

Automated Reasoning in the Sequent Calculus Trainer

A. Ehle, N. Hundeshagen, and M. Lange

Fachbereich Elektrotechnik/Informatik, Universität Kassel,
Kassel, Germany

THEdu 2017, Göteborg

Logic at Kassel University

Situation:

- ▶ second year mandatory course for bachelor students
- ▶ approx. 100 students
- ▶ content: standard topics from Prop. and FO-logic

Inverted Classroom Model:

- ▶ aim: improving learning outcomes
- ▶ learning as a self-organized activity
- ↪ tools to assist and self-assess certain topics

Logic at Kassel University

Situation:

- ▶ second year mandatory course for bachelor students
- ▶ approx. 100 students
- ▶ content: standard topics from Prop. and FO-logic

Inverted Classroom Model:

- ▶ aim: improving learning outcomes
- ▶ learning as a self-organized activity
- ↪ tools to assist and self-assess certain topics

The Sequent Calculus

- ▶ proof calculus similar to natural deduction
- ▶ **sequent:** $\Gamma \Rightarrow \Delta$
- ▶ **rule:** e.g.
$$\frac{\Gamma \Rightarrow \varphi, \Delta \quad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \wedge \psi, \Delta}$$

proof:

$$\begin{array}{c}
 \frac{}{A \Rightarrow A, B} \text{ (Ax)} \quad \frac{\overline{B, C \Rightarrow A, B} \text{ (Ax)}}{B \wedge C \Rightarrow A, B} \text{ (}\wedge_L\text{)} \quad \frac{}{A \Rightarrow A, C} \text{ (Ax)} \quad \frac{\overline{B, C \Rightarrow A, C} \text{ (Ax)}}{B \wedge C \Rightarrow A, C} \text{ (}\wedge_L\text{)} \\
 \frac{}{A \vee (B \wedge C) \Rightarrow A, B} \text{ (}\vee_R\text{)} \quad \frac{}{A \vee (B \wedge C) \Rightarrow A, C} \text{ (}\vee_R\text{)} \\
 \frac{A \vee (B \wedge C) \Rightarrow A \vee B}{A \vee (B \wedge C) \Rightarrow A \vee C} \text{ (}\wedge_R\text{)} \quad \frac{A \vee (B \wedge C) \Rightarrow A \vee C}{A \vee (B \wedge C) \Rightarrow (A \vee B) \wedge (A \vee C)} \text{ (}\wedge_R\text{)}
 \end{array}$$

Didactical Perspective

Steps in Learning a Proof Calculus

We distinguish between:

constructing a correct proof vs. finding the right proof

constructing a correct proof

Steps in Learning a Proof Calculus

We distinguish between:

constructing a correct proof vs. finding the right proof

constructing a correct proof

$$\forall x \forall y. E(x, y) \rightarrow x = f(y) \implies \forall x \forall y \forall z. E(x, z) \wedge E(y, z) \rightarrow x = y$$

Steps in Learning a Proof Calculus

We distinguish between:

constructing a correct proof vs. finding the right proof

constructing a correct proof

$$\frac{\forall x \forall y. E(x, y) \rightarrow x = f(y) \implies \forall x \forall y \forall z. E(x, z) \wedge E(y, z) \rightarrow x = y}{3 \times (\forall_R)}$$

Steps in Learning a Proof Calculus

We distinguish between:

constructing a correct proof vs. finding the right proof

constructing a correct proof

$$\frac{\forall x \forall y. E(x, y) \rightarrow x = f(y) \implies E(a, c) \wedge E(b, c) \rightarrow a = b}{\forall x \forall y. E(x, y) \rightarrow x = f(y) \implies \forall x \forall y \forall z. E(x, z) \wedge E(y, z) \rightarrow x = y} 3 \times (\forall_R)$$

