

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases
independent
operation
application-theory

Techn. issues
architecture
programming
formulas
funding

Conclusions

Prototyping

“Systems that Explain Themselves” for Education

A long lasting interdisciplinary process

Walther Neuper

IICM Institute for Information Systems and Computer Media
Graz University of Technology,
RISC und IIS at Johannes Kepler University Linz

ThEdu'17 at CADE 26
6. Aug. 2017

Outline

1 Introduction

Existing prototypes/systems

2 Experiments with *ISAC*'s prototype on ...

covering all phases of problem solving
supporting independent learning
fostering abstraction by operation
connecting application — theory

3 Technical issues with prototyping in *ISAC*

System architecture
Efficient programming for authors
Formulas in \LaTeX quality
Funding

4 Conclusions

Outline

1 Introduction

Existing prototypes/systems

2 Experiments with *ISAC*'s prototype on ...

covering all phases of problem solving
supporting independent learning
fostering abstraction by operation
connecting application — theory

3 Technical issues with prototyping in *ISAC*

System architecture
Efficient programming for authors
Formulas in \LaTeX quality
Funding

4 Conclusions

Existing prototypes

*based
on ...*

E-Math	PVS	http://emath.eu/en/
Mathtoys	TODO	http://mathtoys.org/
Edukera	Coq	https://www.edukera.com/
ISAC	Isabelle	http://www.ist.tugraz.at/isac/
? others	?	?

Outline

1 Introduction

Existing prototypes/systems

2 Experiments with *ISAC*'s prototype on ...

covering all phases of problem solving
supporting independent learning
fostering abstraction by operation
connecting application — theory

3 Technical issues with prototyping in *ISAC*

System architecture
Efficient programming for authors
Formulas in \LaTeX quality
Funding

4 Conclusions

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction

prototypes

Experiments

all phases

independent
operation
application-theory

Techn. issues

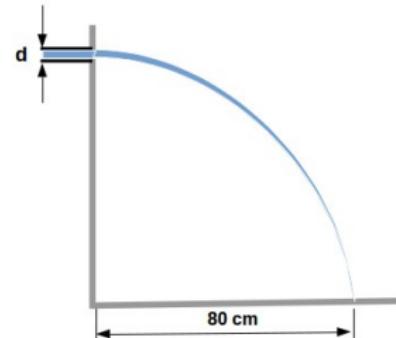
architecture
programming
formulas
funding

Conclusions

Start Example

NEW Examples Theories Problems Methods

Example browser Context On->Off


Examples

- IsacCore
- Biology
- Mechanics
- Telematik
- Statics
- Etc

 - Fractions
 - Algebra Einführung
 - Leb. Mathematik

From a horizontally lying pipe with a diameter of 8 cm there are 5 liters of water flowing out per second. At what height is this pipe, if the horizontal distance between outlet and incidence on the floor is 80 cm?

Note: First determine the exit velocity (by use of the volume of water per second and of the cross-section area.)

80 cm

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction

prototypes

Experiments

all phases

independent
operation
application-theory

Techn. issues

architecture
programming
formulas
funding

Conclusions

Start Example

NEW Examples Theories Problems Methods NEXT AUTO

Worksheet

From a horizontally lying pipe with a diameter of 8 cm there are 5 liters of water flowing out per second. At what height is this pipe, if the horizontal distance between outlet and incidence on the floor is 80 cm?

Note: First determine the exit velocity (by use of the volume of water per second and of the cross-section area.)

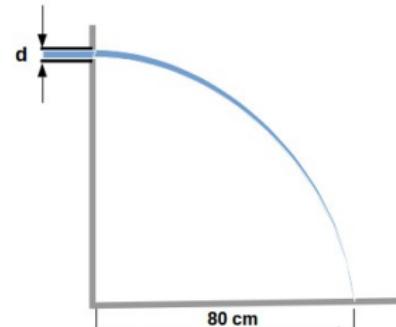


Diagram showing a horizontal pipe of diameter d attached to a vertical wall. Water is flowing out of the pipe at a height h from the floor. The horizontal distance from the pipe to the floor is 80 cm.

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments

all phases

independent
operation
application-theory

Techn. issues

architecture
programming
formulas
funding

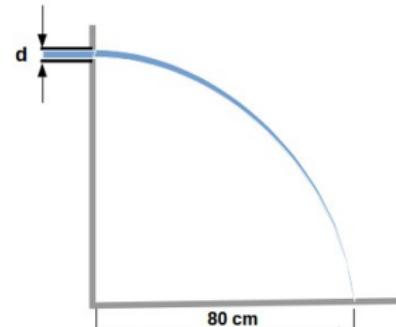
Conclusions

Modelling Phase finished

NEW Examples Theories Problems Methods NEXT AUTO

Worksheet

Model:


Given : Diameter $d = 8 \text{ cm}$, FlowRate $\phi = 5 \text{ l/s}$,
HorizontalDistance $s = 80 \text{ cm}$

Where : $d > 0 \wedge \phi > 0 \wedge s > 0$

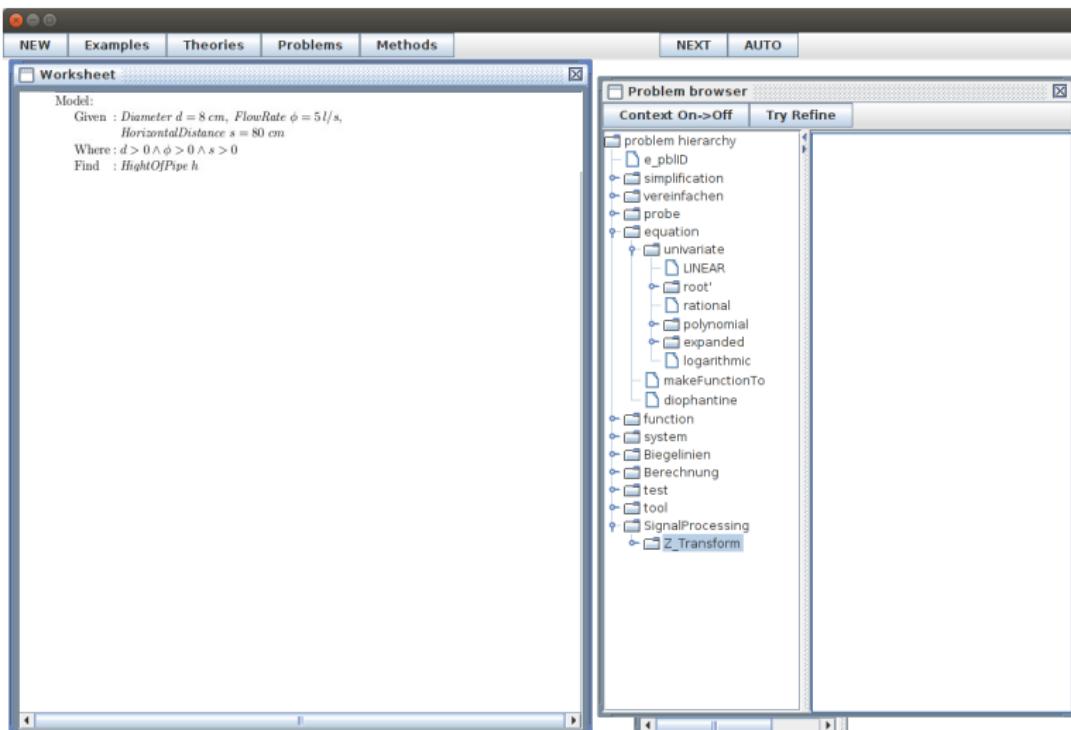
Find : HeightOfPipe h

From a horizontally lying pipe with a diameter of 8 cm there are 5 liters of water flowing out per second. At what height is this pipe, if the horizontal distance between outlet and incidence on the floor is 80 cm?

Note: First determine the exit velocity (by use of the volume of water per second and of the cross-section area.)

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper


Introduction
prototypes

Experiments
all phases
independent
operation
application-theory

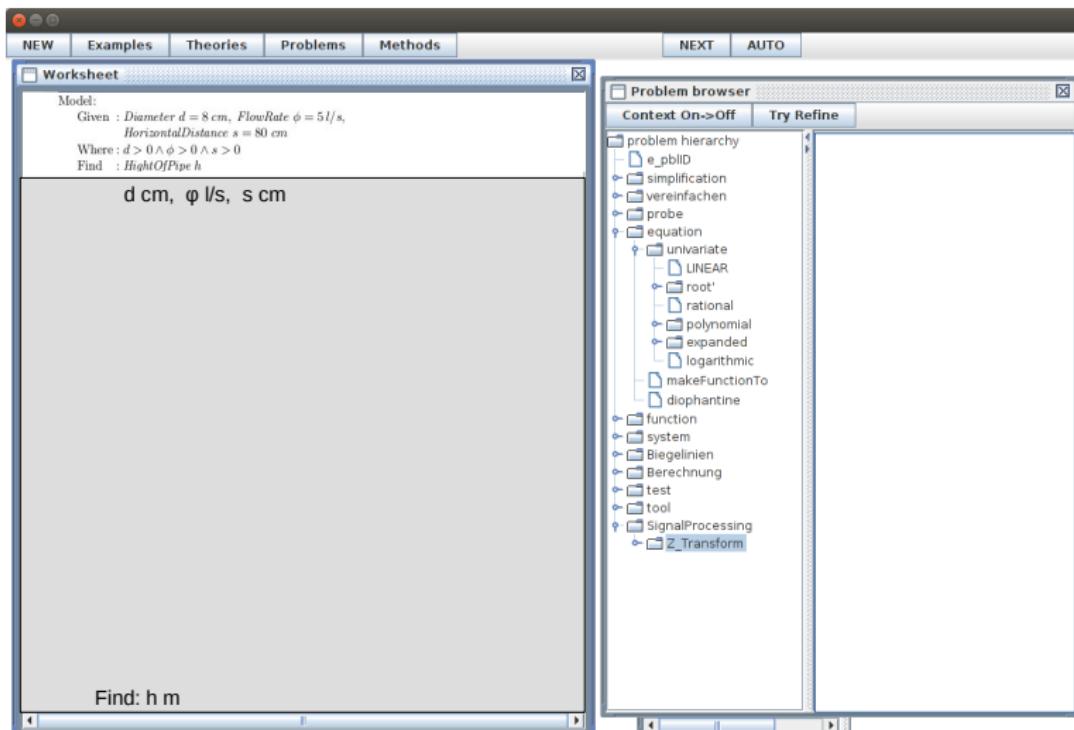
Techn. issues
architecture
programming
formulas
funding

