmas guide the search process
- ▶ **early pruning** of inapplicable primitive constructions

Construction in natural language form and in GCLC


Problem 32: Given points A , O , and H_a construct the triangle ABC .

Construction:

1. Construct the line h_a through points A and H_a ;
2. Construct the circle $\mathcal{C}(O, C)$ with center at point O passing through point A ;
3. Construct the perpendicular a to line h_a through point H_a ;
4. Construct the intersection points C and B of circle $\mathcal{C}(O, C)$ and line a .

NDG conditions: line a and circle $C(O, C)$ intersect; A and O are not the same.

Determination conditions: points A and H_a are not the same.

Different solutions

- ▶ Order in which background knowledge is given sometimes make the difference
- ▶ Sometimes for symmetric problems different, non-symmetric solutions are generated

Next step guidance

Work in progress

Aim

Help student once he gets stuck and does not know how to proceed with the construction

How to help:

- ▶ suggest the next construction step
- ▶ suggest an object (point, line, circle) that should be constructed
- ▶ suggest a lemma that the construction relies on

Target construction

- ▶ There can be many possible constructions for the same problem
- ▶ Example: *A, B, H*
 - ▶ *A, B, H* - solution 1
 - ▶ *A, B, H* - solution 2
 - ▶ *A, B, H* - solution 3
- ▶ Next step guidance assumes that we select one **target construction**

Partial construction

- ▶ The target construction should extend the partial construction given by the student
- ▶ Example: partial construction for A, B, H
 - ▶ A, B, H - partial construction

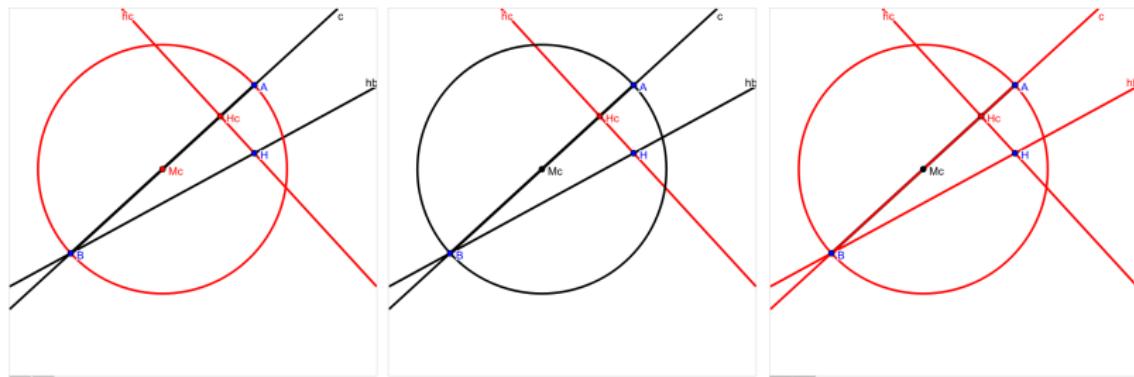
Select target from the list of all available constructions

- ▶ How to choose the target construction that should be used for suggestions?
- ▶ ArgoTriCS can find several possible constructions (in advance) and they can all be compared to the partial construction
- ▶ The construction that is “**the most adequate**” for the partial construction is chosen for the target construction

Comparing constructions

- ▶ How to compare constructions and choose the one that is “the most adequate”?
 - ▶ the number of shared (*important*) objects should be maximized
 - ▶ the number of (*important*) objects from the partial construction that are not used in the target construction should be minimized
 - ▶ the number of construction steps that can immediately be applied should be maximized
 - ▶ the number of remaining construction steps should be minimized

Comparing constructions: example


Example: A, B, H

- ▶ Comparing partial construction with three available solutions
- ▶ **Blue** - already constructed objects
- ▶ **Red** - objects that can be constructed next

Comparing constructions: example

Example: A , B , H

- ▶ Comparing partial construction with three available solutions
- ▶ **Red** - objects that would be unused

Comparing constructions: example

Example: A, B, H

	Shared objects	Unused objects	Available steps	Remaining steps
Construction 1	2	4	2	6
Construction 2	4	2	2	8
Construction 3	2	5	2	11

Construction 2 should be chosen as the target construction!

Restarting the solver

- ▶ **Alternative approach:** restart ArgoTriCS given all the objects constructed by the partial construction
- ▶ Modify the search heuristics so that it prioritizes construction steps that use more input objects

Target construction – resolving ambiguity

- ▶ What if there is no partial construction or if more than one target construction matches the partial construction?
- ▶ How to choose the target construction that should be suggested in that case?
- ▶ choose **the simplest** construction
 - ▶ constructions with the least construction steps
 - ▶ constructions that use simpler construction steps
 - ▶ constructions that use simpler (well-known) lemmas
 - ▶ a simplicity measure can combine all those criteria

Target construction – resolving ambiguity

If no partial construction is given

- ▶ A, B, H – choose **construction 1**
- ▶ A, B, T_a – choose **construction 1** over **construction 2** (it is longer, but uses simpler construction steps)

