
PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Prototyping
“Systems that Explain Themselves”

for Education
A long lasting interdisciplinary process

Walther Neuper

IICM Institute for Information Systems and Computer Media
Graz University of Technology,

RISC und IIS at Johannes Kepler University Linz

ThEdu’17 at CADE 26
6. Aug. 2017

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Outline

1 Introduction
Existing prototypes/systems

2 Experiments with ISAC’s prototype on . . .
covering all phases of problem solving
supporting independent learning
fostering abstraction by operation
connecting application — theory

3 Technical issues with prototyping in ISAC
System architecture
Efficient programming for authors
Formulas in LATEX quality
Funding

4 Conclusions

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Outline

1 Introduction
Existing prototypes/systems

2 Experiments with ISAC’s prototype on . . .
covering all phases of problem solving
supporting independent learning
fostering abstraction by operation
connecting application — theory

3 Technical issues with prototyping in ISAC
System architecture
Efficient programming for authors
Formulas in LATEX quality
Funding

4 Conclusions

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Existing prototypes

based
on . . .

E-Math PVS http://emath.eu/en/

Mathtoys TODO http://mathtoys.org/

Edukera Coq https://www.edukera.com/

ISAC Isabelle http://www.ist.tugraz.at/isac/

? others ? ?

http://emath.eu/en/
http://mathtoys.org/
https://www.edukera.com/
http://www.ist.tugraz.at/isac/

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Outline

1 Introduction
Existing prototypes/systems

2 Experiments with ISAC’s prototype on . . .
covering all phases of problem solving
supporting independent learning
fostering abstraction by operation
connecting application — theory

3 Technical issues with prototyping in ISAC
System architecture
Efficient programming for authors
Formulas in LATEX quality
Funding

4 Conclusions

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Start Example

Problem [area-of-circle]

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Start Example

Problem [area-of-circle]

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Modelling Phase finished

Problem [area-of-circle]

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Start Specification Phase

Problem [area-of-circle]

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Start Specification Phase

d cm, φ l/s, s cm

Find: h m

Problem [area-of-circle]

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 1: knowledge not impl.

Problem [area-of-circle]

d cm, φ l/s, s cm

Find: h m

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 2: select knowledge

d cm, φ l/s, s cm

Problem [rational, equation]

Find: h m

Problem [area-of-circle]

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 2: select relevant knowl.

d cm, φ l/s, s cm

Problem [rational, equation]

Problem [velocity-space-time, find-time]

Find: h m

Problem [area-of-circle]

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 2: select relevant knowl.

d cm, φ l/s, s cm

Problem [rational, equation]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Find: h m

Problem [area-of-circle]

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 2: select relevant knowl.

d cm, φ l/s, s cm

Problem [rational, equation]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 2: del. irrelevant knowl.

d cm, φ l/s, s cm

Problem [rational, equation]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 2: select relevant knowl.

d cm, φ l/s, s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 3: is given, to be found?

d cm, φ l/s, s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 3: is given, to be found?

d cm, φ l/s, s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

h m

t s

A cm
v m/s s m

t s

A m φ m3/s

v m/s

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 3: connect “given”–“find”

d cm, φ l/s, s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

h m

t s

A cm
v m/s s m

t s

A m φ m3/s

v m/s

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 3: connect “given”–“find”

d cm, φ l/s, s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

h m

t s

A cm
v m/s s m

t s

A m φ m3/s

v m/s

?

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 3: connect “given”–“find”

d cm, φ l/s, s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

h m

t s

A cm
v m/s s m

t s

A m φ m3/s

v m/s

?

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 3: connect “given”–“find”

d cm, φ l/s, s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

h m

t s

A cm
v m/s s m

t s

A m φ m3/s

v m/s

?

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 3: connect “given”–“find”

d cm, φ l/s, s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

h m

t s

A cm
v m/s s m

t s

A m φ m3/s

v m/s

?

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 3: dangling connect.???

d cm, φ l/s, s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

h m

t s

A cm
v m/s s m

t s

A m φ m3/s

v m/s

?