Conclusions

Start Specification Phase

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper


Introduction
prototypes

Experiments
all phases
independent
operation
application-theory

Techn. issues
architecture
programming
formulas
funding

Conclusions

Start Specification Phase

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments

all phases

independent
operation
application-theory

Techn. issues

architecture
programming
formulas
funding

Conclusions

Aspect 1: knowledge not impl.

The screenshot shows a software interface with two main windows: a 'Worksheet' on the left and a 'Problem browser' on the right.

Worksheet (Left Window):

- Model:**
 - Given : Diameter $d = 8 \text{ cm}$, FlowRate $\phi = 5 \text{ l/s}$,
 - HorizontalDistance $s = 80 \text{ cm}$
- Where : $d > 0 \wedge \phi > 0 \wedge s > 0$
- Find : $HeightOfPipe h$

Find: $h \text{ m}$

Problem browser (Right Window):

- Context On->Off** **Try Refine**
- problem hierarchy**
 - e_{pbID}
 - simplification
 - vereinfachen
 - probe
 - equation**
 - univariate**
 - LINEAR
 - root'
 - rational
 - polynomial
 - expanded
 - logarithmic
 - makeFunctionTo
 - diophantine
 - function
 - system
 - Biegelinien
 - Berechnung
 - test
 - tool
 - SignalProcessing
 - Z_Transform

- Model:**
- Given:** $e_e = \text{solveFor } V_v$
- Where:** $e_e \text{ is_ratequation_in } V_v$
- Find:** $\text{solutions } V_v$
- Relate:** V_v

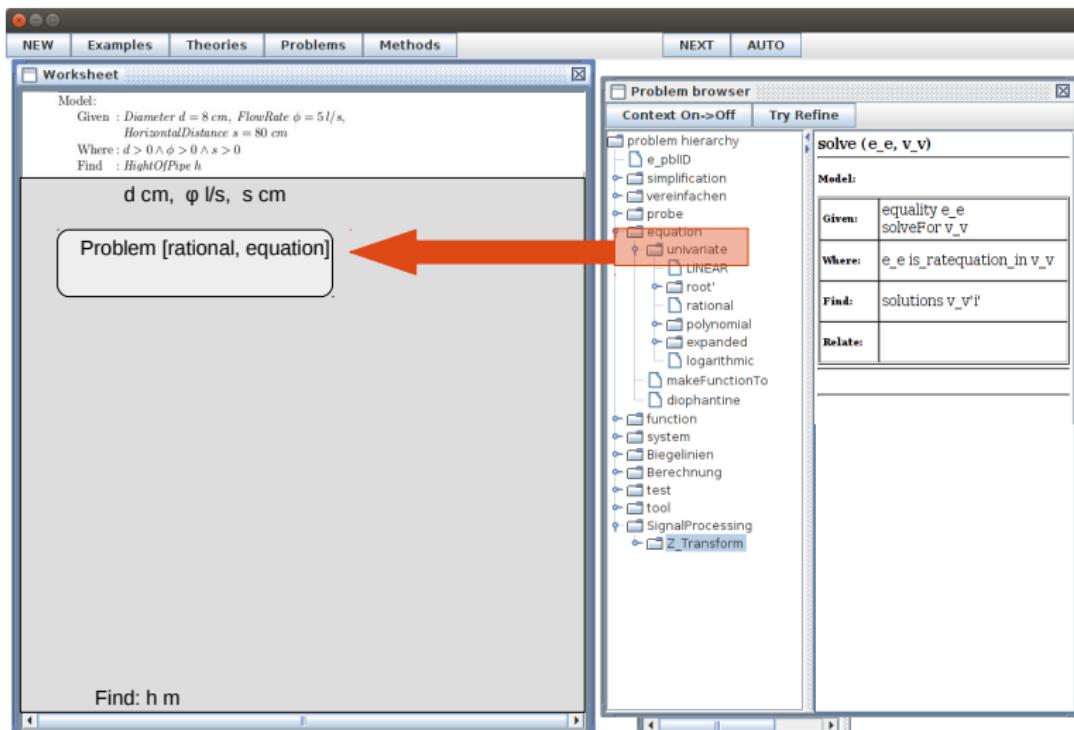
PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments

all phases


independent
operation
application-theory

Techn. issues

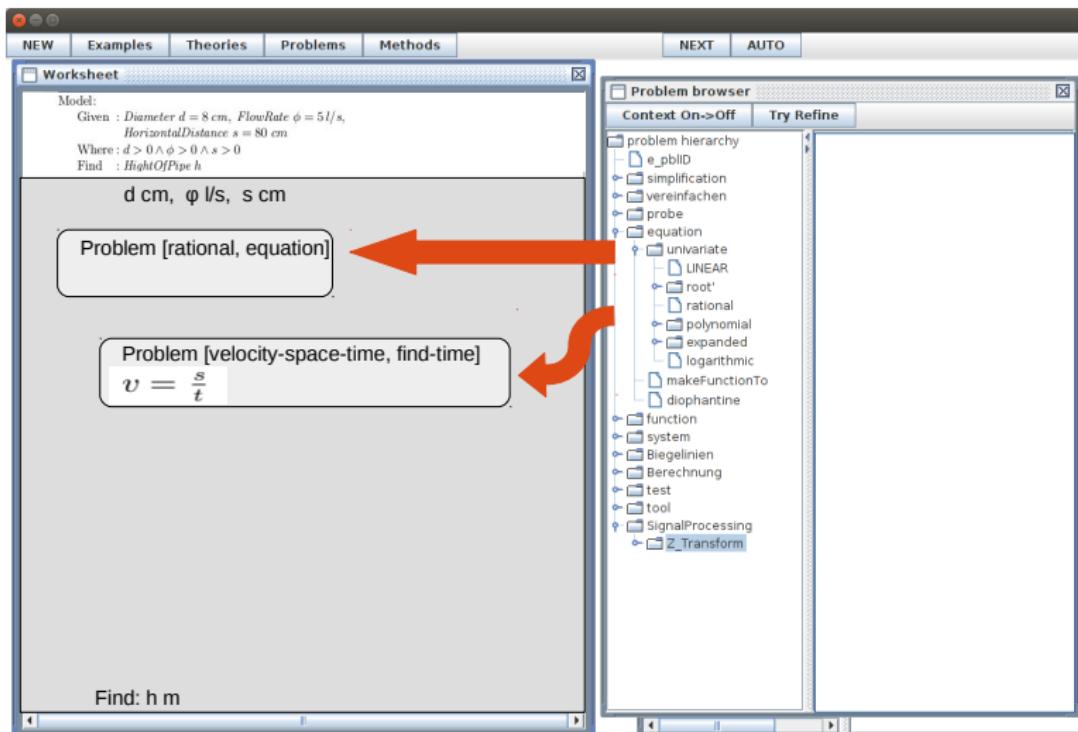
architecture
programming
formulas
funding

Conclusions

Aspect 2: select knowledge

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper


Introduction
prototypes

Experiments
all phases
independent
operation
application-theory

Techn. issues
architecture
programming
formulas
funding

Conclusions

Aspect 2: select relevant knowl.

