

Improving QED-Tutrix by automating the generation of proofs

Ludovic Font

Philippe R. Richard

ThEdu'17, Gothenburg, Sweden, August 2017

Who are we ?

Ludovic Font

- PhD student in computer science at the École Polytechnique de Montréal
- Research project : improve the software QED-Tutrix by handling connected problems
- Interests : A.I., education, mathematics, aeronautics

Philippe R. Richard

- Professor in mathematics education at the Université de Montréal
- Research interests : mathematics education, mathematical reasoning and proving
- Tutors four students on the QED-Tutrix project (two PhD, two masters)

Presentation of QED-Tutrix

Product of the PhDs of Nicolas Leduc (computer science) and Michèle Tessier-Baillargeon (mathematics education)

Intelligent software designed to help students solving proof problems in geometry

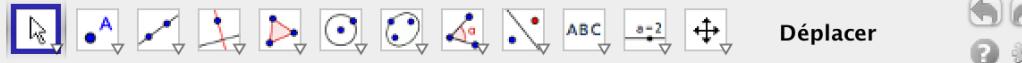
Aimed mainly at high-school students

Provides an interface to input the student's reasoning

Works by knowing in advance all the possible proofs for a problem

At every moment, the software tries to infer on which proof the student is currently working

Helps unblocking the student by gradually giving him hints on the step he's stuck on


Triangle inscrit

Soit un cercle de diamètre BC, d la médiatrice du segment BC et A un point d'intersection du cercle et de d. Quelle est la nature du triangle ABC?

Figure Phrases Schéma Rédaction

Fichier Éditer Affichage Options Outils Fenêtre Aide

Prof. Turing > Salut! À toi de jouer...

Eleve > T:ABC est un triangle isocèle en P:A

Prof. Turing > :) Bon départ!

Prof. Turing > Quelle propriété ou définition te permet de conclure que T:ABC est un triangle isocèle en P:A?

Eleve > La mesure du segment S:AB = la mesure du segment S:AC

Prof. Turing > :) J'ai hâte de voir la suite.

Eleve > La mesure de l'angle (A:BAC) = V:0090

Prof. Turing > :)

Prof. Turing > Pour quelle justification les antécédents : La mesure de l'angle (A:BAC) = V:0090, et T:ABC est un triangle isocèle en P:A, sont ils des préalables?

Prof. Turing > Recherche la définition du triangle isocèle-rectangle.

Eleve > Un triangle isocèle-rectangle est un triangle rectangle dont les deux cathètes sont de même mesure. On peut aussi dire, un triangle isocèle avec un angle droit

Prof. Turing > :) Continue!

Eleve > L'angle A:BAC est droit

Prof. Turing > :)

Eleve > Un triangle rectangle est un triangle ayant un angle droit

Prof. Turing > :)

Prof. Turing > Quelles affirmations sont nécessaires pour déduire la conclusion : L'angle A:BAC est droit, à l'aide de la justification : Un triangle rectangle est un triangle ayant un angle droit?

Prof. Turing > Que peux-tu déduire concernant la nature du triangle T:ABO?

Eleve > T:ABC est un triangle rectangle

Prof. Turing > :) Je pense avoir reconnu ta stratégie, tu peux maintenant consulter l'onglet rédaction.

Saisie:

Utiliser l'onglet "Phrases" pour sélectionner une proposition

Soumettre

Triangle inscrit

Soit un cercle de diamètre BC, d la médiatrice du segment BC et A un point d'intersection du cercle et de d. Quelle est la nature du triangle ABC?

Figure
Phrases
Schéma
Rédaction

Sélectionner une proposition

hypothèse	justification	résultat
<input type="checkbox"/> Semblable/Similitude <input type="checkbox"/> Sin <input type="checkbox"/> Somme <input type="checkbox"/> Sommet <input type="checkbox"/> Supplémentaire <input type="checkbox"/> Symétrie <input type="checkbox"/> Sécante <input type="checkbox"/> Tan (Trigo) <input type="checkbox"/> Trapèze <input checked="" type="checkbox"/> Triangle <input type="checkbox"/> Unité	<input type="checkbox"/> Perpendicularité <input type="checkbox"/> Point <input type="checkbox"/> Polygone <input type="checkbox"/> Pythagore <input type="checkbox"/> Quadrilatère <input type="checkbox"/> Rapport <input type="checkbox"/> Rapport trigonométrique <input checked="" type="checkbox"/> Rectangle <input type="checkbox"/> Segment <input type="checkbox"/> Semblable/Similitude <input type="checkbox"/> Sin <input type="checkbox"/> Somme	<input type="checkbox"/> Angle <input type="checkbox"/> Cathète <input type="checkbox"/> Cos <input type="checkbox"/> Côté <input type="checkbox"/> Droit

tan(?) = m(?) / m(?)
sin(?) = ? / ?
sin(?) = m(?) / m(?)
? est isocèle rectangle en ?
?^2 + ?^2 = ?^2
 ? est un triangle rectangle
 ? est un triangle rectangle en ?
cos(?) = m(?) / m(?)
tan(?) = ? / ?

Réinitialiser
Choisir

Utiliser l'onglet "Phrases" pour sélectionner une proposition

Soumettre

Prof. Turing > Salut! À toi de jouer...

Eleve > T:ABC est un triangle isocèle en P:A

Prof. Turing > :) Bon départ!

Prof. Turing > Quelle propriété ou définition te permet de conclure que T:ABC est un triangle isocèle en P:A?

Eleve > La mesure du segment S:AB = la mesure du segment S:AC

Prof. Turing > :) J'ai hâte de voir la suite.

Eleve > La mesure de l'angle (A:BAC) = V:0090

Prof. Turing > :)

Prof. Turing > Pour quelle justification les antécédents : La mesure de l'angle (A:BAC) = V:0090, et T:ABC est un triangle isocèle en P:A, sont ils des préalables?

Prof. Turing > Recherche la définition du triangle isocèle-rectangle.

Eleve > Un triangle isocèle-rectangle est un triangle rectangle dont les deux cathètes sont de même mesure. On peut aussi dire, un triangle isocèle avec un angle droit

Prof. Turing > :) Continue!