Steps in Learning a Proof Calculus

We distinguish between:

constructing a correct proof vs. finding the right proof

constructing a correct proof

$$\frac{\forall x \forall y. E(x, y) \rightarrow x = f(y) \implies E(a, c) \wedge E(b, c) \rightarrow a = b}{\forall x \forall y. E(x, y) \rightarrow x = f(y) \implies \forall x \forall y \forall z. E(x, z) \wedge E(y, z) \rightarrow x = y} 3 \times (\forall_R)$$

Steps in Learning a Proof Calculus

We distinguish between:

constructing a correct proof vs. finding the right proof

constructing a correct proof

$$\frac{\overline{\forall x \forall y. E(x, y) \rightarrow x = f(y), E(a, c) \wedge E(b, c) \implies a = b} \quad (\rightarrow_R)}{\overline{\forall x \forall y. E(x, y) \rightarrow x = f(y) \implies E(a, c) \wedge E(b, c) \rightarrow a = b} \quad 3 \times (\forall_R)} \forall x \forall y. E(x, y) \rightarrow x = f(y) \implies \forall x \forall y \forall z. E(x, z) \wedge E(y, z) \rightarrow x = y$$

Steps in Learning a Proof Calculus

We distinguish between:

constructing a correct proof vs. finding the right proof

constructing a correct proof

$$\frac{\frac{\frac{\forall x \forall y. E(x, y) \rightarrow x = f(y), E(a, c) \wedge E(b, c) \implies a = b}{\forall x \forall y. E(x, y) \rightarrow x = f(y) \implies E(a, c) \wedge E(b, c) \rightarrow a = b} (\wedge_L) \quad (\rightarrow_R)}{\forall x \forall y. E(x, y) \rightarrow x = f(y) \implies \forall x \forall y \forall z. E(x, z) \wedge E(y, z) \rightarrow x = y} 3 \times (\forall_R)}$$

Steps in Learning a Proof Calculus

We distinguish between:

constructing a correct proof vs. finding the right proof

constructing a correct proof

⋮

$$\frac{\frac{\frac{\frac{\forall x \forall y. E(x, y) \rightarrow x = f(y), E(a, c), E(b, c) \implies a = b}{\forall x \forall y. E(x, y) \rightarrow x = f(y), E(a, c) \wedge E(b, c) \implies a = b} (\wedge_L)}{\forall x \forall y. E(x, y) \rightarrow x = f(y) \implies E(a, c) \wedge E(b, c) \rightarrow a = b} (\rightarrow_R)}{\forall x \forall y. E(x, y) \rightarrow x = f(y) \implies \forall x \forall y \forall z. E(x, z) \wedge E(y, z) \rightarrow x = y} 3 \times (\forall_R)}$$

Steps in Learning a Proof Calculus

We distinguish between:

constructing a correct proof vs. finding the right proof

constructing a correct proof

⋮

$$\frac{\frac{\frac{\frac{\forall x \forall y. E(x, y) \rightarrow x = f(y), E(a, c), E(b, c) \implies a = b}{\forall x \forall y. E(x, y) \rightarrow x = f(y), E(a, c) \wedge E(b, c) \implies a = b} (\wedge_L)}{\forall x \forall y. E(x, y) \rightarrow x = f(y) \implies E(a, c) \wedge E(b, c) \rightarrow a = b} (\rightarrow_R)}{\forall x \forall y. E(x, y) \rightarrow x = f(y) \implies \forall x \forall y \forall z. E(x, z) \wedge E(y, z) \rightarrow x = y} 3 \times (\forall_R)$$

- ▶ students already have major problems in achieving the first goal

A Tool for “Constructing Correct Proofs”

The Sequent Calculus Trainer Version 1 ... (Ehle, H., Lange 2015)

- ▶ a verifier of proof trees, not an assistant
- ▶ clear and extensive feedback system

Experiences:

- ▶ comparison of written exam results shows significant increase in number of students who construct correct proofs
- ▶ not a very “scientific” study
- ▶ however, effect too significant to be caused solely by other reasons
- ▶ tool seems to replace right amount of pen and paper work