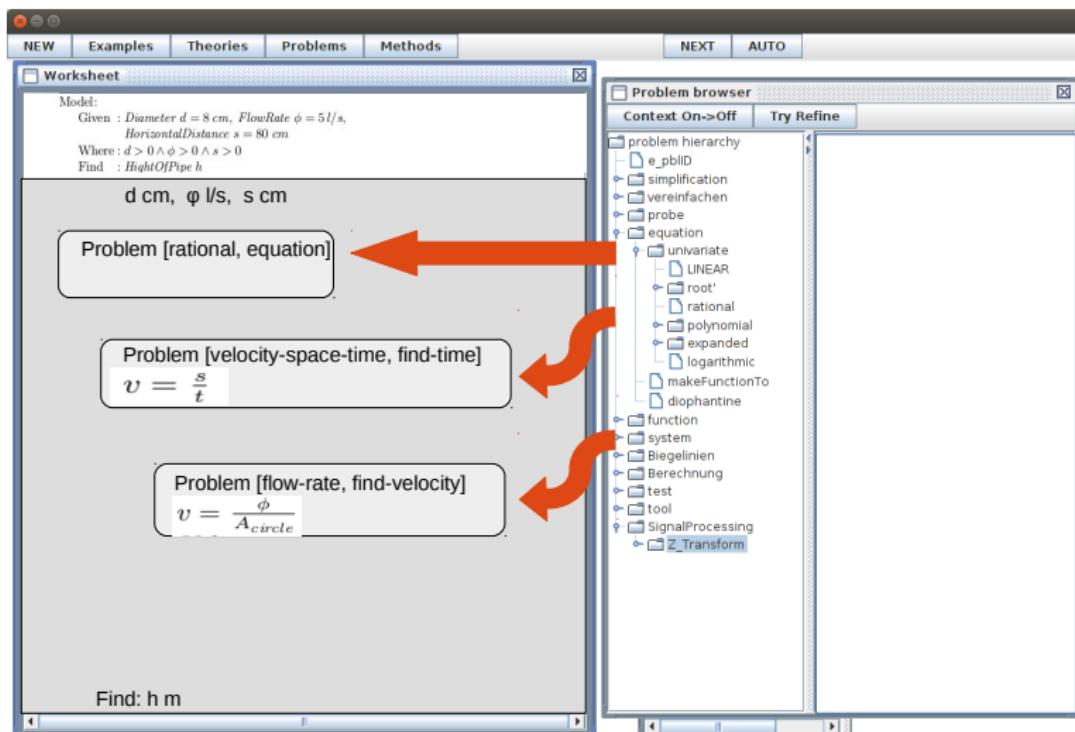
PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments

all phases


independent
operation
application-theory

Techn. issues

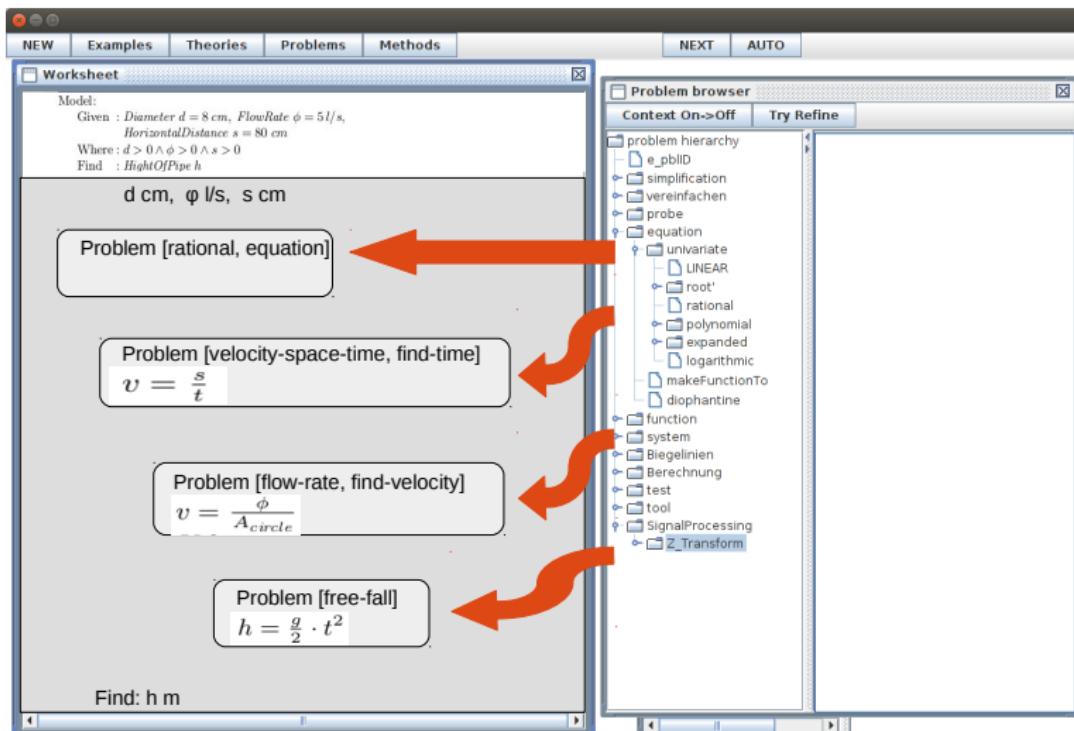
architecture
programming
formulas
funding

Conclusions

Aspect 2: select relevant knowl.

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper


Introduction
prototypes

Experiments
all phases
independent
operation
application-theory

Techn. issues
architecture
programming
formulas
funding

Conclusions

Aspect 2: select relevant knowl.

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments

all phases

independent
operation
application-theory

Techn. issues

architecture
programming
formulas
funding

Conclusions

Aspect 2: del. irrelevant knowl.

The image shows a software interface with two main windows: a 'Worksheet' window on the left and a 'Problem browser' window on the right.

Worksheet Window:

- Model:**
 - Given: $Diameter d = 8 \text{ cm}$, $FlowRate \phi = 5 \text{ l/s}$, $HorizontalDistance s = 80 \text{ cm}$
 - Where: $d > 0 \wedge \phi > 0 \wedge s > 0$
 - Find: $HeightOfPipe h$
- Results:**
 - Problem [rationality, find-dimension]**
 $d \text{ cm}, \phi \text{ l/s}, s \text{ cm}$
 - Problem [velocity-space-time, find-time]**
 $v = \frac{s}{t}$
 - Problem [flow-rate, find-velocity]**
 $v = \frac{\phi}{A_{circle}}$
 - Problem [free-fall]**
 $h = \frac{g}{2} \cdot t^2$
- Find:** $h \text{ m}$

A large red diagonal slash is drawn across the first two results boxes.

Problem browser Window:

- Context On->Off** **Try Refine**
- problem hierarchy**
 - e_pbID
 - simplification
 - vereinfachen
 - probe
 - equation
 - univariate
 - LINEAR
 - root'
 - rational
 - polynomial
 - expanded
 - logarithmic
 - makeFunctionTo
 - diophantine
 - function
 - system
 - Biegelinien
 - Berechnung
 - test
 - tool
 - SignalProcessing
 - Z_Transform

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases
independent
operation
application-theory

Techn. issues
architecture
programming
formulas
funding

Conclusions

Aspect 2: select relevant knowl.

The screenshot shows a software interface with two main windows: a 'Worksheet' on the left and a 'Problem browser' on the right.

Worksheet (Left Window):

- Model:**
 - Given: Diameter $d = 8 \text{ cm}$, FlowRate $\phi = 5 \text{l/s}$, HorizontalDistance $s = 80 \text{ cm}$
 - Where: $d > 0 \wedge \phi > 0 \wedge s > 0$
 - Find: h (HeightOfPipe)
- Equation:**
$$A_{circle} = \left(\frac{d}{2}\right)^2 \cdot \pi$$
- Equation:**
$$v = \frac{s}{t}$$
- Equation:**
$$v = \frac{\phi}{A_{circle}}$$
- Equation:**
$$h = \frac{g}{2} \cdot t^2$$
- Find:** $h \text{ m}$

Problem browser (Right Window):

- Context On->Off
- Try Refine
- problem hierarchy
 - e_pbID
 - simplification
 - vereinfachen
 - probe
 - equation
 - univariate
 - LINEAR
 - root'
 - rational
 - polynomial
 - expanded
 - logarithmic
 - makeFunctionTo
 - diophantine
 - function
 - system
 - Biegelinien
 - Berechnung
 - test
 - tool
 - SignalProcessing
 - Z_Transform

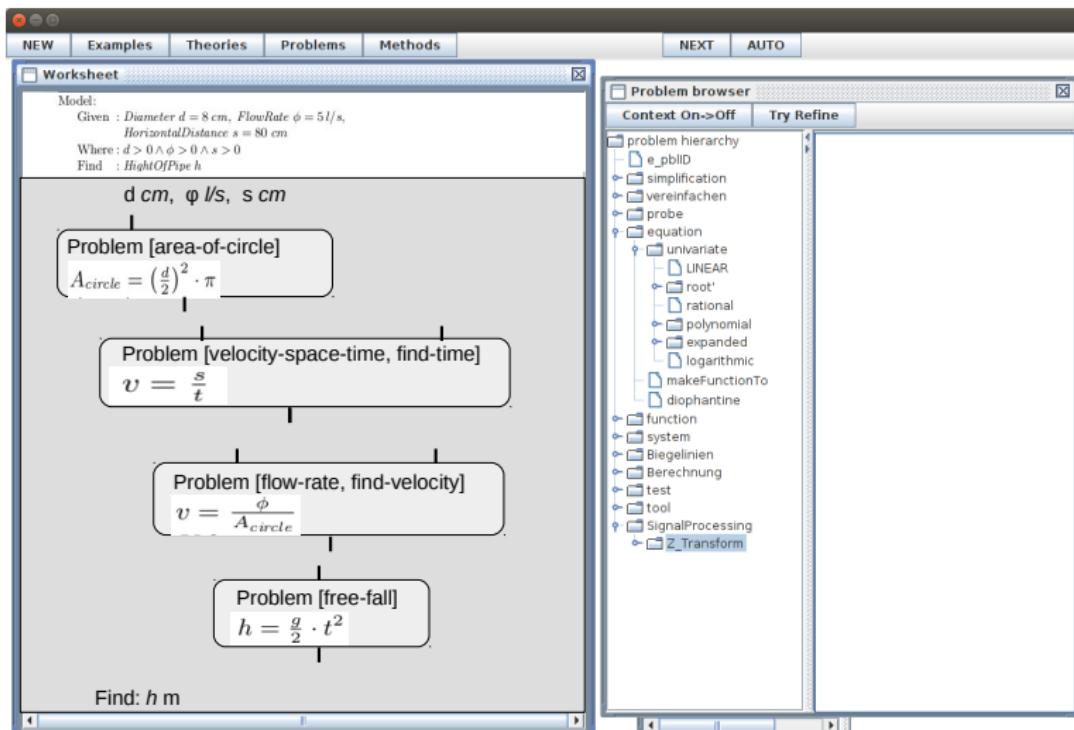
PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments

all phases


independent
operation
application-theory

Techn. issues

architecture
programming
formulas
funding

Conclusions

Aspect 3: is given, to be found?

