A theorem prover for scientific and educational purposes

M. Frank, C. Kreitz
{mafrank,kreitz}@uni-potsdam.de

AWNEers;r.
N

‘ @g@
. 1
LD
o("

. &(yam
‘e
Potsdam University

Institute for Computer Science

ThEdu'17, Gothenburg, August 6, 2017

NN
Outline

1 Motivation and Context
2 Preliminaries

3 The IDE

4 Demonstration

5 Supported Platforms and Future Work

TS

°3 @ﬁ@
>,
A

5,
K
.

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes

Frame 2 of 16

Context

This work is a part of a (PhD) project with the aim to provide a framework:
m for rapidly prototyping calculi
m for the easy construction of ATP systems
m for (almost) lossless communication with ITP systems

m with a shallow learning curve for students

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 3 of 16

... limem
Motivation (1)

Theorem provers are extremely valuable. We can prove
m Correctness of algorithms
m Termination of algorithms

We can even synthesise software from proofs.
But the way to a successful and happy user of theorem provers is a path of trial
and tribulation for students

VTS,

. I
2, oy
.5

Yam
‘e

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes

Frame 4 of 16

R
Motivation (2)

In software construction courses, students are accustomed to IDEs with
m a shallow learning curve
m support with code completion, syntax highlighting, outlines, ...
m many hints by the IDE (tooltips)
m rather good usability
Theorem provers usually have
m a rather steep learning curve
m a less sophisticated usability

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 5 of 16

... limem
Motivation (3)

Many students have problems understanding functional programming, which is
necessary for understanding theorem proving.
Thus:

m improve the support for students in understanding the basics of theorem
proving, like functional programming

m give them a tool with functionalities they are used to
m there is a need for training modes for theorem provers

While our main goal is a general theorem proving framework, this talk focuses
on using it as a tool for A-evaluation in the class room.

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 6 of 16

I cuand RelatedWork
Focus and Related Work (1)

We analysed some A-evaluation tools like
m the Penn Lambda Calculator
m the lambda calculus tracer TILC
m and many more online- and offline-tools
The benefit for students is low for most of the analysed tools as
m some of them do only evaluate terms (without interaction)

m some have no or no good visualisation (like binding scopes)

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 7 of 16

N e
Focus and Related Work (2)

We provide an IDE based on our theorem proving framework
m with a mode for lambda term evaluation, manipulation and visualisation
m with some state of the art functionality of IDEs
m that is specifically adopted to wishes of students
m is being used regular in class since mid 2017

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 8 of 16

BN
Untyped lambda calculus

| assume we all know the definition of untyped lambda calculus:
m X is a variable,
m Ax.tis an abstraction, binding occurrences of variable x in term t
m stis an application, i.e. sis applied to ¢
Also, we know
m o-conversion: Ax.t = Ax'.t[x/x]

m B-reduction: (Ax.t)s LA t[x/s]

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 9 of 16

Untyped lambda calculus

We introduce additionally

m The named term reference, i.e. abbreviations for term definitions

=-expansion: t — def;

For the term True =: Ax.Ay.x, True = Ax.Ay.x holds.

M. Frank, C. Kreitz

A theorem prover for scientific and educational purposes

Frame 10 of 16

BN
Features (1)

The IDE

m works on plain text files

m Encodes special characters automatically into UTF-8

m has an outline of defined terms

m has a manipulation view for deeper inspection and manipulation of terms.
Application of rules is possible in multiple ways

m o-conversion via double-click on the bound variable

m [-reduction via drag and drop or shortcut keys

m =-expansion via double-click on the named term reference

VTS,

°3 @ﬁ@
>,
A

%
Zam
‘e

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes

Frame 11 of 16

Features (2)

The tool currently supports highlighting:
m of corresponding parentheses
m of the variables bound by an abstraction
m of the abstraction binding a variable
Also, it supports
m code completion for named terms
m infos about hamed term (name, arity, definition) as tooltip

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 12 of 16

Demo

— e |

DEMO

A theorem prover for scientific and educational purposes

Frame 13 of 16

VTS,

2 @
i
2,

m
°

“a

. suoslwe
Supported Platforms

The tool is implemented in C++ in a platform independent way. Current
support:

m Linux binary and Applmage (distribution-independent)
m first successful tests on Windows
No installation - just download' and execute

Thttp://www.cs.uni-potsdam.de/~mafrank/

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 14 of 16

http://www.cs.uni-potsdam.de/~mafrank/

N S.eoried Platorms
Future Work

1 Improvement of performance
2 Extension to typed lambda calculus
3 Stable Windows (and potentially Mac) version

4 Transformation of the source code to JavaScript via Emscripten —
platform independent online version

5 Extension of the tool to further parts of the framework.

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 15 of 16

References

m H. P. Barendregt. The Lambda Calculus lts Syntax and Semantics, volume 103. North Holland, revised edition, 1984.
http://www.cs.ru.nl/ henk/Personal Webpage.

= EDWIN BRADY. Idris, a general-purpose dependently typed programming language: Design and implementation. Journal of Functional
Programming, 23:552-593, 9 2013.

m Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper, Douglas J. Howe, T. B. Knoblock, N.
P. Mendler, P. Panangaden, James T.

m Sasaki, and Scott F. Smith. Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall, NJ, 1986.

m Lucas Champollion, Joshua Tauberer, and Maribel Romero. The Penn Lambda Calculator: Pedagogical Software for Natural Language
Semantics. Universitat Konstanz, 2007.

m The Coq development team. The Coq proof assistant reference manual. LogiCal Project, 2004. Version 8.0.

m UIf Norell. Dependently typed programming in agda. In Proceedings of the 4th International Workshop on Types in Language Design
and Implementation, TLDI '09, pages 1-2, New York, NY, USA, 2009. ACM.

m Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A Proof Assistant for Higher-order Logic. Springer-Verlag,
Berlin, Heidelberg, 2002.

m David Ruiz and Mateu Villaret. Tilc: The interactive lambda-calculus tracer. Electron. Notes Theor. Comput. Sci., 248:173-183, August
2009.

m Peter Sestoft. Demonstrating lambda calculus reduction. Electr. Notes Theor. Comput. Sci., 45:424-432, 2001.

A theorem prover for scientific and educational purposes Frame 16 of 16

	Motivation and Context
	Context
	Motivation
	Focus and Related Work

	Preliminaries
	The IDE
	Demonstration
	Supported Platforms and Future Work
	Supported Platforms