A Tool for “Constructing Correct Proofs”

The Sequent Calculus Trainer Version 1 ... (Ehle, H., Lange 2015)

- ▶ a verifier of proof trees, not an assistant
- ▶ clear and extensive feedback system

Experiences:

- ▶ comparison of written exam results shows significant increase in number of students who construct correct proofs
- ▶ not a very “scientific” study
- ▶ however, effect too significant to be caused solely by other reasons
- ▶ tool seems to replace right amount of pen and paper work

A Tool for “Constructing Correct Proofs”

The Sequent Calculus Trainer Version 1 ... (Ehle, H., Lange 2015)

- ▶ a verifier of proof trees, not an assistant
- ▶ clear and extensive feedback system

Experiences:

- ▶ comparison of written exam results shows significant increase in number of students who construct correct proofs
- ▶ not a very “scientific” study
- ▶ however, effect too significant to be caused solely by other reasons
- ▶ tool seems to replace right amount of pen and paper work

A Tool for “Constructing Correct Proofs”

The Sequent Calculus Trainer Version 1 ... (Ehle, H., Lange 2015)

- ▶ a verifier of proof trees, not an assistant
- ▶ clear and extensive feedback system

Experiences:

- ▶ comparison of written exam results shows significant increase in number of students who construct correct proofs
- ▶ not a very “scientific” study
- ▶ however, effect too significant to be caused solely by other reasons
- ▶ tool seems to replace right amount of pen and paper work

A Tool for “Constructing Correct Proofs”

The Sequent Calculus Trainer Version 1 ... (Ehle, H., Lange 2015)

- ▶ a verifier of proof trees, not an assistant
- ▶ clear and extensive feedback system

Experiences:

- ▶ comparison of written exam results shows significant increase in number of students who construct correct proofs
- ▶ not a very “scientific” study
- ▶ however, effect too significant to be caused solely by other reasons
- ▶ tool seems to replace right amount of pen and paper work

A Tool for “Finding the Right Proof”

Recall:

$$\frac{\forall x \forall y. E(x, y) \rightarrow x = f(y), E(a, c), E(b, c) \implies a = b}{2 \times (\forall_L)}$$

A Tool for “Finding the Right Proof”

Recall:

$$\frac{E(b, c) \rightarrow b = f(c), E(a, c), E(b, c) \implies a = b}{\forall x \forall y. E(x, y) \rightarrow x = f(y), E(a, c), E(b, c) \implies a = b} 2 \times (\forall_L)$$

A Tool for “Finding the Right Proof”

Recall:

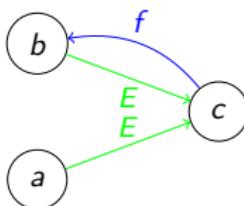
$$\frac{E(b, c) \rightarrow b = f(c), E(a, c), E(b, c) \implies a = b}{\forall x \forall y. E(x, y) \rightarrow x = f(y), E(a, c), E(b, c) \implies a = b} 2 \times (\forall_L)$$

A Tool for “Finding the Right Proof”

Recall:

$$\frac{E(b, c) \rightarrow b = f(c), E(a, c), E(b, c) \implies a = b}{\forall x \forall y. E(x, y) \rightarrow x = f(y), E(a, c), E(b, c) \implies a = b} 2 \times (\forall_L)$$

counter model:

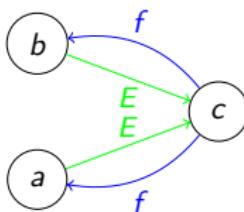


A Tool for “Finding the Right Proof”

Recall:

$$\frac{E(b, c) \rightarrow b = f(c), E(a, c), E(b, c) \implies a = b}{\forall x \forall y. E(x, y) \rightarrow x = f(y), E(a, c), E(b, c) \implies a = b} 2 \times (\forall_L)$$

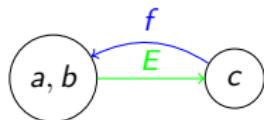
counter model:



