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Here and Now – Isabelle Introductions 
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Proving in Isabelle that the set of natural numbers N is infinite 
 

Natural numbers 0, 1, 2, … 
 

“Suc n” is “n+1” 

 

Isabelle proof: 

Successor function 

is not surjective 

but is injective 
 

“auto” proof method   



Isabelle Primer for Mathematicians 

 

Interactive proof assistants are special programs, which make it 

possible to check mathematical results up to a nearly absolute 

level of certainty. 

Clearly, computers cannot read and understand natural language, 

and even if they could, a typical textbook proof usually omits some 

details and cannot be treated as absolutely rigorous. 

To check the proof in an automated proof assistant, you need to 

write it using a special language, understandable by computers. 

This “translation” to computer language is called the formalization 

of the proof. 



In conclusion, the formalization of mathematics in Isabelle is a little 

bit difficult to start, but very exciting. 

After some time, you become comfortable with Isabelle, and then 

enjoy proving nontrivial theorems to the strongest opponent in the 

world, who will never overlook your error or non-strict argument. 

And maybe, after some time with Isabelle, you also begin to feel, 

that only formalized theorems are really proved in mathematics. 

All the other proofs are just proof outlines. 

 

https://dream.inf.ed.ac.uk/projects/isabelle/  



Logic is about formalizing which statements & arguments are valid 
 

              
 

 

Definitions 

  

 



Start of the famous incompleteness paper by Kurt Gödel (1931) 

The development of mathematics toward greater precision has led, 

as is well known, to the formalization of large tracts of it, so that 

one can prove any theorem using nothing but a few mechanical 

rules... 
 

The Modus Ponens rule in Isabelle 
 

If P ⟶ Q and P then Q 
 

(P ⟶ Q)  ⟹  (P ⟹ Q) 
 

    



  

 

Isabelle Rules 



Formal Proofs of the Uncountability of the Reals 

 

ProofPower  Rob Arthan   2003 

Metamath  Norman Megill  2004 

Mizar   Grzegorz Bancerek 2004 

HOL Light  John Harrison  2005 

Isabelle   Benjamin Porter  2005 

Coq    Nickolay Shmyrev 2006  



theory Demo imports Complex_Main begin 

 

theorem ‹∄f. ∀z :: real. ∃n :: nat. f n = z› 

proof 

  assume ‹∃f. ∀z :: real. ∃n :: nat. f n = z› 

  show False 

  proof - 

    from ‹∃f. ∀z. ∃n. f n = z› obtain f :: ‹nat ⇒ real› where assumption: ‹∀z. ∃n. f n = z› .. 

 

    obtain D :: ‹nat ⇒ real set› where ‹(⋂n. D n) ≠ {}› ‹f n ∉ D n› for n 

    proof - 

      obtain L R :: ‹real ⇒ real ⇒ real ⇒ real› 

        where 

          *: ‹L a b c < R a b c› ‹{L a b c .. R a b c} ⊆ {a .. b}› ‹c ∉ {L a b c .. R a b c}› 

        if ‹a < b› for a b c 

      proof - 

        have ‹∃x y. a ≤ x ∧ x < y ∧ y ≤ b ∧ ¬ (x ≤ c ∧ c ≤ y)› if ‹a < b› for a b c :: real 

          using that dense less_le_trans not_le not_less_iff_gr_or_eq by (metis (full_types)) 

 

        then have ‹∃x y. x < y ∧ {x .. y} ⊆ {a .. b} ∧ c ∉ {x .. y}› if ‹a < b› for a b c :: real 

          using that by fastforce 

 

        then show ?thesis 

          using that by metis 

      qed 

  



      define P :: ‹nat ⇒ real × real› 

        where 

          ‹P ≡ rec_nat 

               (L 0 1 (f 0), 

                R 0 1 (f 0)) 

               (λn (x, y). (L x y (f (Suc n)), 

                            R x y (f (Suc n))))› 

 

      with *(1) have 0: ‹fst (P n) < snd (P n)› for n 

        unfolding split_def by (induct n) simp_all 

 

      define I :: ‹nat ⇒ real set› 

        where 

          ‹I ≡ λn. {fst (P n) .. snd (P n)}› 

 

      with 0 have ‹I n ≠ {}› for n 

        using less_imp_le by fastforce 

 

      moreover from 0 *(2) have ‹decseq I› 

        unfolding I_def P_def split_def decseq_Suc_iff by simp 

 

      ultimately have ‹finite S ⟶ (⋂n∈S. I n) ≠ {}› for S 

        using decseqD subset_empty INF_greatest Max_ge by metis 

 

      moreover have ‹closed (I n)› for n 

        unfolding I_def by simp 

 

      moreover have ‹compact (I n)› for n 

        unfolding I_def using compact_Icc compact_Int_closed decseqD inf.absorb_iff2 le0 by simp 

 



      ultimately have ‹(⋂n. I n) ≠ {}› 

        using INT_insert compact_imp_fip_image empty_subsetI finite_insert inf.absorb_iff2 by metis 

 

      moreover from 0 *(3) have ‹f n ∉ I n› for n 

        unfolding I_def P_def split_def by (induct n) simp_all 

 

      ultimately show ?thesis .. 

    qed 

 

    then obtain e where ‹∄n. f n = e› 

      using INT_E UNIV_I ex_in_conv by metis 

 

    moreover from assumption have ‹∃n. f n = e› .. 

 

    ultimately show ?thesis .. 

  qed 

qed 

 

end  



We have with good results explained the proof to a group of 

mathematicians with little or no knowledge of formal methods. 

 

In particular the “…” notation is useful and might be relevant to 

implement. 

 

We have not yet fully investigated if our approach can be 

generalized to other proofs except that we have recently 

considered a related proof, namely that the set of rational 

numbers is in fact countable, based on the rather scattered 

formalization in the Isabelle Library which incidentally differs in a 

number of ways from the traditional proof 