???

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 3: try another sequence

d cm, φ l/s, s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]

h m

t s

A cm
v m/s s m

t s

A m φ m3/s

v m/s

?

???

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 3: flip subproblems

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h m

t s

v m/s

A cm
A m φ m3/s

s m

v m/s

t s

d cm, φ l/s, s cm

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 3: connect “given”–“find”

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h m

A cm
A m φ m3/s

s m

d cm, φ l/s, s cm

t s

t s

v m/s

v m/s

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 3: connect “given”–“find”

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h m

A cm φ l/s

A m φ m3/s

s m

d cm, φ l/s, s cm

t s

t s

v m/s

v m/s

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 3: connect “given”–“find”

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h m

A cm φ l/s

A m φ m3/s

s m
s cm

d cm, φ l/s, s cm

t s

t s

v m/s

v m/s

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 3: connect “given”–“find”

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h m

v m/s

A cm φ l/s

A m φ m3/s

s m
s cm

d cm, φ l/s, s cm

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 3: connect “given”–“find”

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h m

t s

v m/s

A cm φ l/s

A m φ m3/s

s m
s cm

d cm, φ l/s, s cm

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 3: connections complete

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h m

t s

v m/s

A cm φ l/s

A m φ m3/s

s m
s cm

d cm, φ l/s, s cm

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Aspect 4: unit conversions

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

h m

t s

v m/s

A cm φ l/s

A m φ m3/s

s m
s cm

d cm, φ l/s, s cm

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Begin solving phase: units only

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

End solving phase: complete

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Outline

1 Introduction
Existing prototypes/systems

2 Experiments with ISAC’s prototype on . . .
covering all phases of problem solving
supporting independent learning
fostering abstraction by operation
connecting application — theory

3 Technical issues with prototyping in ISAC
System architecture
Efficient programming for authors
Formulas in LATEX quality
Funding

4 Conclusions

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

independent learning

demonstrate interaction on
d

d x x2 + sin(3 ∗ x4)

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Outline

1 Introduction
Existing prototypes/systems

2 Experiments with ISAC’s prototype on . . .
covering all phases of problem solving
supporting independent learning
fostering abstraction by operation
connecting application — theory

3 Technical issues with prototyping in ISAC
System architecture
Efficient programming for authors
Formulas in LATEX quality
Funding

4 Conclusions

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

abstraction by operation

Walther Neuper.
Formal abstraction in engineering education —
challenges and technology support.
Acta Didactica Napocensia, 9(4), 2017.
Preprint at
http://www.ist.tugraz.at/projects/isac/publ/sys-explain-eng-edu.pdf .

http://www.ist.tugraz.at/projects/isac/publ/sys-explain-eng-edu.pdf

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Outline

1 Introduction
Existing prototypes/systems

2 Experiments with ISAC’s prototype on . . .
covering all phases of problem solving
supporting independent learning
fostering abstraction by operation
connecting application — theory

3 Technical issues with prototyping in ISAC
System architecture
Efficient programming for authors
Formulas in LATEX quality
Funding

4 Conclusions

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

application — theory

demonstrate folding / unfolding

engineering problem (“Biegelinie”)

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Outline

1 Introduction
Existing prototypes/systems

2 Experiments with ISAC’s prototype on . . .
covering all phases of problem solving
supporting independent learning
fostering abstraction by operation
connecting application — theory

3 Technical issues with prototyping in ISAC
System architecture
Efficient programming for authors
Formulas in LATEX quality
Funding

4 Conclusions

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

System architecture

The ISAC prototype has

ISAC-frontend ←− libisabelle −→ Isabelle/ISAC
JavaSwing + Scala Scala + XML SML
multi-user sessions terms

we want

jEdit | TODO | browser ←− PIDE −→ Isabelle/ISAC
markup
+ multi-user sessions

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

System architecture

The ISAC prototype has

ISAC-frontend ←− libisabelle −→ Isabelle/ISAC
JavaSwing + Scala Scala + XML SML
multi-user sessions terms

we want

jEdit | TODO | browser ←− PIDE −→ Isabelle/ISAC
markup
+ multi-user sessions

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Outline

1 Introduction
Existing prototypes/systems

2 Experiments with ISAC’s prototype on . . .
covering all phases of problem solving
supporting independent learning
fostering abstraction by operation
connecting application — theory

