
A theorem prover for scientific and educational purposes

M. Frank, C. Kreitz
{mafrank,kreitz}@uni-potsdam.de

Potsdam University
Institute for Computer Science

ThEdu’17, Gothenburg, August 6, 2017



Outline

1 Motivation and Context

2 Preliminaries

3 The IDE

4 Demonstration

5 Supported Platforms and Future Work

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 2 of 16



Motivation and Context Context

Context

This work is a part of a (PhD) project with the aim to provide a framework:

for rapidly prototyping calculi

for the easy construction of ATP systems

for (almost) lossless communication with ITP systems

with a shallow learning curve for students

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 3 of 16



Motivation and Context Motivation

Motivation (1)

Theorem provers are extremely valuable. We can prove

Correctness of algorithms

Termination of algorithms

We can even synthesise software from proofs.
But the way to a successful and happy user of theorem provers is a path of trial
and tribulation for students

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 4 of 16



Motivation and Context Motivation

Motivation (2)

In software construction courses, students are accustomed to IDEs with

a shallow learning curve

support with code completion, syntax highlighting, outlines, ...

many hints by the IDE (tooltips)

rather good usability

Theorem provers usually have

a rather steep learning curve

a less sophisticated usability

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 5 of 16



Motivation and Context Motivation

Motivation (3)

Many students have problems understanding functional programming, which is
necessary for understanding theorem proving.
Thus:

improve the support for students in understanding the basics of theorem
proving, like functional programming

give them a tool with functionalities they are used to

there is a need for training modes for theorem provers

While our main goal is a general theorem proving framework, this talk focuses
on using it as a tool for λ-evaluation in the class room.

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 6 of 16



Motivation and Context Focus and Related Work

Focus and Related Work (1)

We analysed some λ-evaluation tools like

the Penn Lambda Calculator

the lambda calculus tracer TILC

and many more online- and offline-tools

The benefit for students is low for most of the analysed tools as

some of them do only evaluate terms (without interaction)

some have no or no good visualisation (like binding scopes)

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 7 of 16



Motivation and Context Focus and Related Work

Focus and Related Work (2)

We provide an IDE based on our theorem proving framework

with a mode for lambda term evaluation, manipulation and visualisation

with some state of the art functionality of IDEs

that is specifically adopted to wishes of students

is being used regular in class since mid 2017

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 8 of 16



Preliminaries

Untyped lambda calculus

I assume we all know the definition of untyped lambda calculus:

x is a variable,

λx .t is an abstraction, binding occurrences of variable x in term t

s t is an application, i.e. s is applied to t

Also, we know

α-conversion: λx .t
α→ λx ′.t[x/x ′]

β-reduction: (λx .t)s
β→ t[x/s]

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 9 of 16



Preliminaries

Untyped lambda calculus

We introduce additionally

The named term reference, i.e. abbreviations for term definitions

≡-expansion: t
≡→ deft

For the term True =: λx .λy .x , True
≡→ λx .λy .x holds.

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 10 of 16



The IDE

Features (1)

The IDE

works on plain text files

Encodes special characters automatically into UTF-8

has an outline of defined terms

has a manipulation view for deeper inspection and manipulation of terms.

Application of rules is possible in multiple ways

α-conversion via double-click on the bound variable

β-reduction via drag and drop or shortcut keys

≡-expansion via double-click on the named term reference

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 11 of 16



The IDE

Features (2)

The tool currently supports highlighting:

of corresponding parentheses

of the variables bound by an abstraction

of the abstraction binding a variable

Also, it supports

code completion for named terms

infos about named term (name, arity, definition) as tooltip

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 12 of 16



Demonstration

Demo

DEMO

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 13 of 16



Supported Platforms and Future Work Supported Platforms

Supported Platforms

The tool is implemented in C++ in a platform independent way. Current
support:

Linux binary and AppImage (distribution-independent)

first successful tests on Windows

No installation - just download1 and execute

1http://www.cs.uni-potsdam.de/~mafrank/
M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 14 of 16

http://www.cs.uni-potsdam.de/~mafrank/


Supported Platforms and Future Work Supported Platforms

Future Work

1 Improvement of performance

2 Extension to typed lambda calculus

3 Stable Windows (and potentially Mac) version

4 Transformation of the source code to JavaScript via Emscripten→
platform independent online version

5 Extension of the tool to further parts of the framework.

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 15 of 16



References

References

H. P. Barendregt. The Lambda Calculus Its Syntax and Semantics, volume 103. North Holland, revised edition, 1984.
http://www.cs.ru.nl/ henk/Personal Webpage.

EDWIN BRADY. Idris, a general-purpose dependently typed programming language: Design and implementation. Journal of Functional
Programming, 23:552–593, 9 2013.

Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper, Douglas J. Howe, T. B. Knoblock, N.
P. Mendler, P. Panangaden, James T.

Sasaki, and Scott F. Smith. Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall, NJ, 1986.

Lucas Champollion, Joshua Tauberer, and Maribel Romero. The Penn Lambda Calculator: Pedagogical Software for Natural Language
Semantics. Universität Konstanz, 2007.

The Coq development team. The Coq proof assistant reference manual. LogiCal Project, 2004. Version 8.0.

Ulf Norell. Dependently typed programming in agda. In Proceedings of the 4th International Workshop on Types in Language Design
and Implementation, TLDI ’09, pages 1–2, New York, NY, USA, 2009. ACM.

Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A Proof Assistant for Higher-order Logic. Springer-Verlag,
Berlin, Heidelberg, 2002.

David Ruiz and Mateu Villaret. Tilc: The interactive lambda-calculus tracer. Electron. Notes Theor. Comput. Sci., 248:173–183, August
2009.

Peter Sestoft. Demonstrating lambda calculus reduction. Electr. Notes Theor. Comput. Sci., 45:424–432, 2001.

M. Frank, C. Kreitz A theorem prover for scientific and educational purposes Frame 16 of 16


	Motivation and Context
	Context
	Motivation
	Focus and Related Work

	Preliminaries
	The IDE
	Demonstration
	Supported Platforms and Future Work
	Supported Platforms