A Tool for “Finding the Right Proof”

Recall:

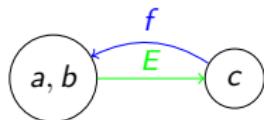
$$\frac{E(b, c) \rightarrow b = f(c), E(a, c), E(b, c) \implies a = b}{\forall x \forall y. E(x, y) \rightarrow x = f(y), E(a, c), E(b, c) \implies a = b} 2 \times (\forall_L)$$



A Tool for “Finding the Right Proof”

Recall:

$$\frac{E(b, c) \rightarrow b = f(c), E(a, c), E(b, c) \implies a = b}{\forall x \forall y. E(x, y) \rightarrow x = f(y), E(a, c), E(b, c) \implies a = b} 2 \times (\forall_L)$$



Specifications for Version 2

- ▶ stepping out of purely syntactical reasoning
- ▶ direct students' focus to the underlying structure

The Sequent Calculus Trainer with Automated Reasoning

Main View

Sequent Calculus Trainer

File Edit Help Propositional Logic First-Order Logic

Rule set

As	Reflexivity - R
ff - L	tt - R
~ - L	~ - R
V - L	V - R
A - L	A - R
→ - L	→ - R
↔ - L	↔ - R
3 - L	3 - R
V - L	V - R
Substitution - L	Substitution - R
Contraction - L	Contraction - R
Reflexivity - L	Weakening
Delete subtree	

$$\frac{\forall x \exists y x=v(y), \forall x F(v(x)) \Rightarrow F(c)}{\forall x \exists y x=v(y), \forall x F(v(x)) \Rightarrow F(v(c))} \text{ (}\forall_L\text{)}$$

$$\frac{\forall x \exists y x=v(y), \forall x F(v(x)) \Rightarrow F(c) \wedge F(v(c))}{\forall x \exists y x=v(y), \forall x F(v(x)) \Rightarrow \forall x .F(x) \wedge F(v(x))} \text{ (}\wedge_R\text{)}$$

$$\frac{\forall x \exists y x=v(y) \wedge \forall x F(v(x)) \Rightarrow \forall x .F(x) \wedge F(v(x))}{\forall x \exists y x=v(y) \wedge \forall x F(v(x)) \Rightarrow F(c) \wedge F(v(c))} \text{ (}\wedge_L\text{)}$$

Zoom

Advice via Traffic Light System

Sequent Calculus Trainer

File Edit Help Propositional Logic First-Order Logic

Rule set

Ax	Reflexivity - R
B - L	tt - R
¬ - L	¬¬ - R
∨ - L	∨ - R
∧ - L	∧ - R
→ - L	→ - R
↔ - L	↔ - R
∃ - L	∃ - R
∀ - L	∀ - R
Substitution - L	Substitution - R
Contraction - L	Contraction - R
Reflexivity - L	Weakening
Delete subtree	

$$\frac{\exists y \ c=v(y), F(v(c)) \Rightarrow F(c)}{\forall x \ \exists y \ x=v(y), F(v(c)) \Rightarrow F(c)} \text{ (}\forall_L\text{)}$$

$$\frac{\forall x \ \exists y \ x=v(y), F(v(c)) \Rightarrow F(c)}{\forall x \ \exists y \ x=v(y), \forall x \ F(v(x)) \Rightarrow F(c)} \text{ (}\forall_L\text{)}$$

$$\frac{\forall x \ \exists y \ x=v(y), \forall x \ F(v(x)) \Rightarrow F(c)}{\forall x \ \exists y \ x=v(y), \forall x \ F(v(x)) \Rightarrow F(v(c))} \text{ (Ax)}$$

$$\frac{\forall x \ \exists y \ x=v(y), \forall x \ F(v(x)) \Rightarrow F(v(c))}{\forall x \ \exists y \ x=v(y), \forall x \ F(v(x)) \Rightarrow \forall x .F(x) \wedge F(v(x))} \text{ (}\forall_L\text{)}$$

$$\frac{\forall x \ \exists y \ x=v(y), \forall x \ F(v(x)) \Rightarrow \forall x .F(x) \wedge F(v(x))}{\forall x \ \exists y \ x=v(y) \wedge \forall x \ F(v(x)) \Rightarrow \forall x .F(x) \wedge F(v(x))} \text{ (}\wedge_R\text{)}$$