3 Technical issues with prototyping in ISAC
System architecture
Efficient programming for authors
Formulas in LATEX quality
Funding

4 Conclusions

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Programming for authors
The ISAC prototype has

ISAC prog.language Lucas-Interpreter
"program Differentiate f v = dialog authoring
let f’ = Take (d_d v f)
in (Try Rewrite_Set norm_Rational

Try (Rewrite_Set_Inst [(bdv, v)] norm_diff)
Try (Rewrite_Set norm_Rational)) f’"

we want

Isabelle’s function package + Lucas-Interpreter
partial_function Differentiate :: "real⇒real⇒real⇒"
where
"let f’ = Take (d_d v f)
in (Try Rewrite_Set norm_Rational

Try (Rewrite_Set_Inst [(bdv, v)] norm_diff)
Try (Rewrite_Set norm_Rational)) f’"

+ dialog authoring

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Programming for authors
The ISAC prototype has

ISAC prog.language Lucas-Interpreter
"program Differentiate f v = dialog authoring
let f’ = Take (d_d v f)
in (Try Rewrite_Set norm_Rational

Try (Rewrite_Set_Inst [(bdv, v)] norm_diff)
Try (Rewrite_Set norm_Rational)) f’"

we want

Isabelle’s function package + Lucas-Interpreter
partial_function Differentiate :: "real⇒real⇒real⇒"
where
"let f’ = Take (d_d v f)
in (Try Rewrite_Set norm_Rational

Try (Rewrite_Set_Inst [(bdv, v)] norm_diff)
Try (Rewrite_Set norm_Rational)) f’"

+ dialog authoring

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Outline

1 Introduction
Existing prototypes/systems

2 Experiments with ISAC’s prototype on . . .
covering all phases of problem solving
supporting independent learning
fostering abstraction by operation
connecting application — theory

3 Technical issues with prototyping in ISAC
System architecture
Efficient programming for authors
Formulas in LATEX quality
Funding

4 Conclusions

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

LATEX formulas

The ISAC prototype has
formulas represented as strings
generated from Scala term

we want
formulas in LATEX quality
generated from Scala ast

after ast-ast translation

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

LATEX formulas

The ISAC prototype has
formulas represented as strings
generated from Scala term

we want
formulas in LATEX quality
generated from Scala ast

after ast-ast translation

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Outline

1 Introduction
Existing prototypes/systems

2 Experiments with ISAC’s prototype on . . .
covering all phases of problem solving
supporting independent learning
fostering abstraction by operation
connecting application — theory

3 Technical issues with prototyping in ISAC
System architecture
Efficient programming for authors
Formulas in LATEX quality
Funding

4 Conclusions

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Funding

for a TP-based system like ISAC
• not as fundamental research (Austrian FWF)
• not by EU framework Horizon 2020:

proposal 2011 rejected, framework didn’t change
• hopefully as “applied R&D” (Austrian FFG)

• developed at Austrian universities
• applied by Austrian universities
• applied by Austrian firms (a specific topic):

private co-funding with about 50%
? content merchandised by a commercial publisher,

base-system remains free (and open source)

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Funding

for a TP-based system like ISAC
• not as fundamental research (Austrian FWF)
• not by EU framework Horizon 2020:

proposal 2011 rejected, framework didn’t change
• hopefully as “applied R&D” (Austrian FFG)

• developed at Austrian universities
• applied by Austrian universities
• applied by Austrian firms (a specific topic):

private co-funding with about 50%
? content merchandised by a commercial publisher,

base-system remains free (and open source)