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments

all phases

independent
operation
application-theory

Techn. issues

architecture
programming
formulas
funding

Conclusions

Aspect 3: is given, to be found?

Worksheet

Model:

Given : Diameter $d = 8 \text{ cm}$, FlowRate $\phi = 5 \text{l/s}$,
HorizontalDistance $s = 80 \text{ cm}$

Where : $d > 0 \wedge \phi > 0 \wedge s > 0$

Find : $h = ?$

Problem [area-of-circle]

$$A_{circle} = \left(\frac{d}{2}\right)^2 \cdot \pi$$

Problem [velocity-space-time, find-time]

$$v = \frac{s}{t}$$

Problem [flow-rate, find-velocity]

$$v = \frac{\phi}{A_{circle}}$$

Problem [free-fall]

$$h = \frac{g}{2} \cdot t^2$$

Find: $h \text{ m}$

Problem browser

Context On->Off Try Refine

problem hierarchy

- problemID
- simplification
- vereinfachen
- probe
- equation
 - univariate
 - LINEAR
 - root'
 - rational
 - polynomial
 - expanded
 - logarithmic
 - makeFunctionTo
 - diophantine
 - function
 - system
 - Biegelinien
 - Berechnung
 - test
 - tool
- SignalProcessing
 - Z_Transform

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments

all phases

independent
operation
application-theory

Techn. issues

architecture
programming
formulas
funding

Conclusions

Aspect 3: connect “given”–“find”

Worksheet

Model:

Given : Diameter $d = 8 \text{ cm}$, FlowRate $\phi = 5 \text{ l/s}$,
HorizontalDistance $s = 80 \text{ cm}$

Where : $d > 0 \wedge \phi > 0 \wedge s > 0$

Find : $h = ?$

Problem [area-of-circle]
 $A_{circle} = \left(\frac{d}{2}\right)^2 \cdot \pi$

Problem [velocity-space-time, find-time]
 $v = \frac{s}{t}$

Problem [flow-rate, find-velocity]
 $v = \frac{\phi}{A_{circle}}$

Problem [free-fall]
 $h = \frac{g}{2} \cdot t^2$

Find: $h \text{ m}$

Problem browser

Context On->Off Try Refine

problem hierarchy

- problemID
- simplification
- vereinfachen
- probe
- equation
 - univariate
 - LINEAR
 - root'
 - rational
 - polynomial
 - expanded
 - logarithmic
 - makeFunctionTo
 - diophantine
 - function
 - system
 - Biegelinien
 - Berechnung
 - test
 - tool
- SignalProcessing
 - Z_Transform

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments

all phases

independent
operation
application-theory

Techn. issues

architecture
programming
formulas
funding

Conclusions

Aspect 3: connect “given”–“find”

Worksheet

Model:

Given : Diameter $d = 8 \text{ cm}$, FlowRate $\phi = 5 \text{l/s}$,
HorizontalDistance $s = 80 \text{ cm}$

Where : $d > 0 \wedge \phi > 0 \wedge s > 0$

Find : $h = ?$

Problem [area-of-circle]

$$A_{circle} = \left(\frac{d}{2}\right)^2 \cdot \pi$$

Problem [velocity-space-time, find-time]

$$v = \frac{s}{t}$$

Problem [flow-rate, find-velocity]

$$v = \frac{\phi}{A_{circle}}$$

Problem [free-fall]

$$h = \frac{g}{2} \cdot t^2$$

Find: $h \text{ m}$

Problem browser

Context On->Off Try Refine

problem hierarchy

- e_pbID
- simplification
- vereinfachen
- probe
- equation
 - univariate
 - LINEAR
 - root'
 - rational
 - polynomial
 - expanded
 - logarithmic
 - makeFunctionTo
 - diophantine
 - function
 - system
 - Biegelinien
 - Berechnung
 - test
 - tool
- SignalProcessing
 - Z_Transform

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments

all phases

independent
operation
application-theory

Techn. issues

architecture
programming
formulas
funding

Conclusions

Aspect 3: connect “given”–“find”

Worksheet

Model:

Given : Diameter $d = 8 \text{ cm}$, FlowRate $\phi = 5 \text{l/s}$,
HorizontalDistance $s = 80 \text{ cm}$

Where : $d > 0 \wedge \phi > 0 \wedge s > 0$

Find : $h = ?$

Diagram:

- Problem [area-of-circle]: $A_{circle} = \left(\frac{d}{2}\right)^2 \cdot \pi$
- Problem [velocity-space-time, find-time]: $v = \frac{s}{t}$
- Problem [flow-rate, find-velocity]: $v = \frac{\phi}{A_{circle}}$
- Problem [free-fall]: $h = \frac{g}{2} \cdot t^2$

Find: $h \text{ m}$

Problem browser

Context On->Off Try Refine

- problem hierarchy
 - e_pbID
 - simplification
 - vereinfachen
 - probe
 - equation
 - univariate
 - LINEAR
 - root'
 - rational
 - polynomial
 - expanded
 - logarithmic
 - makeFunctionTo
 - diophantine
 - function
 - system
 - Biegelinien
 - Berechnung
 - test
 - tool
 - SignalProcessing
 - Z_Transform

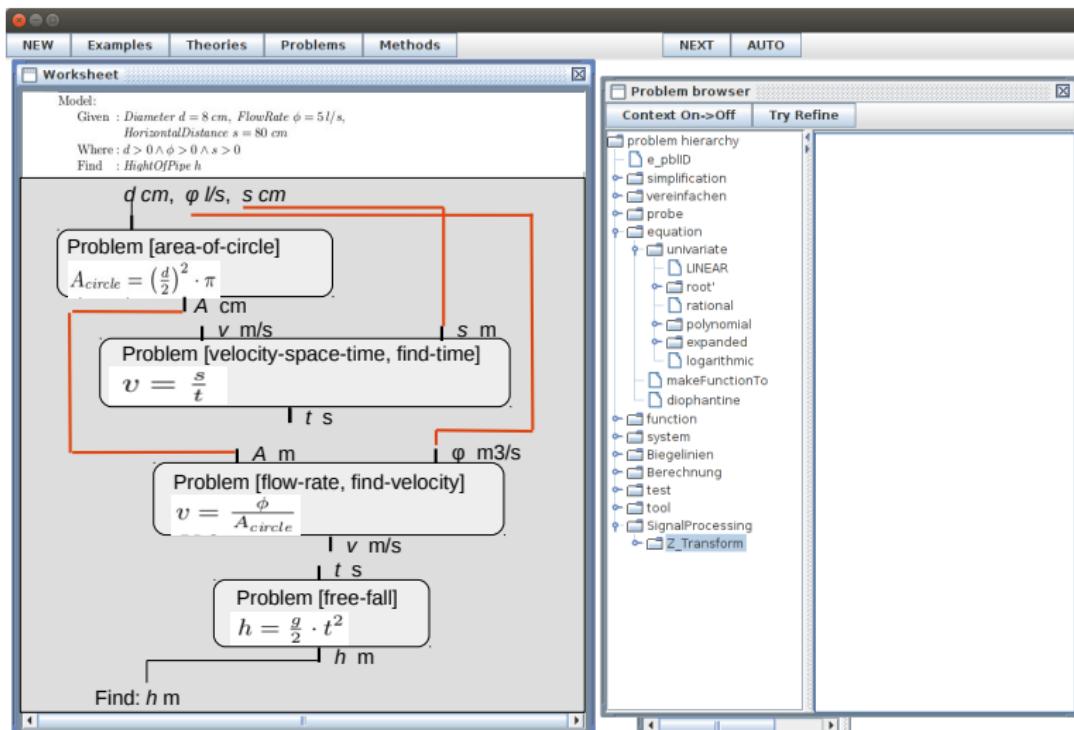
PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments

all phases


independent
operation
application-theory

Techn. issues

architecture
programming
formulas
funding

Conclusions

Aspect 3: connect “given”–“find”