Zoom

Advice via Traffic Light System

Sequent Calculus Trainer

File Edit Help

Rule set

Ax	Reflexivity - R
$\# - L$	$\# - R$
$\neg - L$	$\neg - R$
$\vee - L$	$\vee - R$
$\wedge - L$	$\wedge - R$
$\rightarrow - L$	$\rightarrow - R$
$\leftrightarrow - L$	$\leftrightarrow - R$
$\exists - L$	$\exists - R$
$\forall - L$	$\forall - R$
Substitution - L	Substitution - R
Contraction - L	Contraction - R
Reflexivity - L	Weakening
Delete subtree	

Zoom

$$\frac{\frac{\frac{\forall x \exists y x=v(y), F(v(c)) \Rightarrow F(c)}{\forall x \exists y x=v(y), \forall x F(v(x)) \Rightarrow F(c)}^{(\forall_L)} \quad \frac{\forall x \exists y x=v(y), F(v(c)) \Rightarrow F(v(c))}{\forall x \exists y x=v(y), \forall x F(v(x)) \Rightarrow F(v(c))}^{(\forall_L)}}{\forall x \exists y x=v(y), \forall x F(v(x)) \Rightarrow F(c) \wedge F(v(c))}^{(\wedge_R)} \quad \frac{\forall x \exists y x=v(y), \forall x F(v(x)) \Rightarrow \forall x .F(x) \wedge F(v(x))}{\forall x \exists y x=v(y) \wedge \forall x F(v(x)) \Rightarrow \forall x .F(x) \wedge F(v(x))}^{(\forall_R)}}$$

Dialog System

Sequent Calculus Trainer

File Edit Help Propositional Logic First-Order Logic

Info

Click on a sequent where you need help

$\forall x \exists y x=v(y), \forall x F(v(x)) \Rightarrow F(c)$

$$\frac{\forall x \exists y x=v(y), F(v(c)) \Rightarrow F(v(c))}{\forall x \exists y x=v(y), \forall x F(v(x)) \Rightarrow F(v(c))} (\forall_L)$$

$$\frac{\forall x \exists y x=v(y), \forall x F(v(x)) \Rightarrow F(c) \wedge F(v(c))}{\forall x \exists y x=v(y), \forall x F(v(x)) \Rightarrow \forall x .F(x) \wedge F(v(x))} (\wedge_R)$$

$$\frac{\forall x \exists y x=v(y) \wedge \forall x F(v(x)) \Rightarrow \forall x .F(x) \wedge F(v(x))}{\forall x \exists y x=v(y) \wedge \forall x F(v(x)) \Rightarrow \forall x .F(x) \wedge F(v(x))} (\wedge_L)$$

Rule set

$\forall x$	Reflexivity - R
$\# - L$	$\# - R$
$\neg - L$	$\neg - R$
$\vee - L$	$\vee - R$
$\wedge - L$	$\wedge - R$
$\rightarrow - L$	$\rightarrow - R$
$\leftrightarrow - L$	$\leftrightarrow - R$
$\exists - L$	$\exists - R$
$\forall - L$	$\forall - R$
Substitution - L	Substitution - R
Contraction - L	Contraction - R
Reflexivity - L	Weakening
Delete subtree	

Zoom

Dialog System

Sequent Calculus Trainer

File Edit Help Propositional Logic

Info

OK try to apply the Rule
for-all-left
to the formula
 $\forall x \exists y x = v(y)$

Replace the bound variable symbol by the ground term c.