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Funding

for a TP-based system like ISAC
• not as fundamental research (Austrian FWF)
• not by EU framework Horizon 2020:

proposal 2011 rejected, framework didn’t change
• hopefully as “applied R&D” (Austrian FFG)

• developed at Austrian universities
• applied by Austrian universities
• applied by Austrian firms (a specific topic):

private co-funding with about 50%
? content merchandised by a commercial publisher,

base-system remains free (and open source)

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Funding

for a TP-based system like ISAC
• not as fundamental research (Austrian FWF)
• not by EU framework Horizon 2020:

proposal 2011 rejected, framework didn’t change
• hopefully as “applied R&D” (Austrian FFG)

• developed at Austrian universities
• applied by Austrian universities
• applied by Austrian firms (a specific topic):

private co-funding with about 50%
? content merchandised by a commercial publisher,

base-system remains free (and open source)

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Funding

for a TP-based system like ISAC
• not as fundamental research (Austrian FWF)
• not by EU framework Horizon 2020:

proposal 2011 rejected, framework didn’t change
• hopefully as “applied R&D” (Austrian FFG)

• developed at Austrian universities
• applied by Austrian universities
• applied by Austrian firms (a specific topic):

private co-funding with about 50%
? content merchandised by a commercial publisher,

base-system remains free (and open source)

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Funding

for a TP-based system like ISAC
• not as fundamental research (Austrian FWF)
• not by EU framework Horizon 2020:

proposal 2011 rejected, framework didn’t change
• hopefully as “applied R&D” (Austrian FFG)

• developed at Austrian universities
• applied by Austrian universities
• applied by Austrian firms (a specific topic):

private co-funding with about 50%
? content merchandised by a commercial publisher,

base-system remains free (and open source)

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Conclusions

• long-term prototyping paid off:
• user requirements evolved
• experience with various technologies settled
• system interfaces stabilised
• requirements recently confirmed by universities
• interdisciplinary contacts established
• students’ contributions were inspiring and cheap

• now ISAC’s code-base is too complex for students’ work
• prototype ready for final R&D with about 10 man years:

• change interface from libisabelle to PIDE
• adapt PIDE to multi-user sessions
• shift Lucas-Interpretation into function package
• present formulas in LATEX quality
• provide authoring tools for programs and dialogues
• develop theories for engineering mathematics

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Conclusions

• long-term prototyping paid off:
• user requirements evolved
• experience with various technologies settled
• system interfaces stabilised
• requirements recently confirmed by universities
• interdisciplinary contacts established
• students’ contributions were inspiring and cheap

• now ISAC’s code-base is too complex for students’ work
• prototype ready for final R&D with about 10 man years:

• change interface from libisabelle to PIDE
• adapt PIDE to multi-user sessions
• shift Lucas-Interpretation into function package
• present formulas in LATEX quality
• provide authoring tools for programs and dialogues
• develop theories for engineering mathematics

PROTOTYPE:
Systems that

explain
themselves

Walther
Neuper

Introduction
prototypes

Experiments
all phases

independent

operation

application–theory

Techn. issues
architecture

programming

formulas

funding

Conclusions

Conclusions

• long-term prototyping paid off:
• user requirements evolved
• experience with various technologies settled
• system interfaces stabilised
• requirements recently confirmed by universities
• interdisciplinary contacts established
• students’ contributions were inspiring and cheap

• now ISAC’s code-base is too complex for students’ work
• prototype ready for final R&D with about 10 man years:

• change interface from libisabelle to PIDE
• adapt PIDE to multi-user sessions
• shift Lucas-Interpretation into function package
• present formulas in LATEX quality
• provide authoring tools for programs and dialogues
• develop theories for engineering mathematics

	Introduction
	Existing prototypes/systems

	Experiments with I-2muS-5muAC's prototype on …
	covering all phases of problem solving
	supporting independent learning
	fostering abstraction by operation
	connecting application — theory

	Technical issues with prototyping in I-2muS-5muAC
	System architecture
	Efficient programming for authors
	Formulas in LaTeX quality
	Funding

	Conclusions