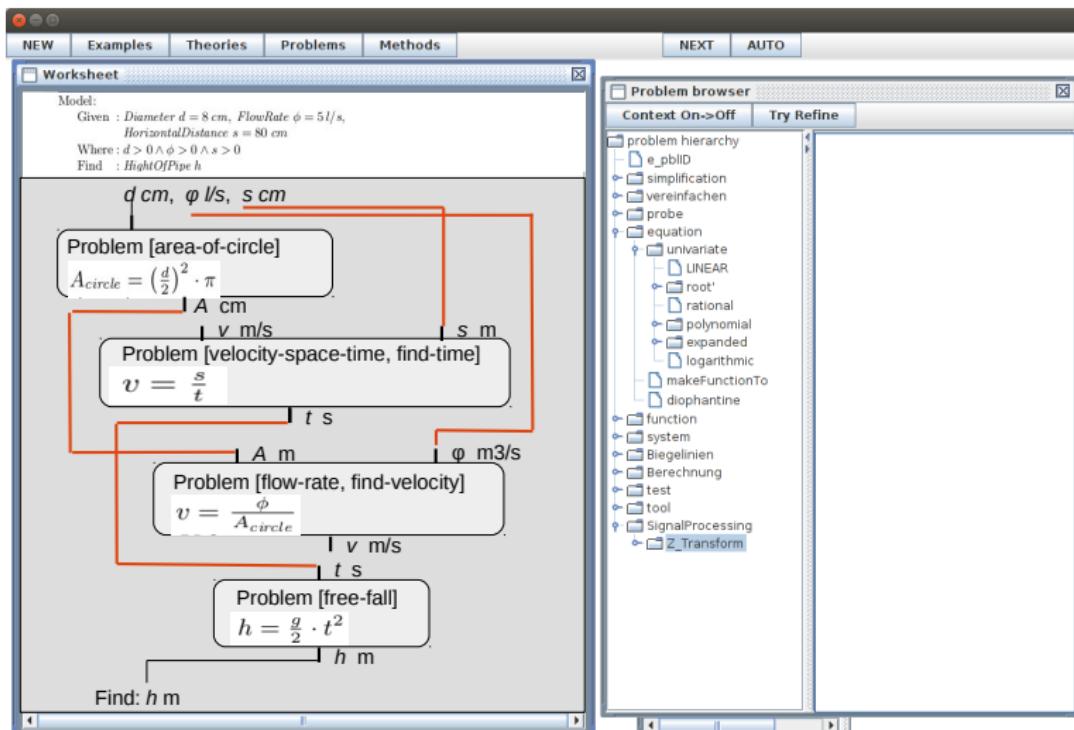
PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments

all phases


independent
operation
application-theory

Techn. issues

architecture
programming
formulas
funding

Conclusions

Aspect 3: connect “given”–“find”

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments

all phases

independent
operation
application-theory

Techn. issues
architecture
programming
formulas
funding

Conclusions

Aspect 3: dangling connect.???

Worksheet

Model:
Given : Diameter $d = 8 \text{ cm}$, FlowRate $\phi = 5 \text{l/s}$,
HorizontalDistance $s = 80 \text{ cm}$
Where : $d > 0 \wedge \phi > 0 \wedge s > 0$
Find : HeightOfPipe h

Problem [area-of-circle]
 $A_{circle} = \left(\frac{d}{2}\right)^2 \cdot \pi$

Problem [velocity-space-time, find-time]
 $v = \frac{s}{t}$

Problem [flow-rate, find-velocity]
 $v = \frac{\phi}{A_{circle}}$

Problem [free-fall]
 $h = \frac{g}{2} \cdot t^2$

Find: $h \text{ m}$

Problem browser

Context On->Off Try Refine

problem hierarchy

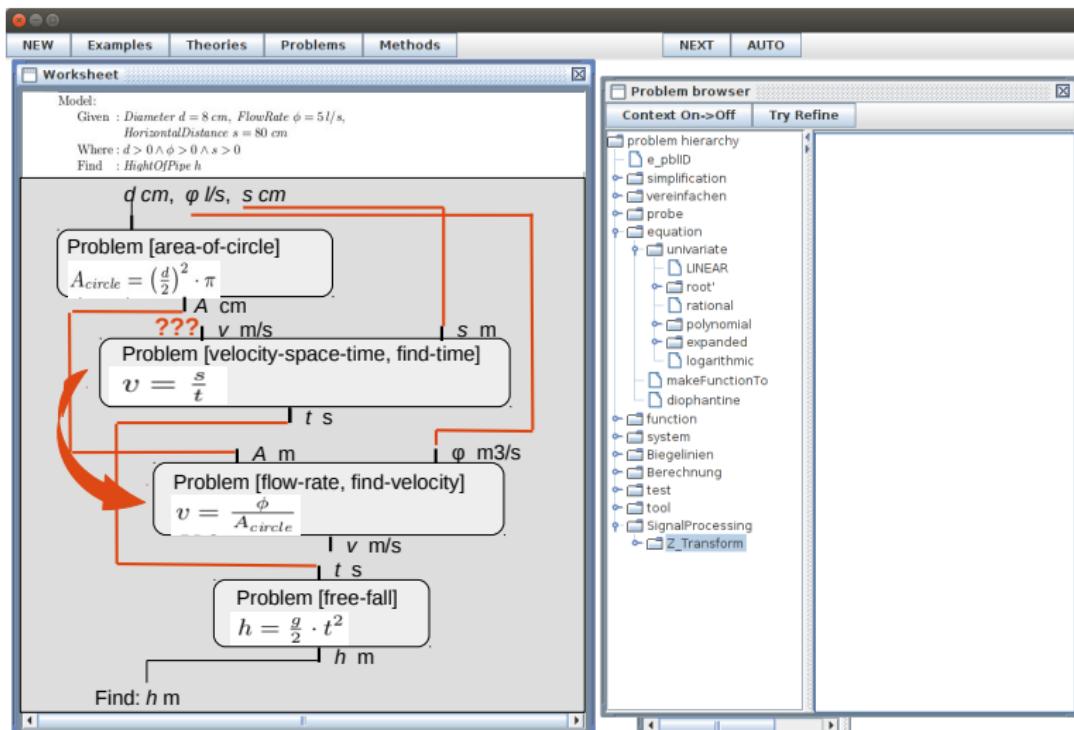
- e_pbID
- simplification
- vereinfachen
- probe
- equation
 - univariate
 - LINEAR
 - root'
 - rational
 - polynomial
 - expanded
 - logarithmic
 - makeFunctionTo
 - diophantine
 - function
 - system
 - Biegelinien
 - Berechnung
 - test
 - tool
- SignalProcessing
 - Z_Transform

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments


all phases

independent
operation
application-theory

Techn. issues
architecture
programming
formulas
funding

Conclusions

Aspect 3: try another sequence

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments

all phases

independent
operation
application-theory

Techn. issues

architecture
programming
formulas
funding

Conclusions

Aspect 3: flip subproblems

Worksheet

Model:

Given : Diameter $d = 8 \text{ cm}$, FlowRate $\phi = 5 \text{l/s}$,
HorizontalDistance $s = 80 \text{ cm}$

Where : $d > 0 \wedge \phi > 0 \wedge s > 0$

Find : $h = ?$

Problem [area-of-circle]

$$A_{circle} = \left(\frac{d}{2}\right)^2 \cdot \pi$$

Problem [flow-rate, find-velocity]

$$v = \frac{\phi}{A_{circle}}$$

Problem [velocity-space-time, find-time]

$$v = \frac{s}{t}$$

Problem [free-fall]

$$h = \frac{g}{2} \cdot t^2$$

Find: $h \text{ m}$

Problem browser

Context On->Off Try Refine

problem hierarchy

- e_pbID
- simplification
- vereinfachen
- probe
- equation
 - univariate
 - LINEAR
 - root'
 - rational
 - polynomial
 - expanded
 - logarithmic
 - makeFunctionTo
 - diophantine
 - function
 - system
 - Biegelinien
 - Berechnung
 - test
 - tool
- SignalProcessing
 - Z_Transform

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments

all phases

independent
operation
application-theory

Techn. issues

architecture
programming
formulas
funding

Conclusions

Aspect 3: connect “given”–“find”

Worksheet

Model:
Given : Diameter $d = 8 \text{ cm}$, FlowRate $\phi = 5 \text{l/s}$,
HorizontalDistance $s = 80 \text{ cm}$
Where : $d > 0 \wedge \phi > 0 \wedge s > 0$
Find : $h = ?$

Problem [area-of-circle]
 $A_{circle} = \left(\frac{d}{2}\right)^2 \cdot \pi$

Problem [flow-rate, find-velocity]
 $v = \frac{\phi}{A_{circle}}$

Problem [velocity-space-time, find-time]
 $v = \frac{s}{t}$

Problem [free-fall]
 $h = \frac{g}{2} \cdot t^2$

Find: $h \text{ m}$

Problem browser

Context On->Off Try Refine

problem hierarchy

- e_pbID
- simplification
- vereinfachen
- probe
- equation
 - univariate
 - LINEAR
 - root'
 - rational
 - polynomial
 - expanded
 - logarithmic
 - makeFunctionTo
 - diophantine
 - function
 - system
 - Biegelinien
 - Berechnung
 - test
 - tool
- SignalProcessing
 - Z_Transform

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments

all phases

independent
operation
application-theory

Techn. issues

architecture
programming
formulas
funding

Conclusions

Aspect 3: connect “given”–“find”

Worksheet

Model:

Given : Diameter $d = 8 \text{ cm}$, FlowRate $\phi = 5 \text{l/s}$,
HorizontalDistance $s = 80 \text{ cm}$

