Teaching Intuitionistic Propositional Logic Using Isabelle

Jorgen Villadsen!, Asta Halkjeer From®, and Patrick Blackburn?

! Technical University of Denmark, Kongens Lyngby, Denmark
* Roskilde University, Roskilde, Denmark

Abstract

We describe a formalization of intuitionistic propositional logic in the Isabelle/Pure
framework. In contrast to earlier work (where we explored the pedagogical benefits of
using a deep embedding approach to logical modelling) here we employ a simpler azxiomatic
instance modelling. This gives rise to simple and natural teaching examples and we report
on the role it played in teaching our Automated Reasoning course in 2020 and 2021.

A step towards first-order logic, higher-order logic & classical logic

Adding excluded middle p v = p changes “the game” a lot... :-)

New course on automated reasoning
50+ master students in 2020 & 2021

Many with international bachelor

How to teach Isabelle/HOL?

Most do not have the prerequisites in logic
and functional programming (any language)

Focus:
Natural Deduction + The Isabelle/HOL Tutorial
(Programming and Proving in Isabelle/HOL)

NaDeA:

A Natural Deduction Assistant
with a Formalization Iin Isabelle

Jargen Villadsen, Asta Halkjeer From, Alexander Birch Jensen & Anders Schlichtkrull

Technical University of Denmark — DTU Compute

Natural Deduction Assistant (NaDeA)

Natural Deduction Assistant

1 Imp |l [JAAB—A
2 Con E1 [AABJA
3 Assume [AAB] AAB

(Load) (Code) (Help)

https://nadea.compute.dtu.dk/

Natural Deduction Assistant

1 q [] (VXR(X, x))—= (Vx.dy.R(x, y))

Boole X
Imp_E

Imp_|

Dis E

Con_E1

Con_E2

Exi_E

Natural Deduction Assistant

1 Imp_| [] (VX.R(X, X))—(VXx.dy.R(X%, y))
2 o [VX.R(X, x)] Vx.dy.R(X, y)

Boole X
Imp_E

Dis_E

Con_E1

Con_EZ2

Exi E

Uni_|

Natural Deduction Assistant

1 Imp_| [] (VX.R(X, X))—(VX.dy.R(X, y))
2 Uni_| [VX.R(X, X)] VX.dy.R(X, y)

3 o [VX.R(X, x)] dx.R(c', x)

4 * (c')

Natural Deduction Assistant

1 Imp_| [] (VX.R(X, X))—(VXx.dy.R(X%, y))
2 Uni_| [VX.R(X, x)] Vx.dy.R(X, y)

3 Exi_| [VX.R(X, x)] AX.R(c', x)

4 Uni_E [VX.R(X, x)] R(c', ¢')

9 Assume [VX.R(X, x)] VX.R(X, X)
6 : (c')

theorem "(VXx. r x x) — (Vx. 3y. r xy)" theorem "(Vx. r x x) — (Vx. 3y. r x y)"
proof proof (rule Imp_1I)
assume a: ""vx. r x x"' assume a: "vx. r x x"'
show "'V¥x. 3y. r x y" show "'V¥x. 3y. r x y"
proof proof (rule Uni_I)
fix c fix c
show "'3y. rcy" show ""3y. rcy"
proof proof (rule Exi_I)
show "'r c c" show "'r c c"
using a .. using a by (rule Uni_E)
ged ged
ged ged
ged ged

Natural Deduction Assistant

Names of natural deduction rules T Imp_t L] (vR(x X)) = (vx.3y.R(x, y))
. . Uni_| [VX.R(X, X)] ¥X.3y.R(X, y)
are omitted to the left for brevity

Exi_| [VX.R(X, x)] Ix.R(c', x)

2
3

(works unchanged in Isabelle/HOL) ;‘ uni_E [Vx.R(x,)] R(¢', ¢')
6

Assume [VX.R(X, X)] VX.R(X, X)
¥ (c")

Quote from reviewer:

The authors have chosen to systematically use the two periods .. to
omit the justification of the steps in a proof.

The pedagogical advantage of this seems obscure to me.

How does the automation of reasoning help students to understand
the inner structure of derivations produced within a given deductive
system?

Quite to the contrary, | would have thought that forcing students to
be explicit about the choices of rules would produce a more lasting
Impact on their proficiency as users of the given deductive system.

Would the authors convince me of the contrary?

Let us examine some examples. The proposition command is an alternative name for the
theorem command and we use it for student exercises and examples. There is no difference to
the system, only to the human reader.

proposition (p — — = p)
proof
assume (p)
show (= — p)
proof
assume (7 p)
from (— p) and (p) show (L) ..
qed
qed

Note the way the Isabelle/Pure code matches the way we would explain to students how they
should go about proving this in natural deduction. It essentially spells out a constructive process
for building the proof tree required — with the formula being proved if and only if such a proof
tree exists.