Eleve > L'angle A:BAC est droit

Prof. Turing > :)

Eleve > Un triangle rectangle est un triangle ayant un angle droit

Prof. Turing > :)

Prof. Turing > Quelles affirmations sont nécessaires pour déduire la conclusion : L'angle A:BAC est droit, à l'aide de la justification : Un triangle rectangle est un triangle ayant un angle droit?

Prof. Turing > Que peux-tu déduire concernant la nature du triangle T:ABO?

Eleve > T:ABC est un triangle rectangle

Prof. Turing > :) Je pense avoir reconnu ta stratégie, tu peux maintenant consulter l'onglet rédaction.

Soit un cercle de diamètre BC, d la médiatrice du segment BC et A un point d'intersection du cercle et de d. Quelle est la nature du triangle ABC?

Figure | Phrases | Schéma | Rédaction

Le texte de rédaction est susceptible de changer au fur et à mesure de tes actions. Une fois ta démonstration complétée, tu peux cliquer sur celle-ci pour voir les codes couleurs des hypothèses (turquoise), des résultats(jaune), des justifications (vert) et de la conclusion (violet) apparaître.

Comme _____, alors, selon la propriété qui dit «Un triangle rectangle est un triangle ayant un angle droit» , _____.

Comme _____, alors, selon la propriété qui dit «_____» , _____.

Comme _____, _____, _____, et _____, alors, selon la propriété qui dit «_____» , _____.

Comme _____, alors, selon la propriété qui dit «_____» , La mesure du segment S:AB = la mesure du segment S:AC.

Comme La mesure du segment S:AB = la mesure du segment S:AC , alors, selon la propriété qui dit «_____» , T:ABC est un triangle isocèle en P:A.

Comme _____, alors, selon la propriété qui dit «Un triangle rectangle est un triangle ayant un angle droit» , _____.

Comme _____, alors, selon la propriété qui dit «Un triangle rectangle est un triangle ayant un angle droit» , L'angle A:BAC est droit .

Comme L'angle A:BAC est droit , alors, selon la propriété qui dit «Un triangle rectangle est un triangle ayant un angle droit» , T:ABC est un triangle rectangle .

Comme T:ABC est un triangle isocèle en P:A , et T:ABC est un triangle rectangle , alors, selon la propriété qui dit «Un triangle isocèle-rectangle est un triangle rectangle dont les deux cathètes sont de même mesure. On peut aussi dire, un triangle isocèle avec un angle droit» , _____.

Prof. Turing > Salut! À toi de jouer...

Eleve > T:ABC est un triangle isocèle en P:A

Prof. Turing > :) Bon départ!

Prof. Turing > Quelle propriété ou définition te permet de conclure que T:ABC est un triangle isocèle en P:A?

Eleve > La mesure du segment S:AB = la mesure du segment S:AC

Prof. Turing > :) J'ai hâte de voir la suite.

Eleve > La mesure de l'angle (A:BAC) = V:0090

Prof. Turing > :)

Prof. Turing > Pour quelle justification les antécédents : La mesure de l'angle (A:BAC) = V:0090, et T:ABC est un triangle isocèle en P:A, sont ils des préalables?

Prof. Turing > Recherche la définition du triangle isocèle-rectangle.

Eleve > Un triangle isocèle-rectangle est un triangle rectangle dont les deux cathètes sont de même mesure. On peut aussi dire, un triangle isocèle avec un angle droit

Prof. Turing > :) Continue!

Eleve > L'angle A:BAC est droit

Prof. Turing > :)

Eleve > Un triangle rectangle est un triangle ayant un angle droit

Prof. Turing > :)

Prof. Turing > Quelles affirmations sont nécessaires pour déduire la conclusion : L'angle A:BAC est droit, à l'aide de la justification : Un triangle rectangle est un triangle ayant un angle droit?

Prof. Turing > Que peux-tu déduire concernant la nature du triangle T:ABO?

Eleve > T:ABC est un triangle rectangle

Prof. Turing > :) Je pense avoir reconnu ta stratégie, tu peux maintenant consulter l'onglet rédaction.

Utiliser l'onglet "Phrases" pour sélectionner une proposition

Soumettre

1

Soit un cercle de diamètre BC, d la médiatrice du segment BC et A un point d'intersection du cercle et de d. Quelle est la nature du triangle ABC?

Triangle inscrit

Figure Phrases Schéma Rédaction

Fichier Editer Affichage Options Outils Fenêtre Aide

Utiliser l'onglet "Phrases" pour sélectionner une proposition

Prof. Turing > Salut à toi de jouer...

Elève > T-ABC est un triangle isocèle en P.A

Prof. Turing > J' t'en dépare

Prof. Turing > Quelle propriété ou définition te permet de conclure que T-ABC est un triangle isocèle en P.A?

Elève > La mesure de segment S-AB = la mesure du segment S-AC

Prof. Turing > J' t'ai hâte de voir la suite.

Elève > La mesure de l'angle (A-BAC) = <00090

Prof. Turing > J'

Prof. Turing > Pour quelle justification les antécédents : La mesure de l'angle (A-BAC) = <00090, et T-ABC est un triangle isocèle en P.A. sont-ils des préalables?

Prof. Turing > Recherche la définition du triangle isocèle-rectangle

Elève > Un triangle isocèle-rectangle est un triangle rectangle dont les deux cathètes sont de même mesure. On peut aussi dire, un triangle isocèle avec un angle droit

Prof. Turing > J' Continue!