Where : $d > 0 \wedge \phi > 0 \wedge s > 0$

Find : HeightOfPipe h

Problem [area-of-circle]

$$A_{circle} = \left(\frac{d}{2}\right)^2 \cdot \pi$$

$A \text{ cm}$ $\phi \text{ l/s}$ $\phi \text{ m3/s}$

Problem [flow-rate, find-velocity]

$$v = \frac{\phi}{A_{circle}}$$

$v \text{ m/s}$ $v \text{ m/s}$ $s \text{ m}$

Problem [velocity-space-time, find-time]

$$v = \frac{s}{t}$$

$t \text{ s}$ $t \text{ s}$

Problem [free-fall]

$$h = \frac{g}{2} \cdot t^2$$

$h \text{ m}$

Find: $h \text{ m}$

Problem browser

Context On->Off Try Refine

problem hierarchy

- e_pbID
- simplification
- vereinfachen
- probe
- equation
 - univariate
 - LINEAR
 - root'
 - rational
 - polynomial
 - expanded
 - logarithmic
 - makeFunctionTo
 - diophantine
 - function
 - system
 - Biegelinien
 - Berechnung
 - test
 - tool
- SignalProcessing
 - Z_Transform

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments

all phases

independent
operation
application-theory

Techn. issues
architecture
programming
formulas
funding

Conclusions

Aspect 3: connect “given”–“find”

Worksheet

Model:

Given : Diameter $d = 8 \text{ cm}$, FlowRate $\phi = 5 \text{l/s}$,
HorizontalDistance $s = 80 \text{ cm}$

Where : $d > 0 \wedge \phi > 0 \wedge s > 0$

Find : HeightOfPipe h

d cm, ϕ l/s, s cm

Problem [area-of-circle]
 $A_{circle} = \left(\frac{d}{2}\right)^2 \cdot \pi$

Problem [flow-rate, find-velocity]
 $v = \frac{\phi}{A_{circle}}$

Problem [velocity-space-time, find-time]
 $v = \frac{s}{t}$

Problem [free-fall]
 $h = \frac{g}{2} \cdot t^2$

Find: $h \text{ m}$

Problem browser

Context On->Off Try Refine

problem hierarchy

- problemID
- simplification
- vereinfachen
- probe
- equation
 - univariate
 - LINEAR
 - root'
 - rational
 - polynomial
 - expanded
 - logarithmic
 - makeFunctionTo
 - diophantine
 - function
 - system
 - Biegelinien
 - Berechnung
 - test
 - tool
- SignalProcessing
 - Z_Transform

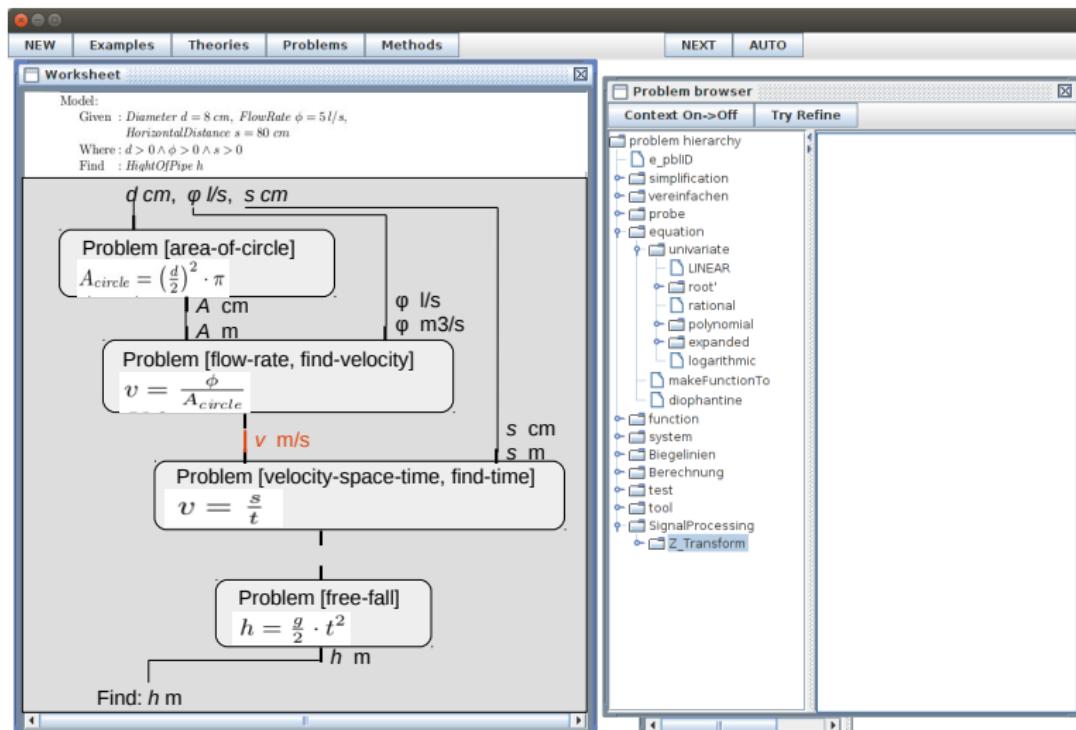
PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments

all phases


independent
operation
application-theory

Techn. issues

architecture
programming
formulas
funding

Conclusions

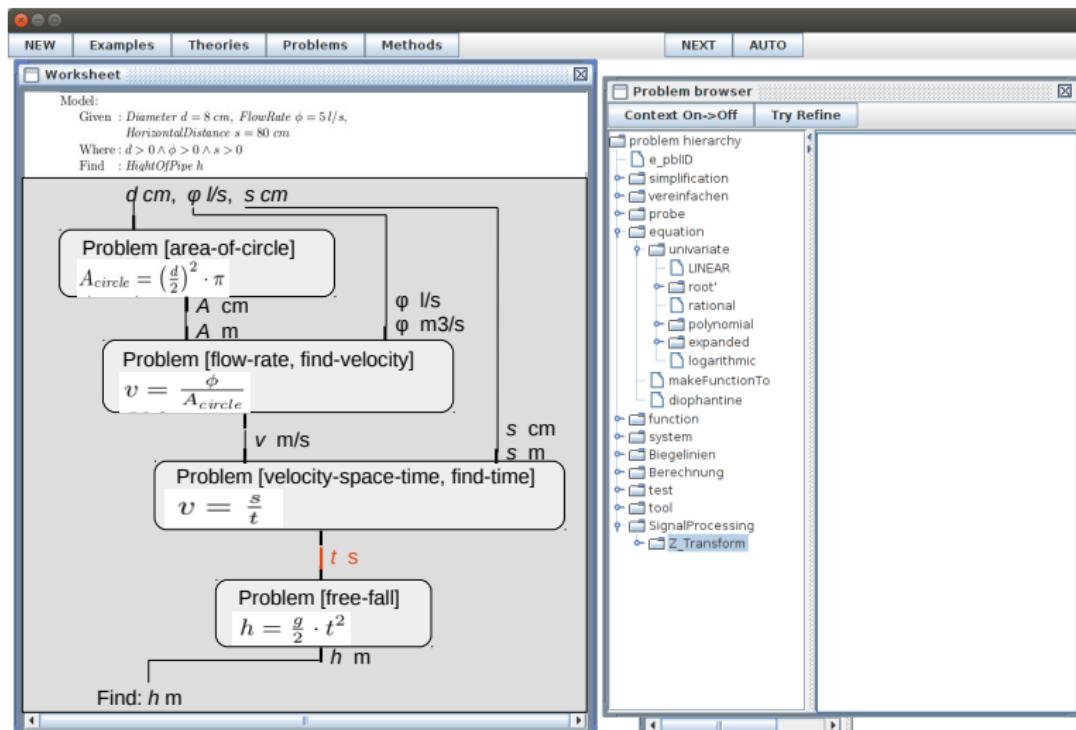
Aspect 3: connect “given”–“find”

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments


all phases

independent
operation
application-theory

Techn. issues
architecture
programming
formulas
funding

Conclusions

Aspect 3: connect “given”–“find”

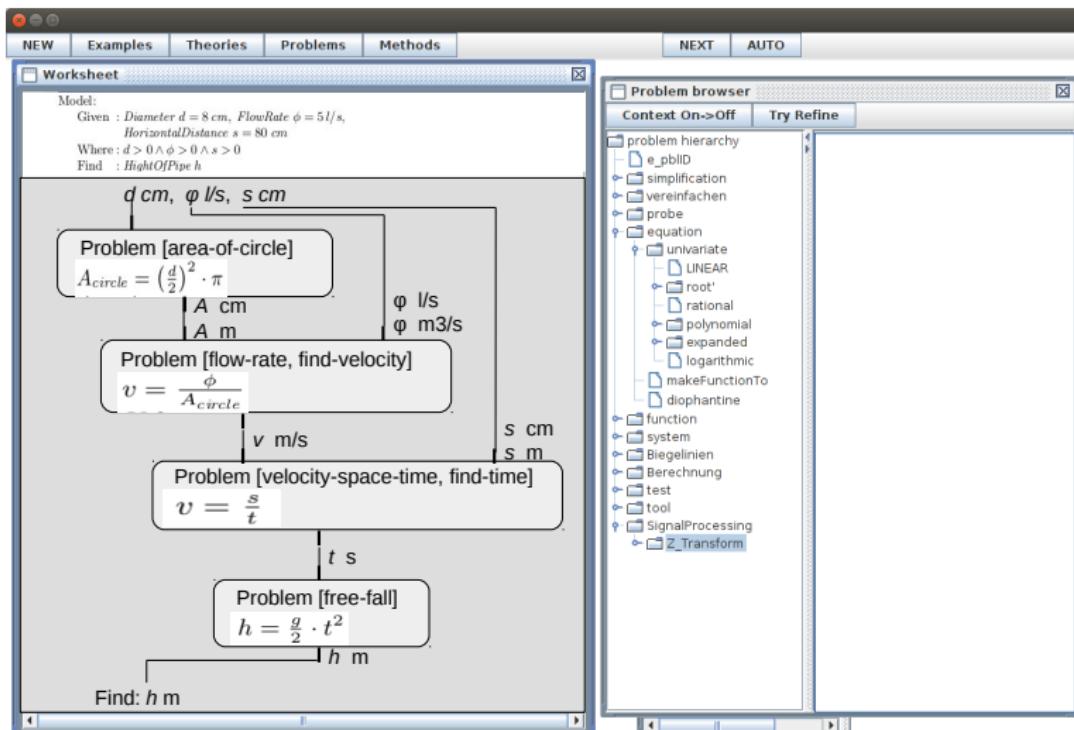
PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments

all phases


independent
operation
application-theory

Techn. issues

architecture
programming
formulas
funding

Conclusions

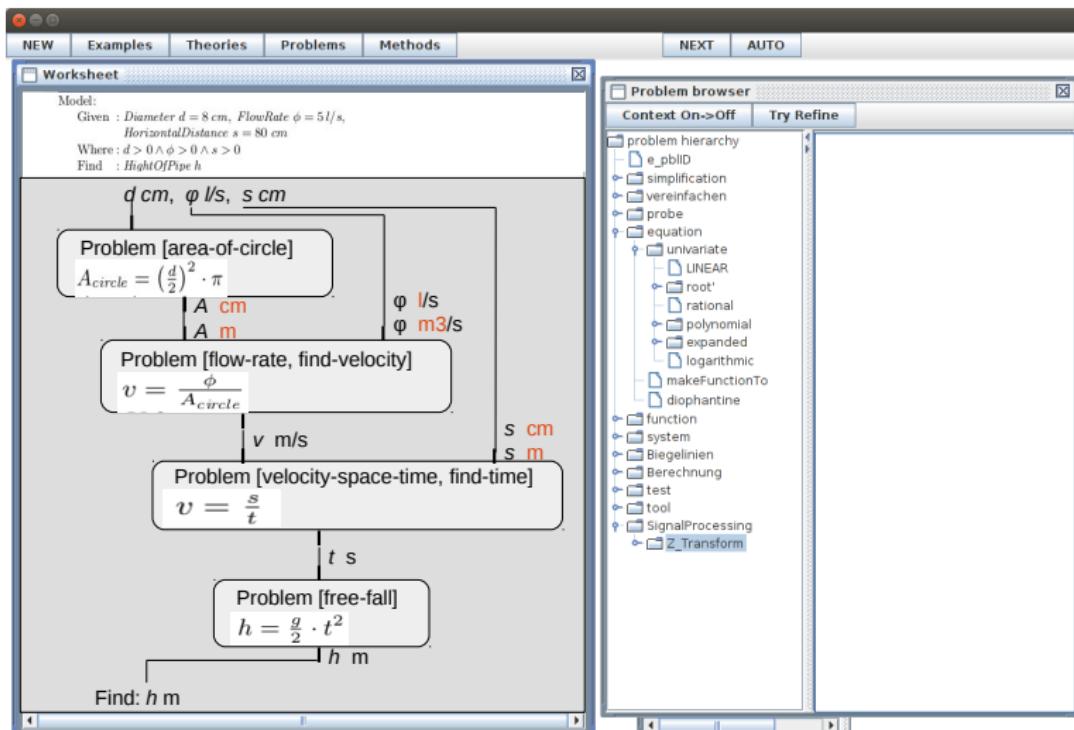
Aspect 3: connections complete

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments


all phases

independent
operation
application-theory

Techn. issues
architecture
programming
formulas
funding

Conclusions

Aspect 4: unit conversions

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments

all phases

independent
operation
application-theory

Techn. issues

architecture
programming
formulas
funding

Conclusions

Begin solving phase: units only

The screenshot shows a software interface with two main windows: a 'Worksheet' on the left and a 'Problem browser' on the right.

Worksheet (Left Window):

- Model:**
 - Given : $Diameter d = 8 \text{ cm}$, $FlowRate \phi = 5 \text{ l/s}$, $HorizontalDistance s = 80 \text{ cm}$
 - Where : $d > 0 \wedge \phi > 0 \wedge s > 0$
 - Find : $HeightOfPipe h$
- Solution:**
 - Problem [area-of-circle]:
 $A_{circle} \text{ cm}$ Unit_conversion $\text{cm}^2 \text{-m}^2$
 - $A_{circle} \text{ m}$
 - $\phi = 5 \frac{\text{l}}{\text{s}}$ Unit_conversion $\text{l} \text{-m}^3$
 - $\phi = 0,005 \frac{\text{m}^3}{\text{s}}$
 - Problem [flow-rate, find-velocity]:
 $v \frac{\text{m}}{\text{s}}$ Unit_conversion $\text{cm} \text{-m}$
 - $s = 80 \text{ cm}$
 - $s = 0,8 \text{ m}$
 - Problem [velocity-space-time, find-time]:
 $t \frac{\text{m}}{\text{s}}$
 - Problem [free-fall]:
 $h \text{ m}$

Problem browser (Right Window):

- Context On->Off
- Try Refine
- problem hierarchy
 - e_pbID
 - simplification
 - vereinfachen
 - probe
 - equation
 - univariate
 - LINEAR
 - root'
 - rational
 - polynomial
 - expanded
 - logarithmic
 - makeFunctionTo
 - diophantine
 - function
 - system
 - Biegelinien
 - Berechnung
 - test
 - tool
- SignalProcessing
 - Z_Transform

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments

all phases

independent
operation
application-theory

Techn. issues

architecture
programming
formulas
funding

Conclusions

End solving phase: complete

The screenshot shows a software interface with two main windows: a 'Worksheet' on the left and a 'Problem browser' on the right.

Worksheet (Left Window):

- Model:**
 - Given : $Diameter d = 8 \text{ cm}$, $FlowRate \phi = 5 \text{ l/s}$, $HorizontalDistance s = 80 \text{ cm}$
 - Where : $d > 0 \wedge \phi > 0 \wedge s > 0$
 - Find : $HeightOfPipe h$
- Solution:**
 - Problem [area-of-circle]
 $A_{circle} = 50 \text{ cm}^2$
 - Unit_conversion cm^2_m2
 - Take_given ϕ
 - Unit_conversion l_m^3
 - $A_{circle} = 0,005 \text{ m}^2$
 - $\phi = 5 \frac{l}{s}$
 - $\phi = 0,005 \frac{m^3}{s}$
 - Problem [flow-rate, find-velocity]
 $v = 1 \frac{m}{s}$
 - Unit_conversion cm_m
 - $s = 80 \text{ cm}$
 - $s = 0,8 \text{ m}$
 - Problem [velocity-space-time, find-time]
 $t = 0,8 \frac{m}{s}$
 - Problem [free-fall]:
 $h = 3,2 \text{ m}$
 - Check_postcond [composed, movement, no-6]

Outline

1 Introduction

Existing prototypes/systems

2 Experiments with *ISAC*'s prototype on ...

covering all phases of problem solving
supporting independent learning
fostering abstraction by operation
connecting application — theory

3 Technical issues with prototyping in *ISAC*

System architecture
Efficient programming for authors
Formulas in \LaTeX quality
Funding

4 Conclusions

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases
independent
operation
application-theory

Techn. issues
architecture
programming
formulas
funding

Conclusions

independent learning

demonstrate interaction on

$$\frac{d}{dx} x^2 + \sin(3 * x^4)$$

Outline

1 Introduction

Existing prototypes/systems

2 Experiments with *ISAC*'s prototype on ...

covering all phases of problem solving
supporting independent learning
fostering abstraction by operation
connecting application — theory

3 Technical issues with prototyping in *ISAC*

System architecture
Efficient programming for authors
Formulas in \LaTeX quality
Funding

4 Conclusions

abstraction by operation

Walther Neuper.

Formal abstraction in engineering education —
challenges and technology support.

Acta Didactica Napocensia, 9(4), 2017.

Preprint at

<http://www.ist.tugraz.at/projects/isac/publ/sys-explain-eng-edu.pdf> .