Suggestions

- ▶ Once the target construction is fixed, what should be suggested?
 - ▶ the next construction step
 - ▶ an important auxiliary object (point, line, circle)
 - ▶ an important lemma used in construction correctness proof

Suggesting the next construction step

- ▶ this strategy is simplest to implement
- ▶ suggest the first available step in the target construction that is not already present in the partial construction
- ▶ suggest an available step in the target construction that opens the most possibilities for the next step

Suggesting an important auxiliary object

- ▶ How to estimate the importance of an object?
 - ▶ prioritize "well-known" objects
 - ▶ A, B, C
 - ▶ I, O, G, H
 - ▶ $M_a, M_b, M_c, H_a, H_b, H_c, T_a, T_b, T_c, P_a, P_b, P_c$
 - ▶ perpendicular bisector, angle bisector, median, altitude
 - ▶ incircle, circumcircle
 - ▶ Euler line, Euler circle, ...
 - ▶ prioritize objects that are “close” to the the partial construction i.e. that require only a few construction steps
 - ▶ prioritize objects constructable using simple construction steps, relying on simple lemmas
 - ▶ prioritize unusual objects, rarely used and occurring only in specific lemmas
 - ▶ prioritize objects shared by the target construction and many other available solutions

Suggesting an important auxiliary object

- ▶ A, B, H - solution 2

Suggestion: “construct circle over segment AB “

- ▶ A, B, H - solution 3

Suggestion: “construct O , then construct G “

- ▶ A, I, O - solution 1

Suggestion: “construct N_b and N_c “

- ▶ A, Mb, H - solution 3

Suggestion: “construct altitude midpoints H'_a , H'_c , then altitude feet H_a , H_c “

- ▶ A, Mb, I - solution 2

Suggestion: “construct P_a , P_b , P_c “

Suggesting an important lemma

- ▶ suggest lemmas that are used in the construction, but are not well-known and contain more advanced geometric knowledge
- ▶ suggest non-trivial lemmas that are applied several times in the target construction

Suggesting an important lemma

- ▶ A, B, H - solution 1
“altitudes are orthogonal to triangle sides ($h_a \perp a$, $h_b \perp b$)”.
- ▶ A, B, H - solution 2
“altitude feet are incident to circle over a triangle side
($H_a \in \mathcal{C}_{AB}$, $H_b \in \mathcal{C}_{AB}$)”.
- ▶ A, M_b, T_a - solution 1
“Triangle sides are symmetric wrt. the angle bisector
($sym_{s_a}(b, c)$)”.
- ▶ A, M_b, T_a - solution 2
“Altitude from A and line that connects A and circumcenter
 O are symmetric over angle bisector at A ($sym_{s_a}(h_a, OA)$)”.

DG.js - a JavaScript library for dynamic visualization

- ▶ DG.js
- ▶ construction is specified as a linear program in JavaScript

Constructions are linear programs

A, B, H - solution 1

```
A = point(80, 95).color("blue").label("A");
B = point(20, 40).color("blue").label("B");
H = point(80, 72.73).color("blue").label("H");

AB = segment(A, B).color("red").width(2);

ha = line(A, H).color("magenta").label("ha");
hb = line(B, H).color("magenta").label("hb");
a = drop_perp(ha, B).color("red").label("a");
b = drop_perp(hb, A).color("red").label("b");
C = intersectLL(a, b).color("red").label("C");

AC = segment(A, C).color("red").width(2);
BC = segment(B, C).color("red").width(2);
```

Construction steps are defined as functions

```
function median(A, B) {  
    c1 = circle(A, B); c2 = circle(B, A);  
    [M1, M2] = intersectCC(c1, c2).both();  
    return line(M1, M2);  
}  
  
function midpoint(A, B) {  
    return intersectLL(line(A, B), median(A, B));  
}
```

Predicates

- ▶ **Predicates** are used to select objects and enable branching constructions.

Example: Constraining random points

```
function drop_perpendicular(A, 1) {  
    B = l.randomPoint(B => B != A);  
    c = circle(A, B);  
    [X1, X2] = intersectCL(c, 1);  
    return median(X1, X2);  
}
```

Example: choosing intersection points

the point within the Poincaré disc is always chosen

```
abs = circle(0, I); // absolute of the Poincare disc  
X = intersectCC(l1, l2).select(P => abs.inDisc(P));
```

Checking construction correctness

- ▶ A precise construction specification enables checking correctness of a construction
- ▶ A preliminary work towards this goal has been made in Marinković's PhD thesis
- ▶ Link to algebraic provers
- ▶ Link to interactive theorem provers (e.g., Isabelle/HOL)

Conclusions

- ▶ ArgoTriCS – a system for automated triangle constructions
- ▶ Next-step guidance feature under way (hope to have it fully available by the end of this summer)
- ▶ DG.js – a lightweight JavaScript library for dynamic visualisation of geometric constructions
- ▶ Link to algebraic and interactive theorem provers