Rule set

Ax	Reflexivity - R
$\# - L$	$\# - R$
$\sim - L$	$\sim - R$
$\vee - L$	$\vee - R$
$\wedge - L$	$\wedge - R$
$\rightarrow - L$	$\rightarrow - R$
$\leftrightarrow - L$	$\leftrightarrow - R$
$\exists - L$	$\exists - R$
$\forall - L$	$\forall - R$
Substitution - L	Substitution - R
Contraction - L	Contraction - R
Reflexivity - L	Weakening
Delete subtree	

$\forall x \exists y x = v(y), \forall x F(v(x)) \Rightarrow F(c)$

$$\frac{\forall x \exists y x = v(y), F(v(c)) \Rightarrow F(v(c))}{\forall x \exists y x = v(y), \forall x F(v(x)) \Rightarrow F(v(c))} (\forall_L)$$

$$\frac{\forall x \exists y x = v(y), \forall x F(v(x)) \Rightarrow F(c) \wedge F(v(c))}{\forall x \exists y x = v(y), \forall x F(v(x)) \Rightarrow \forall x .F(x) \wedge F(v(x))} (\wedge_R)$$

$$\frac{\forall x \exists y x = v(y), \forall x F(v(x)) \Rightarrow \forall x .F(x) \wedge F(v(x))}{\forall x \exists y x = v(y) \wedge \forall x F(v(x)) \Rightarrow \forall x .F(x) \wedge F(v(x))} (\wedge_L)$$

Zoom

Main Idea behind the Algorithm

Problem: Instantiation of existentially quantified variables

- ▶ note: brute-force semi-decision procedure for FO only works theoretically

instead, we use an SMT solver (Z3) and the following reduction:

$$\Gamma \implies \Delta \text{ is invalid iff } \bigwedge_{\psi \in \Gamma} \psi \wedge \bigwedge_{\psi' \in \Delta} \neg \psi' \text{ is satisfiable}$$

Example:

$$\forall x \forall y P(g(x, y)) \implies \exists x P(x)$$

Main Idea behind the Algorithm

Problem: Instantiation of existentially quantified variables

- ▶ note: brute-force semi-decision procedure for FO only works theoretically

instead, we use an [SMT solver](#) (Z3) and the following reduction:

$$\Gamma \implies \Delta \text{ is invalid iff } \bigwedge_{\psi \in \Gamma} \psi \wedge \bigwedge_{\psi' \in \Delta} \neg \psi' \text{ is satisfiable}$$

Example:

$$\forall x \forall y P(g(x, y)) \implies \exists x P(x)$$

Main Idea behind the Algorithm

Problem: Instantiation of existentially quantified variables

- ▶ note: brute-force semi-decision procedure for FO only works theoretically

instead, we use an [SMT solver](#) (Z3) and the following reduction:

$$\Gamma \implies \Delta \text{ is invalid iff } \bigwedge_{\psi \in \Gamma} \psi \wedge \bigwedge_{\psi' \in \Delta} \neg \psi' \text{ is satisfiable}$$

Example:

$$\forall x \forall y P(g(x, y)) \implies \exists x P(x)$$

Main Idea behind the Algorithm

Problem: Instantiation of existentially quantified variables

- ▶ note: brute-force semi-decision procedure for FO only works theoretically

instead, we use an [SMT solver](#) (Z3) and the following reduction:

$$\Gamma \implies \Delta \text{ is invalid iff } \bigwedge_{\psi \in \Gamma} \psi \wedge \bigwedge_{\psi' \in \Delta} \neg \psi' \text{ is satisfiable}$$

Example:

$$\forall x \forall y P(g(x, y)) \implies \exists x P(x)$$

1. introduce “next” topmost symbol of a groundterm $\forall x \forall y P(g(x, y)) \implies P(\textcolor{red}{c})$