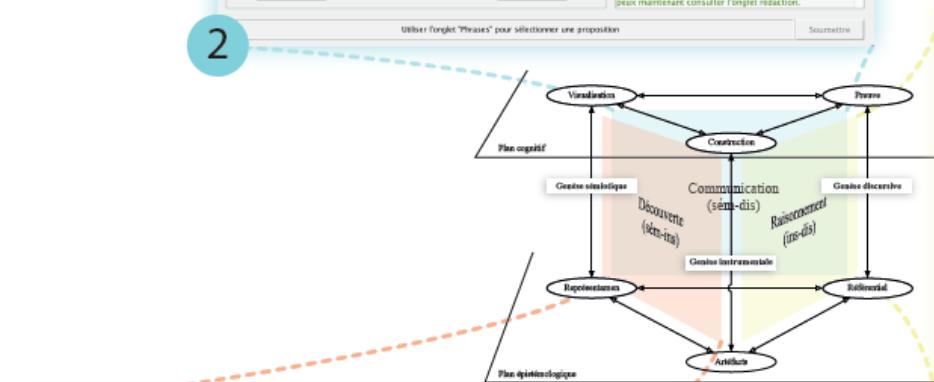
Elève > L'angle A-BAC est droit

Prof. Turing > J'

Elève > Un triangle rectangle est un triangle ayant un angle droit

Prof. Turing > J'

Elève > Quelles affirmations sont nécessaires pour déduire la conclusion : L'angle A-BAC est droit, à l'aide de la justification : Un triangle rectangle est un triangle ayant un angle droit?


Prof. Turing > Que peux-tu déduire concernant la nature du triangle T-ABC?

Elève > T-ABC est un triangle rectangle

Prof. Turing > J' Je pense avoir收回 la stratégie, tu peux maintenant consulter l'onglet rédaction.

Saisie

Utiliser l'onglet "Phrases" pour sélectionner une proposition Soumettre

3

Triangle inscrit

Figure Phrases Schéma Rédaction

Fichier Editer Affichage Options Outils Fenêtre Aide

Utiliser l'onglet "Phrases" pour sélectionner une proposition

Prof. Turing > Salut à toi de jouer...

Elève > T-ABC est un triangle isocèle en P.A

Prof. Turing > J' t'en dépare

Prof. Turing > Quelle propriété ou définition te permet de conclure que T-ABC est un triangle isocèle en P.A?

Elève > La mesure de segment S-AB = la mesure du segment S-AC

Prof. Turing > J' t'ai hâte de voir la suite.

Elève > La mesure de l'angle (A-BAC) = <00090

Prof. Turing > J'

Prof. Turing > Pour quelle justification les antécédents : La mesure de l'angle (A-BAC) = <00090, et T-ABC est un triangle isocèle en P.A. sont-ils des préalables?

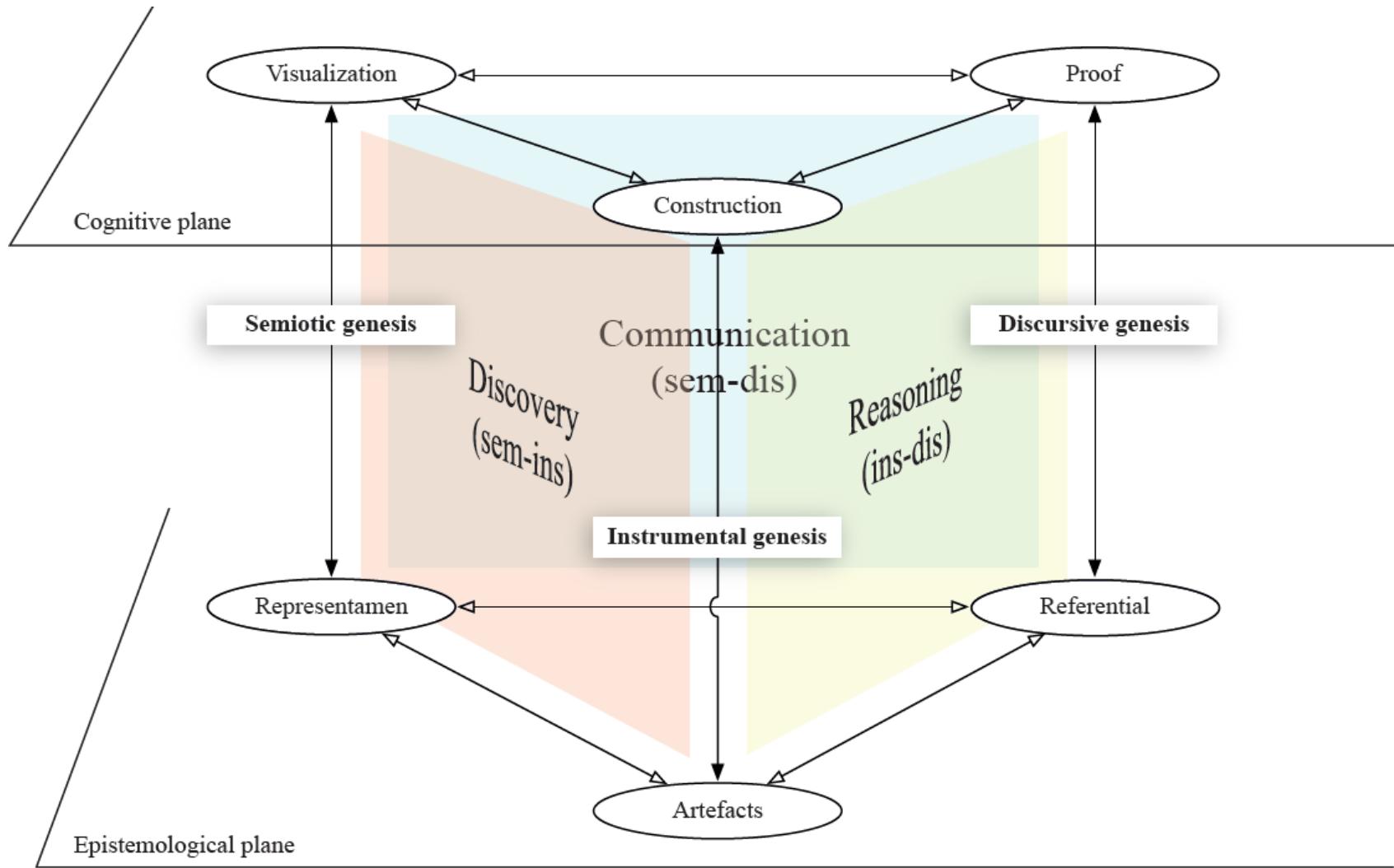
Prof. Turing > Recherche la définition du triangle isocèle-rectangle

Elève > Un triangle isocèle-rectangle est un triangle rectangle dont les deux cathètes sont de même mesure. On peut aussi dire, un triangle isocèle avec un angle droit

Prof. Turing > J' Continue!