Outline

1 Introduction

Existing prototypes/systems

2 Experiments with *ISAC*'s prototype on ...

covering all phases of problem solving
supporting independent learning
fostering abstraction by operation
connecting application — theory

3 Technical issues with prototyping in *ISAC*

System architecture
Efficient programming for authors
Formulas in \LaTeX quality
Funding

4 Conclusions

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases
independent
operation
application-theory

Techn. issues
architecture
programming
formulas
funding

Conclusions

application — theory

demonstrate folding / unfolding
engineering problem (“Biegelinie”)

Outline

1 Introduction

Existing prototypes/systems

2 Experiments with *ISAC*'s prototype on ...

covering all phases of problem solving
supporting independent learning
fostering abstraction by operation
connecting application — theory

3 Technical issues with prototyping in *ISAC*

System architecture

Efficient programming for authors
Formulas in \LaTeX quality
Funding

4 Conclusions

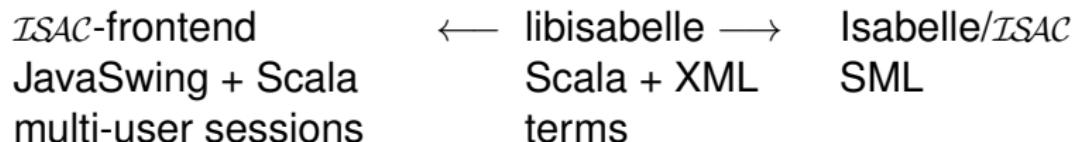
System architecture

The *ISAC* prototype has

ISAC-frontend
JavaSwing + Scala
multi-user sessions

← libisabelle →
Scala + XML
terms

Isabelle/*ISAC*
SML


we want

jEdit | TODO | browser


← PIDE →
markup
+ multi-user sessions

System architecture

The *ISAC* prototype has

we want

Outline

1 Introduction

Existing prototypes/systems

2 Experiments with *ISAC*'s prototype on ...

covering all phases of problem solving
supporting independent learning
fostering abstraction by operation
connecting application — theory

3 Technical issues with prototyping in *ISAC*

System architecture

Efficient programming for authors

Formulas in \LaTeX quality

Funding

4 Conclusions

Programming for authors

The *ISAC* prototype has

ISAC prog.language

```
"program Differentiate f v =  
let f' = Take (d_d v f)  
in (Try Rewrite_Set norm_Rational  
    Try (Rewrite_Set_Inst [(bdv, v)] norm_diff)  
    Try (Rewrite_Set norm_Rational)) f'"
```

Lucas-Interpreter dialog authoring

we want

Isabelle's function package

```
partial_function Differentiate :: "real⇒real⇒real⇒"  
where  
"let f' = Take (d_d v f)  
in (Try Rewrite_Set norm_Rational  
    Try (Rewrite_Set_Inst [(bdv, v)] norm_diff)  
    Try (Rewrite_Set norm_Rational)) f'"
```

Lucas-Interpreter

+ dialog authoring

Programming for authors

The *ISAC* prototype has

ISAC prog.language

```
"program Differentiate f v =  
let f' = Take (d_d v f)  
in (Try Rewrite_Set norm_Rational  
    Try (Rewrite_Set_Inst [(bdv, v)] norm_diff)  
    Try (Rewrite_Set norm_Rational)) f'"
```

Lucas-Interpreter
dialog authoring

we want

Isabelle's function package

```
partial_function Differentiate :: "real⇒real⇒real⇒"  
where
```

```
"let f' = Take (d_d v f)  
in (Try Rewrite_Set norm_Rational  
    Try (Rewrite_Set_Inst [(bdv, v)] norm_diff)  
    Try (Rewrite_Set norm_Rational)) f'"
```

+ Lucas-Interpreter

+ dialog authoring

Outline

1 Introduction

Existing prototypes/systems

2 Experiments with *ISAC*'s prototype on ...

covering all phases of problem solving
supporting independent learning
fostering abstraction by operation
connecting application — theory

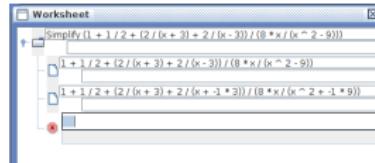
3 Technical issues with prototyping in *ISAC*

System architecture
Efficient programming for authors
Formulas in \LaTeX quality
Funding

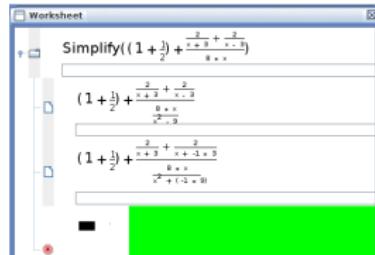
4 Conclusions

PROTOTYPE:
Systems that
explain
themselves

Walther
Neuper


Introduction
prototypes

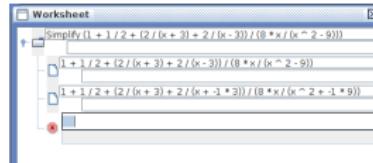
Experiments
all phases
independent
operation
application-theory


Techn. issues
architecture
programming
formulas
funding

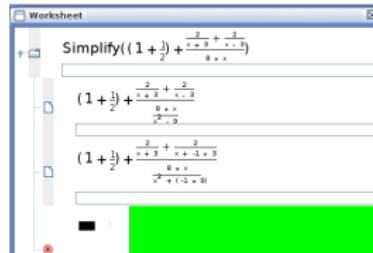
Conclusions

The *ISAC* prototype has

we want



L^AT_EX formulas


formulas represented as strings
generated from Scala `term`

formulas in L^AT_EX quality
generated from Scala `ast`
after `ast-ast` translation

The *ISAC* prototype has

we want

L^AT_EX formulas

formulas represented as strings
generated from Scala `term`

formulas in L^AT_EX quality
generated from Scala `ast`
after `ast-ast` translation

Outline

1 Introduction

Existing prototypes/systems

2 Experiments with *ISAC*'s prototype on ...

covering all phases of problem solving
supporting independent learning
fostering abstraction by operation
connecting application — theory

3 Technical issues with prototyping in *ISAC*

System architecture
Efficient programming for authors
Formulas in \LaTeX quality
Funding

4 Conclusions

Funding

for a TP-based system like *ISAC*

- *not* as fundamental research (Austrian FWF)
- *not* by EU framework Horizon 2020:
proposal 2011 rejected, framework didn't change
- hopefully as “applied R&D” (Austrian FFG)
 - developed at Austrian universities
 - applied by Austrian universities
 - applied by Austrian firms (a specific topic):
private co-funding with about 50%
- ? content merchandised by a commercial publisher,
base-system remains free (and open source)

Funding

for a TP-based system like *ISAC*

- *not* as fundamental research (Austrian FWF)
- *not* by EU framework Horizon 2020:
proposal 2011 rejected, framework didn't change
- hopefully as “applied R&D” (Austrian FFG)
 - developed at Austrian universities
 - applied by Austrian universities
 - applied by Austrian firms (a specific topic):
private co-funding with about 50%
- ? content merchandised by a commercial publisher,
base-system remains free (and open source)

Funding

for a TP-based system like *ISAC*

- *not* as fundamental research (Austrian FWF)
- *not* by EU framework Horizon 2020:
proposal 2011 rejected, framework didn't change
- hopefully as “applied R&D” (Austrian FFG)
 - developed at Austrian universities
 - applied by Austrian universities
 - applied by Austrian firms (a specific topic):
private co-funding with about 50%
 - ? content merchandised by a commercial publisher,
base-system remains free (and open source)

Funding

for a TP-based system like *ISAC*

- *not* as fundamental research (Austrian FWF)
- *not* by EU framework Horizon 2020:
proposal 2011 rejected, framework didn't change
- hopefully as “applied R&D” (Austrian FFG)
 - developed at Austrian universities
 - applied by Austrian universities
 - applied by Austrian firms (a specific topic):
private co-funding with about 50%
 - ? content merchandised by a commercial publisher,
base-system remains free (and open source)

Funding

for a TP-based system like *ISAC*

- *not* as fundamental research (Austrian FWF)
- *not* by EU framework Horizon 2020:
proposal 2011 rejected, framework didn't change
- hopefully as “applied R&D” (Austrian FFG)
 - developed at Austrian universities
 - applied by Austrian universities
 - applied by Austrian firms (a specific topic):
private co-funding with about 50%

? content merchandised by a commercial publisher,
base-system remains free (and open source)

Funding

for a TP-based system like *ISAC*

- *not* as fundamental research (Austrian FWF)
- *not* by EU framework Horizon 2020:
proposal 2011 rejected, framework didn't change
- hopefully as “applied R&D” (Austrian FFG)
 - developed at Austrian universities
 - applied by Austrian universities
 - applied by Austrian firms (a specific topic):
private co-funding with about 50%
 - ? content merchandised by a commercial publisher,
base-system remains free (and open source)

Conclusions

- long-term prototyping paid off:
 - user requirements evolved
 - experience with various technologies settled
 - system interfaces stabilised
 - requirements recently confirmed by universities
 - interdisciplinary contacts established
 - students' contributions were inspiring and cheap
- now *ISAC*'s code-base is too complex for students' work
- prototype ready for final R&D with about **10 man years**:
 - change interface from libisabelle to PIDE
 - adapt PIDE to multi-user sessions
 - shift Lucas-Interpretation into function package
 - present formulas in \LaTeX quality
 - provide authoring tools for programs and dialogues
 - develop theories for engineering mathematics

Conclusions

- long-term prototyping paid off:
 - user requirements evolved
 - experience with various technologies settled
 - system interfaces stabilised
 - requirements recently confirmed by universities
 - interdisciplinary contacts established
 - students' contributions were inspiring and cheap
- now *ISAC*'s code-base is too complex for students' work
- prototype ready for final R&D with about **10 man years**:
 - change interface from libisabelle to PIDE
 - adapt PIDE to multi-user sessions
 - shift Lucas-Interpretation into function package
 - present formulas in \LaTeX quality
 - provide authoring tools for programs and dialogues
 - develop theories for engineering mathematics

Conclusions

- long-term prototyping paid off:
 - user requirements evolved
 - experience with various technologies settled
 - system interfaces stabilised
 - requirements recently confirmed by universities
 - interdisciplinary contacts established
 - students' contributions were inspiring and cheap
- now *ISAC*'s code-base is too complex for students' work
- prototype ready for final R&D with about **10 man years**:
 - change interface from libisabelle to PIDE
 - adapt PIDE to multi-user sessions
 - shift Lucas-Interpretation into function package
 - present formulas in \LaTeX quality
 - provide authoring tools for programs and dialogues
 - develop theories for engineering mathematics