Main Idea behind the Algorithm

Problem: Instantiation of existentially quantified variables

- ▶ note: brute-force semi-decision procedure for FO only works theoretically

instead, we use an [SMT solver](#) (Z3) and the following reduction:

$$\Gamma \implies \Delta \text{ is invalid iff } \bigwedge_{\psi \in \Gamma} \psi \wedge \bigwedge_{\psi' \in \Delta} \neg \psi' \text{ is satisfiable}$$

Example:

1. introduce “next” topmost symbol of a groundterm
 2. use [SMT solver to verify](#)
- $$\forall x \forall y P(g(x, y)) \implies \exists x P(x)$$
- $$\forall x \forall y P(g(x, y)) \implies P(\textcolor{red}{c})$$
- $$\forall x \forall y P(g(x, y)) \wedge \neg P(\textcolor{red}{c}) \text{ is satisfiable}$$

Main Idea behind the Algorithm

Problem: Instantiation of existentially quantified variables

- ▶ note: brute-force semi-decision procedure for FO only works theoretically

instead, we use an [SMT solver](#) (Z3) and the following reduction:

$$\Gamma \implies \Delta \text{ is invalid iff } \bigwedge_{\psi \in \Gamma} \psi \wedge \bigwedge_{\psi' \in \Delta} \neg \psi' \text{ is satisfiable}$$

Example:

$$\forall x \forall y P(g(x, y)) \implies \exists x P(x)$$

1. introduce “next” topmost symbol of a groundterm $\forall x \forall y P(g(x, y)) \implies \exists x_1 \exists x_2 P(g(x_1, x_2))$

Main Idea behind the Algorithm

Problem: Instantiation of existentially quantified variables

- ▶ note: brute-force semi-decision procedure for FO only works theoretically

instead, we use an [SMT solver](#) (Z3) and the following reduction:

$$\Gamma \implies \Delta \text{ is invalid iff } \bigwedge_{\psi \in \Gamma} \psi \wedge \bigwedge_{\psi' \in \Delta} \neg \psi' \text{ is satisfiable}$$

Example:

1. introduce “next” topmost symbol of a groundterm
 2. use [SMT solver to verify](#)
- $$\forall x \forall y P(g(x, y)) \implies \exists x P(x)$$
- $$\forall x \forall y P(g(x, y)) \implies \exists x_1 \exists x_2 P(g(x_1, x_2))$$
- $$\forall x \forall y P(g(x, y)) \wedge \neg \exists x_1 \exists x_2 P(g(x_1, x_2)) \text{ is unsatisfiable}$$

Further Techniques

- ▶ decision procedure for quantifier-free FO with equality based on results from term rewriting of equality groundterms
- ▶ further goal: short (human readable) proofs tackled by ordering rule applications and term instantiations
 - ▶ trying to introduce more “complicated” rules and terms last
 - ▶ for instance: 1-ary terms before 2-ary terms
- ▶ results heavily rely on used SMT solver
 - ▶ is governed by a timeout (indicated by yellow sequent)
 - ▶ good results on typical “didactic” examples
 - ▶ problems (Z3) with high nesting depth of terms

Further Techniques

- ▶ decision procedure for quantifier-free FO with equality based on results from term rewriting of equality groundterms
- ▶ further goal: short (human readable) proofs tackled by ordering rule applications and term instantiations
 - ▶ trying to introduce more “complicated” rules and terms last
 - ▶ for instance: 1-ary terms before 2-ary terms
- ▶ results heavily rely on used SMT solver
 - ▶ is governed by a timeout (indicated by yellow sequent)
 - ▶ good results on typical “didactic” examples
 - ▶ problems (Z3) with high nesting depth of terms

Further Techniques

- ▶ decision procedure for quantifier-free FO with equality based on results from term rewriting of equality groundterms
- ▶ further goal: short (human readable) proofs tackled by ordering rule applications and term instantiations
 - ▶ trying to introduce more “complicated” rules and terms last
 - ▶ for instance: 1-ary terms before 2-ary terms
- ▶ results heavily rely on used SMT solver
 - ▶ is governed by a timeout (indicated by yellow sequent)
 - ▶ good results on typical “didactic” examples
 - ▶ problems (Z3) with high nesting depth of terms