Elève > L'angle A-BAC est droit

Prof. Turing > J'


Elève > Quelles affirmations sont nécessaires pour déduire la conclusion : L'angle A-BAC est droit, à l'aide de la justification : Un triangle rectangle est un triangle ayant un angle droit?

Prof. Turing > Que peux-tu déduire concernant la nature du triangle T-ABC?

Elève > T-ABC est un triangle rectangle

Prof. Turing > J' Je pense avoir收回 la stratégie, tu peux maintenant consulter l'onglet rédaction.

Utiliser l'onglet "Phrases" pour sélectionner une proposition Soumettre

Internal representation : HPDIC graphs

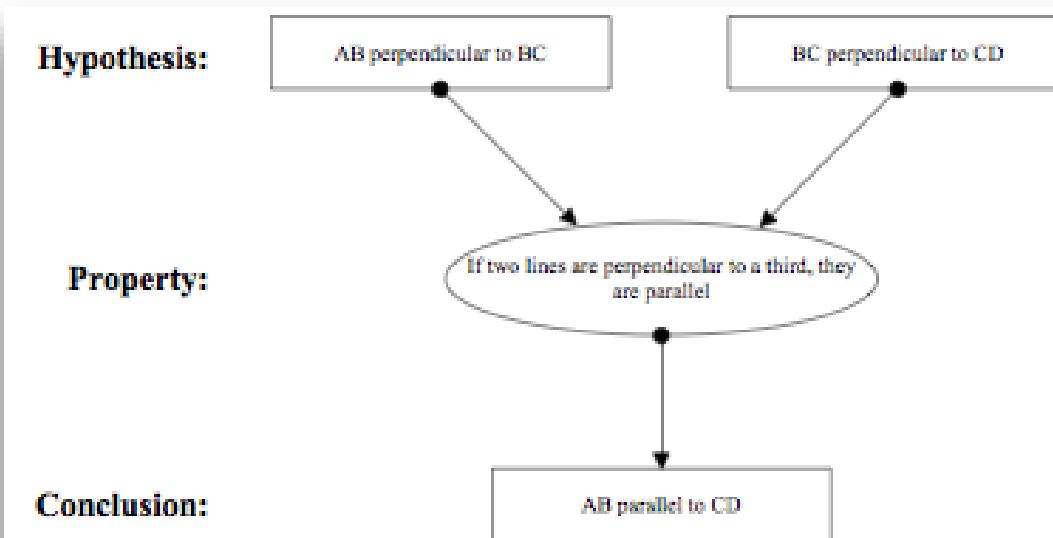
Given three lines, AB, BC, and CD, with AB perpendicular to BC et BC perpendicular to CD, what can we say about the lines AB and CD?

Internal representation : HPDIC graphs

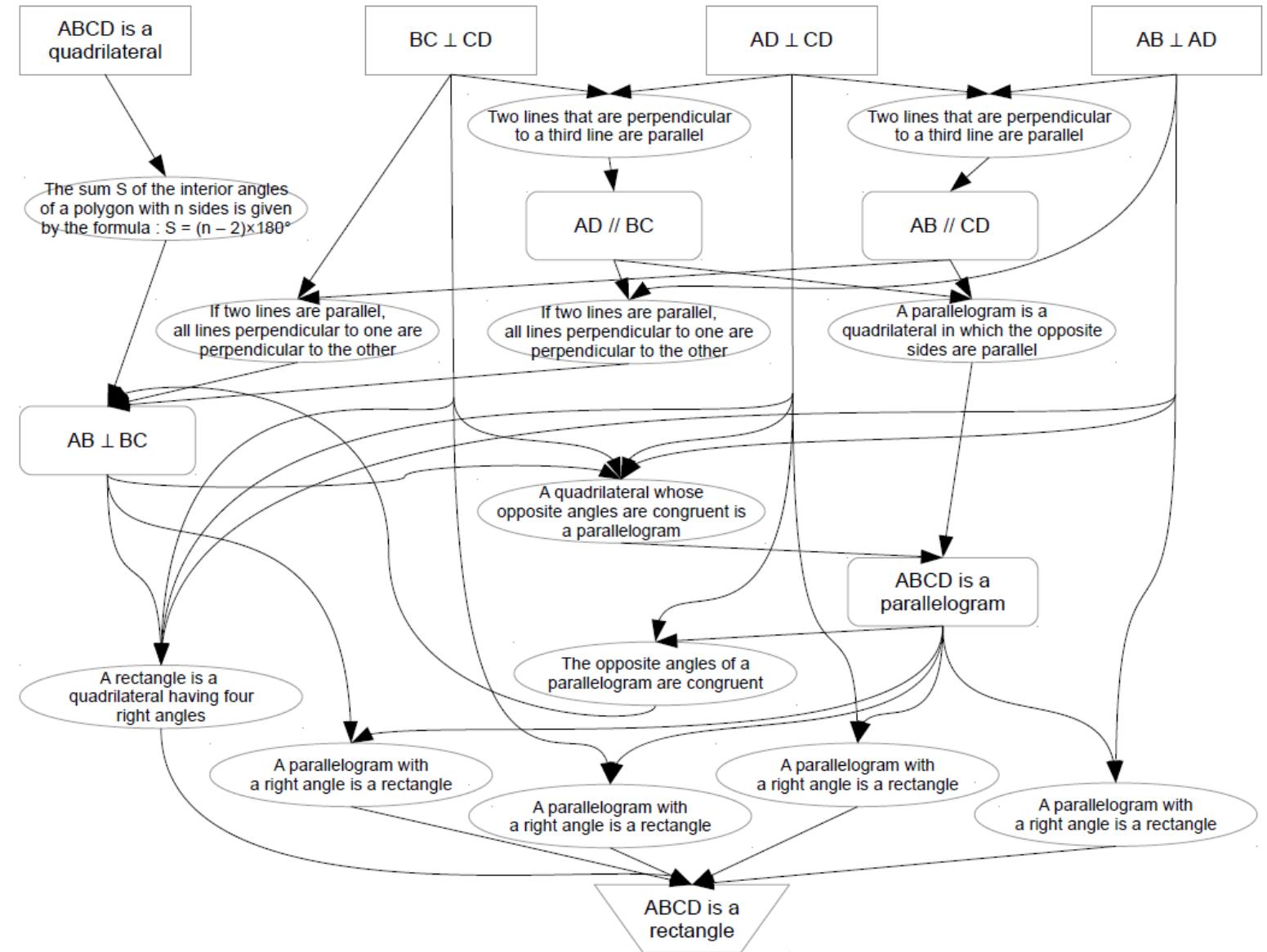
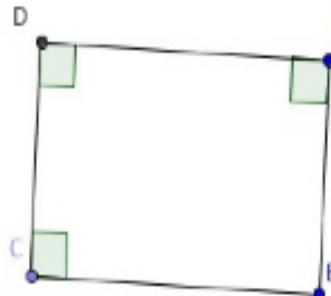
Given three lines, AB, BC, and CD, with AB perpendicular to BC et BC perpendicular to CD, what can we say about the lines AB and CD?

