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Context

This work is a part of a (PhD) project with the aim to provide a framework:
m for rapidly prototyping calculi
m for the easy construction of ATP systems
m for (almost) lossless communication with ITP systems

m with a shallow learning curve for students
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Motivation (1)

Theorem provers are extremely valuable. We can prove
m Correctness of algorithms
m Termination of algorithms

We can even synthesise software from proofs.
But the way to a successful and happy user of theorem provers is a path of trial
and tribulation for students
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Motivation (2)

In software construction courses, students are accustomed to IDEs with
m a shallow learning curve
m support with code completion, syntax highlighting, outlines, ...
m many hints by the IDE (tooltips)
m rather good usability
Theorem provers usually have
m a rather steep learning curve
m a less sophisticated usability
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Motivation (3)

Many students have problems understanding functional programming, which is
necessary for understanding theorem proving.
Thus:

m improve the support for students in understanding the basics of theorem
proving, like functional programming

m give them a tool with functionalities they are used to
m there is a need for training modes for theorem provers

While our main goal is a general theorem proving framework, this talk focuses
on using it as a tool for A-evaluation in the class room.
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I cuand RelatedWork
Focus and Related Work (1)

We analysed some A-evaluation tools like
m the Penn Lambda Calculator
m the lambda calculus tracer TILC
m and many more online- and offline-tools
The benefit for students is low for most of the analysed tools as
m some of them do only evaluate terms (without interaction)

m some have no or no good visualisation (like binding scopes)
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Focus and Related Work (2)

We provide an IDE based on our theorem proving framework
m with a mode for lambda term evaluation, manipulation and visualisation
m with some state of the art functionality of IDEs
m that is specifically adopted to wishes of students
m is being used regular in class since mid 2017
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Untyped lambda calculus

| assume we all know the definition of untyped lambda calculus:
m X is a variable,
m Ax.tis an abstraction, binding occurrences of variable x in term t
m stis an application, i.e. sis applied to ¢
Also, we know
m o-conversion: Ax.t = Ax'.t[x/x]

m B-reduction: (Ax.t)s LA t[x/s]
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Untyped lambda calculus

We introduce additionally

m The named term reference, i.e. abbreviations for term definitions

=-expansion: t — def;

For the term True =: Ax.Ay.x, True = Ax.Ay.x holds.
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Features (1)

The IDE

m works on plain text files

m Encodes special characters automatically into UTF-8

m has an outline of defined terms

m has a manipulation view for deeper inspection and manipulation of terms.
Application of rules is possible in multiple ways

m o-conversion via double-click on the bound variable

m [-reduction via drag and drop or shortcut keys

m =-expansion via double-click on the named term reference
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Features (2)

The tool currently supports highlighting:
m of corresponding parentheses
m of the variables bound by an abstraction
m of the abstraction binding a variable
Also, it supports
m code completion for named terms
m infos about hamed term (name, arity, definition) as tooltip
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. suoslwe
Supported Platforms

The tool is implemented in C++ in a platform independent way. Current
support:

m Linux binary and Applmage (distribution-independent)
m first successful tests on Windows
No installation - just download' and execute

Thttp://www.cs.uni-potsdam.de/~mafrank/
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Future Work

1 Improvement of performance
2 Extension to typed lambda calculus
3 Stable Windows (and potentially Mac) version

4 Transformation of the source code to JavaScript via Emscripten —
platform independent online version

5 Extension of the tool to further parts of the framework.
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