
Improving QED-Tutrix
by automating the
generation of proofs
Ludovic Font

Phil ippe R. Richard

ThEdu’17, Gothemburg , Sweden, August 2017

Who are we ?
Ludovic Font
- PhD student in computer science at the École Polytechnique de Montréal
- Research project : improve the software QED-Tutrix by handling connected problems
- Interests : A.I., education, mathematics, aeronautics

Philippe R. Richard
- Professor in mathematics education at the Université de Montréal
- Research interests : mathematics education, mathematical reasoning and proving
- Tutors four students on the QED-Tutrix project (two PhD, two masters)

Presentation of QED-Tutrix
Product of the PhDs of Nicolas Leduc (computer science) and Michèle Tessier-Baillargeon
(mathematics education)

Intelligent software designed to help students solving proof problems in geometry

Aimed mainly at high-school students

Provides an interface to input the student’s reasoning

Works by knowing in advance all the possible proofs for a problem

At every moment, the software tries to infer on which proof the student is currently working

Helps unblocking the student by gradually giving him hints on the step he’s stuck on

Internal representation : HPDIC graphs

Internal representation : HPDIC graphs

Internal representation : HPDIC graphs

Internal representation
In other words, a problem is, internally, completely represented by :

◦ Its hypotheses

◦ Its conclusion

◦ Its HPDIC graph

◦ (a GeoGebra figure, for the student)

To include a problem into QED-Tutrix, the creation of the HPDIC graph is necessary

QED-Tutrix current weaknesses
Needs the complete set of all possible proofs for a problem

Only◦ the proofs accessible for high-school students

Can ◦ quickly represent a high number (over 5 million for one problem)

Currently◦ , the proofs must be written by hand !

As◦ a result, QED-Tutrix only includes 5 problems

The current unblocking process could be improved
Gradually◦ providing more detailled hints

Close to ◦ what a teacher would do at first

However◦ , some students need more stimuli to get the necessary trigger

Planned improvments
Unblocking students by using connected problems

◦ Instead of giving hints, some teachers give another problem, connected to the blocking point

◦ Gives the student a more global vision

◦ Requires a strong database of problems

Automatically generating proofs
◦ Manually writing proofs is tedious and time-consuming

◦ We want to exploit tools of automatic theorem proving to generate them

◦ Would allow us to create a database of problems !

Automatic generation of proofs
Many systems and methods exist :

◦ GEOM, using Prolog (Coelho, Pereira, 1986)

◦ Fixpoint method (Chou, Gao, Zhang, 2000)

◦ Area method (Janičić, Narboux, Quaresma, 2012)

◦ GeoGebra ART (Botana, Hohenwarter, Janičić, Kovács, Petrović, Recio, Weitzhofer, 2015)

◦ Arithmetization, using Tarski’s axioms (Boutry, Braun, Narboux, 2016)

◦ … and many others

There is also the possibility of developping a custom deductive engine

Constraints
We need the proof, not a validation (true / false)

The proofs must be writable by a high-school student
◦ No algebraic proof

◦ Control of the accepted properties needed

We need all the valid proofs
◦ … and therefore, guarantee that all the proofs have been found

◦ Explosion of the number of possibilities

The good news
Didacticians can provide the figure containing all possible « intermediate constructions »

No ◦ need to explore and create new elements

Finite◦ (and relatively small) set of geometric elements

We can use inferential shortcuts
The ◦ properties used in the program can be less « mathematically rigorous »

Can ◦ save a lot of computation

We want all the proofs : few work is lost
Even if an ◦ inference path does not lead to the quickest proof, it can lead to another one

Custom deductive engine
Very early prototype

◦ Less than 250 lines of code

Based on Prolog
◦ Functional language based on facts and rules

◦ Divided in a module for the engine, one for the properties and one for the hypotheses of each problem

◦ The engine is minimalistic, Prolog handles all the work

Is currently able to generate all the proofs of the rectangle problem
◦ Still work to do to generate the HPDIC graph

Promising avenue for the future

Conclusion

QED-Tutrix would immensely benefit from an automatic proof generator

We have several didactic constraints and inputs that change the paradigm of GATP usage

It may be easier to implement a custom GATP (?)

We are open to suggestions and comments !

Thank you for your attention !

Inferential shortcut
Prove that AB Ʇ CD

Inferential shortcut
Prove that AB Ʇ CD

“ A and B are both equidistant of C and D,
therefore (AB) is the perpendicular bisector
of [CD]. Therefore, (AB) is perpendicular to
(CD)”

Inferential shortcut
C and D are on the same circle, of center A,
therefore C and D are equidistant of A.

C and D are on the same circle, of center B, therefore
C and D are equidistant of B.

C and D are equidistant of A, therefore A is on the
perpendicular bisector of [CD].

C and D are equidistant of B, therefore B is on the
perpendicular bisector of [CD].

A is on the perpendicular bisector of [CD], B is also
on the perpendicular bisector of [CD], and A and B
are distinct, therefore (AB) is the perpendicular
bisector of [CD].

The right bisector of a segment is perpendicular to
the line associated with this segment, therefore (AB)
is perpendicular to (CD).

The parallelogram problem
In the following figure, if E is any point of
this parallelogram’s AC diagonal, what
relation is there between the areas of the
triangles AEB and AED?

HPDIC graph for the parallelogram
problem

Crowdsourcing
Other possibility (complementary ?) : allow teachers to enrich the graph by adding a valid,
previously unknown, proof

Requires a willing community

Ensures the validity of QED-X in the future