Hypothesis:

AB perpendicular to BC


BC perpendicular to CD

Conclusion:



AB parallel to CD

Internal representation : HPDIC graphs

Given three lines, AB, BC, and CD, with AB perpendicular to BC et BC perpendicular to CD, what can we say about the lines AB and CD?

Prove that a quadrilateral with three right angles is a rectangle.

Internal representation

In other words, a problem is, internally, completely represented by :

- Its hypotheses
- Its conclusion
- Its HPDIC graph
- (a GeoGebra figure, for the student)

To include a problem into QED-Tutrix, the creation of the HPDIC graph is necessary

QED-Tutrix current weaknesses

Needs the complete set of all possible proofs for a problem

- Only the proofs accessible for high-school students
- Can quickly represent a high number (over 5 million for one problem)
- Currently, the proofs must be written by hand !
- As a result, QED-Tutrix only includes 5 problems

The current unblocking process could be improved

- Gradually providing more detailed hints
- Close to what a teacher would do at first
- However, some students need more stimuli to get the necessary trigger

Planned improvements

Unblocking students by using connected problems

- Instead of giving hints, some teachers give another problem, connected to the blocking point
- Gives the student a more global vision
- Requires a strong database of problems

Automatically generating proofs

- Manually writing proofs is tedious and time-consuming
- We want to exploit tools of automatic theorem proving to generate them
- Would allow us to create a database of problems !

Automatic generation of proofs

Many systems and methods exist :

- GEOM, using Prolog (Coelho, Pereira, 1986)
- Fixpoint method (Chou, Gao, Zhang, 2000)
- Area method (Janičić, Narboux, Quaresma, 2012)
- GeoGebra ART (Botana, Hohenwarter, Janičić, Kovács, Petrović, Recio, Weitzhofer, 2015)
- Arithmetization, using Tarski's axioms (Boutry, Braun, Narboux, 2016)
- ... and many others

There is also the possibility of developing a custom deductive engine

Constraints

We need the proof, not a validation (true / false)

The proofs must be writable by a high-school student

- No algebraic proof
- Control of the accepted properties needed

We need all the valid proofs

- ... and therefore, guarantee that all the proofs have been found
- Explosion of the number of possibilities

The good news

Didacticians can provide the figure containing all possible « intermediate constructions »

- No need to explore and create new elements
- Finite (and relatively small) set of geometric elements

We can use inferential shortcuts

- The properties used in the program can be less « mathematically rigorous »
- Can save a lot of computation

We want all the proofs : few work is lost

- Even if an inference path does not lead to the quickest proof, it can lead to another one

Custom deductive engine

Very early prototype

- Less than 250 lines of code

Based on Prolog

- Functional language based on facts and rules
- Divided in a module for the engine, one for the properties and one for the hypotheses of each problem
- The engine is minimalistic, Prolog handles all the work