Here is a proof of modus tollens. Once again, note how Isabelle/Pure tracks the way a
teacher would explain to a beginner how to construct the relevant proof tree:

proposition (p — ¢) A= q¢ — = p)
proof
assume (p — q) A - @
show (= p)
proof
assume (p)
from (p — ¢q) A = ¢ have (p — ¢ ..
from (p — ¢ and (p) have (¢ ..
from (p — ¢q) A = ¢ have (= ¢ ..
from (— ¢) and (¢) show (L) ..
qed
qed

Here is a more complex example:

proposition (p «— ¢q) «— q <— p
proof
assume (p <— @)
show (¢ «<— p)
proof
from (p <— ¢ show (g — p) ..
next
from (p <— ¢ show (p = ¢ ..
qed
next
assume (q <— p)
show (p <— @
proof
from (¢ <— p)> show (p — ¢ ..
next
from (¢ «— p)> show (¢ — p) ..
qed
qed

Our work is based on the Pure/Examples by Makarius in the Isabelle Sources:
https://isabelle.in.tum.de/dist/library/Pure/Pure-Examples/document.pdf

That document, however, contains few comments and we have polished the formalization and
tested it in class. Our formalization is available online in various formats:

https://hol.compute.dtu.dk/Pure_I/
We have used our approach in our Automated Reasoning course in 2020 and 2021.

https://kurser.dtu.dk/course/02256

axiomatization Imp (infixr <—> 3)
where Imp I [intro]l: <(p = q) — p — Q>
and Imp E [elim]: <p — q — p — >

axiomatization Dis (infixr <V»> 4)
where Dis E [elim]: <p V q = (
and Dis I1 [intro]: <p = p V
and Dis I2 [intro]: <q = p V

P —= r) — (g = r) — nr»
q>
q>

axiomatization Con (infixr <A> 5)
where Con I [intro]: <p = q = p AN Q>
and Con E1 [elim]: <p A g = p>
and Con E2 [elim]: <p A q = Q>

axiomatization Falsity (<.L>)
where Falsity E [elim]: <L — p>»

definition Truth (<T>) where <T = 1 — 1>

theorem Truth I [intro]: <T>»
unfolding Truth def ..

definition Neg (<— > [6] 6) where <= p =p — 1>

theorem Neg I [intro]: <(p — 1) — - p>
unfolding Neg def ..

theorem Neg E [elim]: <= p — p = >
unfolding Neg def
proof -
assume <p — 1> and <p>
then have <1>
then show <«q>
ged

definition Iff (infixr <<—> 3) where <p «— q = (p — q) A (g — p)>

theorem Iff I [intro]: <(p = q) — (g = p) = p «— P
unfolding Iff def
proof -
assume <p — > and <q = p>
from <p — q> have <p — >
from <q — p> have <q — p>
from <p — q> and <q — p> show <«(p — q) A (g — p)>
qed

theorem Iff E1 [elim]: <p «— g — p — >
unfolding Iff def
proof -
assume <(p — q) A (g — p)>
then have <p — q»
then show <p — q»
qed

theorem Iff E2 [elim]: <p «— g — q — p>
unfolding Iff def
proof -
assume <(p — g) A (g — p)>
then have <q — p>»
then show <q — p>
qed

Beyond Propositional Logic:

Extensible to Intuitionistic Higher-Order Logic — Main Example

text <Cantor's Theorem: Every set has more subsets than members>

theorem Cantor: <= (df. Vs :: 'a = bool. dx :: 'a. s = f x)»
proof

assume <3df. Vs :: 'a = bool. dx :: 'a. s = f x>

then obtain f where <Vs :: 'a = bool. dx :: 'a. s = f x>

let 7D = <M x. = f x x>
from <Vs. dx. s = f x> have <dx. ?D = f x>
then obtain c where <?D = f c»
from subst [of ?D] and this and refl have <—- f ¢ ¢ «—— f ¢ c©»
with contr show 1 .
qed

Classical Logic from Extensionality and Choice (Epsilon Operator)

Actual 2021 Exam Problem — Peirce’s Law from Classical Propositional Logic

Weighted as 15 Minutes of the 2-Hour Exam

section <Question 4.1>

proposition <((p — q) — p) — p>
proof
assume <(p — q) — p>

show p

theorem Diaconescu: <p V = p»
proof (rule Boole)

\<proof>
assume <p — 1>
have <p — q» corollary classical: <(- p = p) = p>
proof \<proof>
aﬁsume P theorem Boole: <«(p — 1L = 1) = p>
with <p — 1> have L .. \<proof>
then show q
ged

with <(p — q) — p> have p ..
with <p — 1> show 1 ..
qed
qged

Conclusions

We presented a simple and direct way of teaching intuitionistic
propositional logic, namely by “axiomatizing” the Isabelle/Pure
system in the most direct way possible

The pedagogical benefits of this approach are summed up Iin the
words ‘simple’ and ‘natural’

The object and metalevel deductions mirror each other clearly —
and the way that teachers would typically instruct students to
construct proofs is directly reflected in the code the students learn
to write to get Isabelle to prove things

Thanks!