Further Techniques

- ▶ decision procedure for quantifier-free FO with equality based on results from term rewriting of equality groundterms
- ▶ further goal: short (human readable) proofs tackled by ordering rule applications and term instantiations
 - ▶ trying to introduce more “complicated” rules and terms last
 - ▶ for instance: 1-ary terms before 2-ary terms
- ▶ results heavily rely on used SMT solver
 - ▶ is governed by a timeout (indicated by yellow sequent)
 - ▶ good results on typical “didactic” examples
 - ▶ problems (Z3) with high nesting depth of terms

Further Techniques

- ▶ decision procedure for quantifier-free FO with equality based on results from term rewriting of equality groundterms
- ▶ further goal: short (human readable) proofs tackled by ordering rule applications and term instantiations
 - ▶ trying to introduce more “complicated” rules and terms last
 - ▶ for instance: 1-ary terms before 2-ary terms
- ▶ results heavily rely on used SMT solver
 - ▶ is governed by a timeout (indicated by yellow sequent)
 - ▶ good results on typical “didactic” examples
 - ▶ problems (Z3) with high nesting depth of terms

Further Techniques

- ▶ decision procedure for quantifier-free FO with equality based on results from term rewriting of equality groundterms
- ▶ further goal: short (human readable) proofs tackled by ordering rule applications and term instantiations
 - ▶ trying to introduce more “complicated” rules and terms last
 - ▶ for instance: 1-ary terms before 2-ary terms
- ▶ results heavily rely on used SMT solver
 - ▶ is governed by a timeout (indicated by yellow sequent)
 - ▶ good results on typical “didactic” examples
 - ▶ problems (Z3) with high nesting depth of terms

Further Techniques

- ▶ decision procedure for quantifier-free FO with equality based on results from term rewriting of equality groundterms
- ▶ further goal: short (human readable) proofs tackled by ordering rule applications and term instantiations
 - ▶ trying to introduce more “complicated” rules and terms last
 - ▶ for instance: 1-ary terms before 2-ary terms
- ▶ results heavily rely on used SMT solver
 - ▶ is governed by a timeout (indicated by yellow sequent)
 - ▶ good results on typical “didactic” examples
 - ▶ problems (Z3) with high nesting depth of terms

Further Techniques

- ▶ decision procedure for quantifier-free FO with equality based on results from term rewriting of equality groundterms
- ▶ further goal: short (human readable) proofs tackled by ordering rule applications and term instantiations
 - ▶ trying to introduce more “complicated” rules and terms last
 - ▶ for instance: 1-ary terms before 2-ary terms
- ▶ results heavily rely on used SMT solver
 - ▶ is governed by a timeout (indicated by yellow sequent)
 - ▶ good results on typical “didactic” examples
 - ▶ problems (Z3) with high nesting depth of terms

Conclusion

- ▶ introduced a (fairly simple) traffic light system to the Sequent Calculus Trainer
- ▶ trigger a thought process, which leads to “semantical” understanding
- ▶ unfortunately, no empirical data yet
- ▶ try it: <http://www.uni-kassel.de/eecs/fachgebiete/fmv/projects/sequent-calculus-trainer.html>

Future Work: Combining a **model-checking tool** with the Sequent Calculus Trainer, thus, enabling students to input **counter models**.

Conclusion

- ▶ introduced a (fairly simple) traffic light system to the Sequent Calculus Trainer
- ▶ trigger a thought process, which leads to “semantical” understanding
- ▶ unfortunately, no empirical data yet
- ▶ try it: <http://www.uni-kassel.de/eecs/fachgebiete/fmv/projects/sequent-calculus-trainer.html>

Future Work: Combining a **model-checking tool** with the Sequent Calculus Trainer, thus, enabling students to input **counter models**.

Thank you!