Is currently able to generate all the proofs of the rectangle problem

- Still work to do to generate the HPDIC graph

Promising avenue for the future

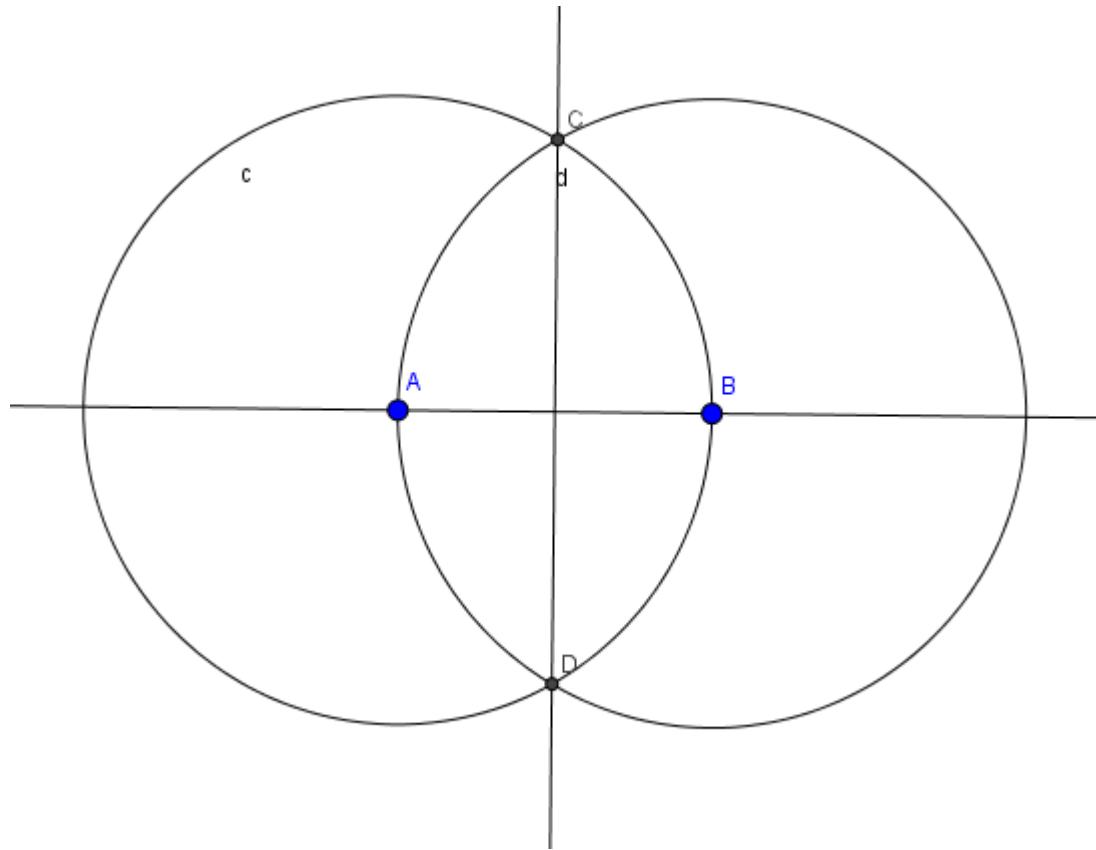
Conclusion

QED-Tutrix would immensely benefit from an automatic proof generator

We have several didactic constraints and inputs that change the paradigm of GATP usage

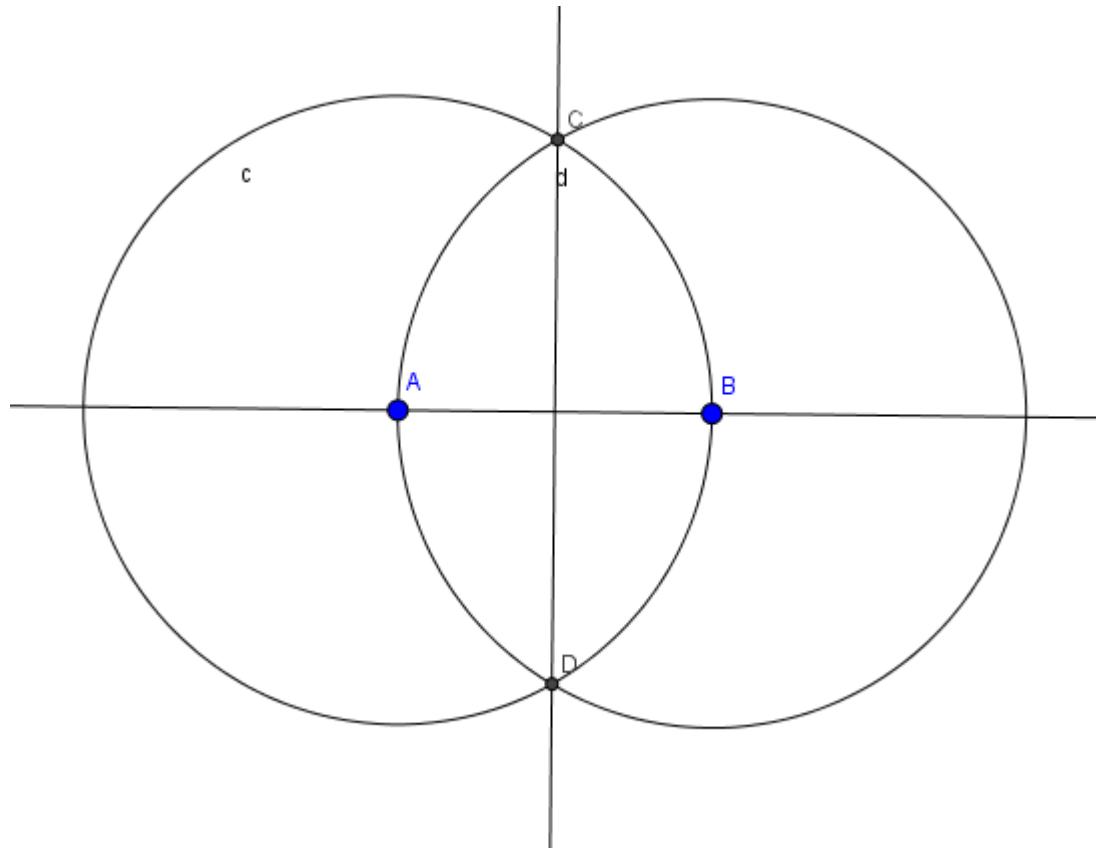
It may be easier to implement a custom GATP (?)

We are open to suggestions and comments !


Thank you for your attention !

Inferential shortcut

Prove that $AB \perp CD$



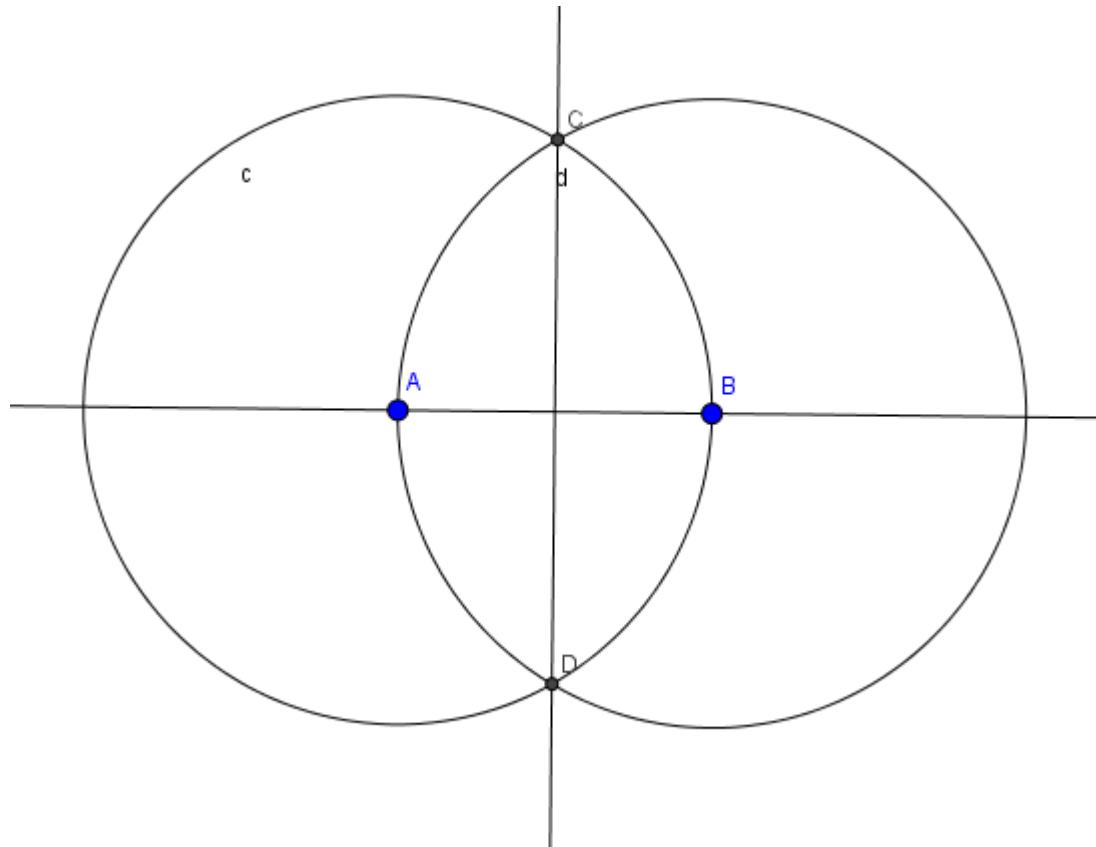
Inferential shortcut

Prove that $AB \perp CD$

“ A and B are both equidistant of C and D, therefore (AB) is the perpendicular bisector of $[CD]$. Therefore, (AB) is perpendicular to (CD) ”

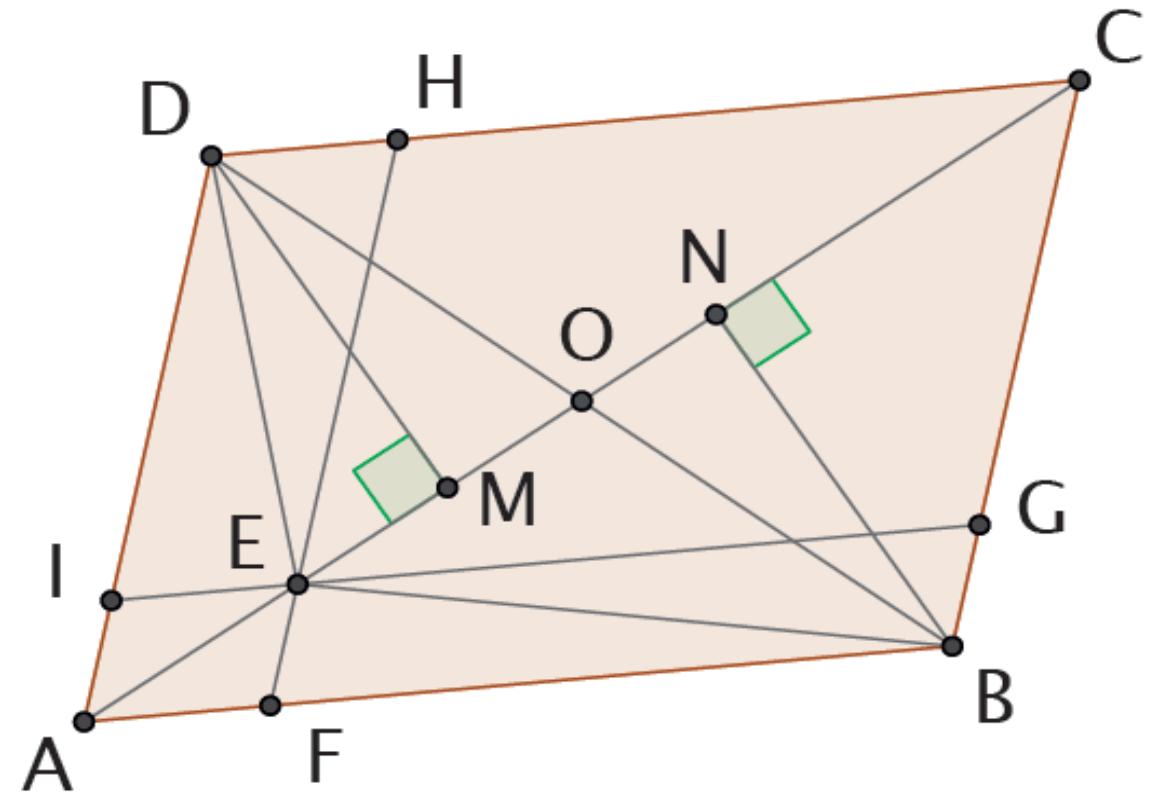
Inferential shortcut

C and D are on the same circle, of center A, therefore C and D are equidistant of A.

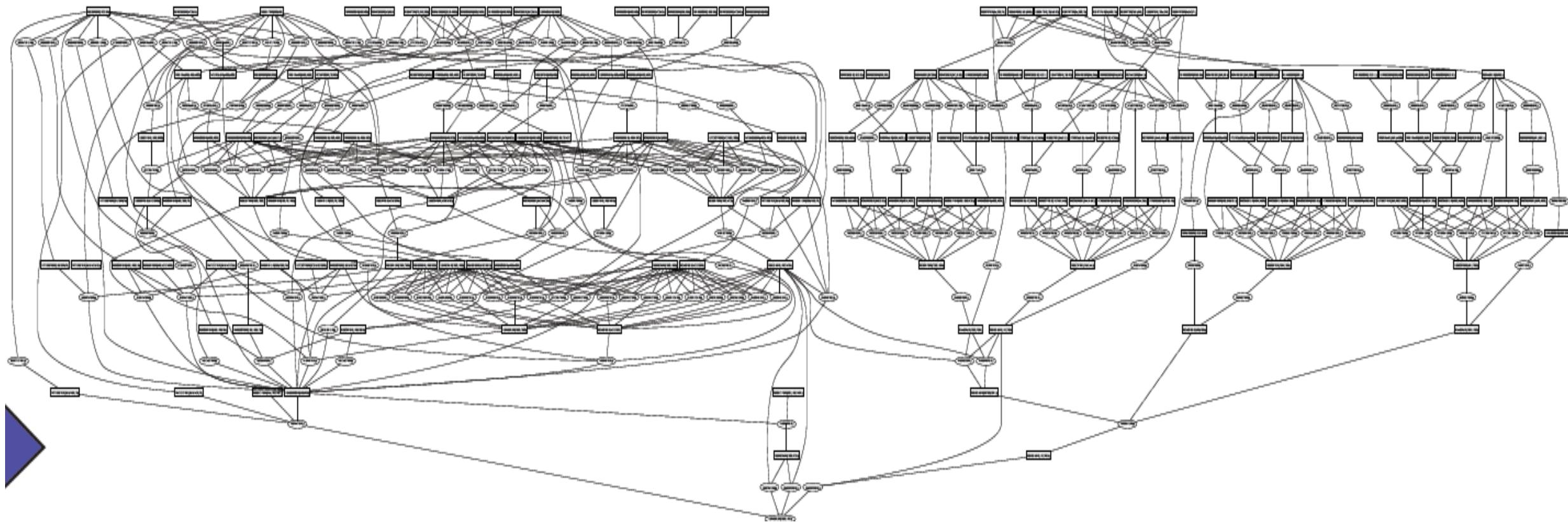

C and D are on the same circle, of center B, therefore C and D are equidistant of B.

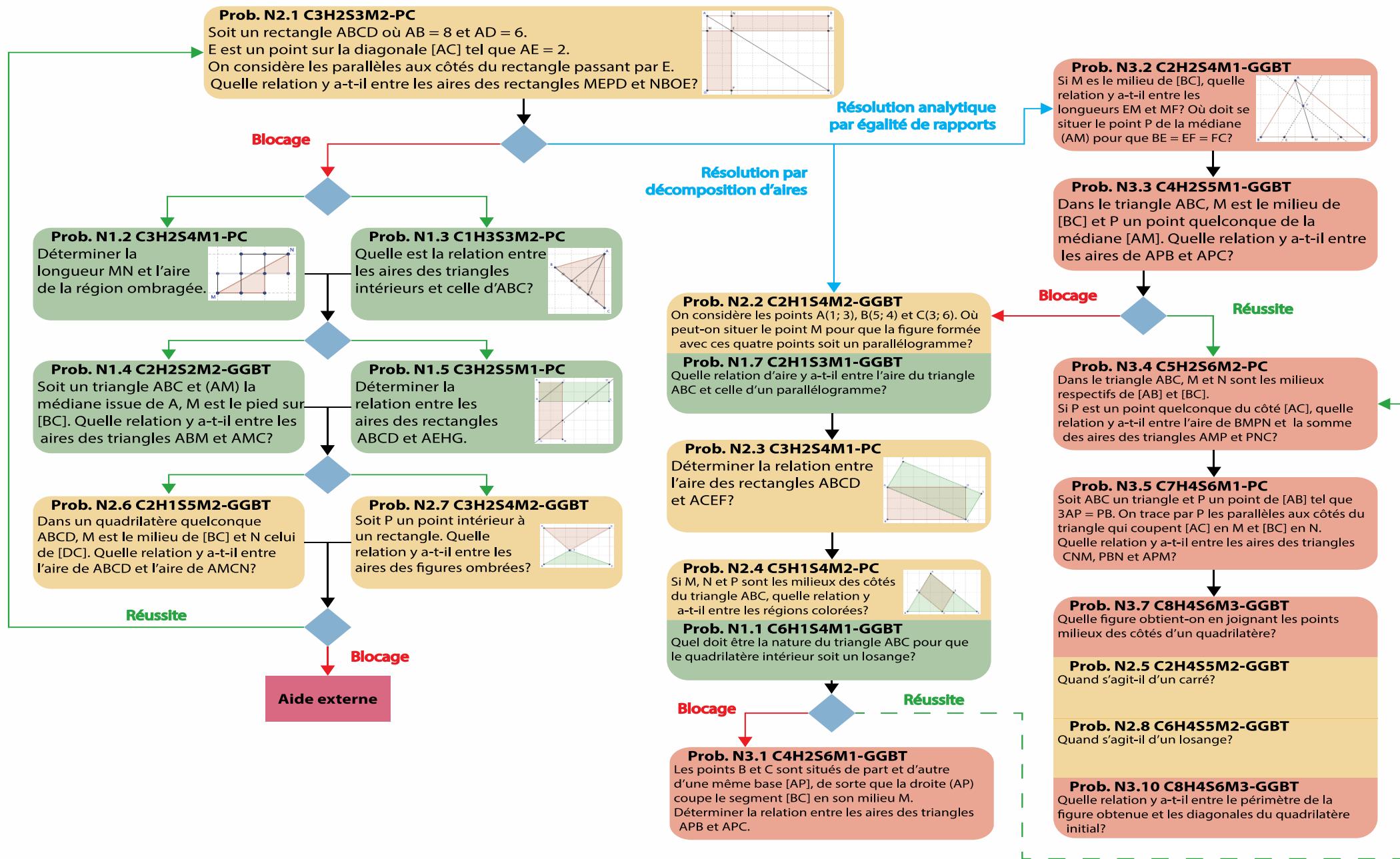
C and D are equidistant of A, therefore A is on the perpendicular bisector of [CD].

C and D are equidistant of B, therefore B is on the perpendicular bisector of [CD].


A is on the perpendicular bisector of [CD], B is also on the perpendicular bisector of [CD], and A and B are distinct, therefore (AB) is the perpendicular bisector of [CD].

The right bisector of a segment is perpendicular to the line associated with this segment, therefore (AB) is perpendicular to (CD).


The parallelogram problem


In the following figure, if E is any point of this parallelogram's AC diagonal, what relation is there between the areas of the triangles AEB and AED?

HPDIC graph for the parallelogram problem

Crowdsourcing

Other possibility (complementary ?) : allow teachers to enrich the graph by adding a valid, previously unknown, proof

Requires a willing community

Ensures the validity of QED-X in the future