ThEdu’1l8

Proving in the Isabelle Proof Assistant that the Set
of Real Numbers is not Countable

We present a new succinct proof of the uncountability of the real
numbers — optimized for clarity — based on the proof by Benjamin Porter
in the Isabelle Analysis theory.

Jorgen Villadsen
18 July 2018

A Verified Simple Prover for First-Order Logic

Jorgen Villadsen, Anders Schlichtkrull & Andreas Halkjzer From
PAAR-2018: 6th Workshop on Practical Aspects of Automated Reasoning
17 Pages — 2000 Lines of Isabelle — Soundness and Completeness in 5 Seconds

Code Generation to Simple Rule Language

Here and Now — Isabelle Introductions
1 Slide

2 Slides

3 Slides

Proving in Isabelle that the set of natural numbers N is infinite

Natural numbers 0O, 1, 2, ...

“Sucn” is “n+1”

Isabelle proof:
Successor function
Is not surjective

but is injective

“auto” proof method

theory Scratch
imports Main
begin

theorem
<Suc n # 0>
and
<n # n' =— Suc n # Suc n'>
by auto

end

Isabelle Primer for Mathematicians

Interactive proof assistants are special programs, which make it
possible to check mathematical results up to a nearly absolute
level of certainty.

Clearly, computers cannot read and understand natural language,
and even if they could, a typical textbook proof usually omits some
details and cannot be treated as absolutely rigorous.

To check the proof in an automated proof assistant, you need to
write it using a special language, understandable by computers.

This “translation” to computer language is called the formalization
of the proof.

In conclusion, the formalization of mathematics in Isabelle is a little
bit difficult to start, but very exciting.

After some time, you become comfortable with Isabelle, and then
enjoy proving nontrivial theorems to the strongest opponent in the
world, who will never overlook your error or non-strict argument.

And maybe, after some time with Isabelle, you also begin to feel,
that only formalized theorems are really proved in mathematics.

All the other proofs are just proof outlines.

https://dream.inf.ed.ac.uk/projects/isabelle/

Logic is about formalizing which statements & arguments are valid

(AX.
Definitions
True = (\X.
False = (A\x.
P AQ = (.
PV Q= (.

X) = (Ay.
x) = (A\X.
X) = (\X.

(P — Q — Xx)

(P — Xx)

Y) A=B = A

X)

]
w

-1

P =P — False

True)

— (@ — Xx)

— X) =

(Ax. True)

—— X) = (Ax. True)

Start of the famous incompleteness paper by Kurt Godel (1931)

The development of mathematics toward greater precision has led,
as is well known, to the formalization of large tracts of it, so that
one can prove any theorem using nothing but a few mechanical
rules...

The Modus Ponens rule in Isabelle
If P— Qand P then Q
(P—aq) = (P=0q)

proposition <P — Q — P — Q> by (rule mp)

Isabelle Rules

Ss=t — Ps — P T
(Ax. f x =g x) = (M. T x) = (Ax. g Xx)

(P —= Q) — P — Q

1n] Suc
P— Q —= P = (Q
— surj Suc

P = True VvV P = False

Formal Proofs of the Uncountability of the Reals

ProofPower Rob Arthan 2003
Metamath Norman Megill 2004
Mizar Grzegorz Bancerek 2004
HOL Light John Harrison 2005
Isabelle Benjamin Porter 2005

Coq Nickolay Shmyrev 2006

theory Demo imports Complex Main begin

theorem <Af. Vz :: real. 3n :: nat. f n = z»
proof
assume <3df. Vz :: real. dn :: nat. f n = 2»
show False
proof -
from <3if. Vz. In. f n = z> obtain f :: <nat = real> where assumption: <Vz. In. f n = 2>

obtain D :: <nat = real set> where <([In. D n) # {}> <f n & D n> for n
proof -
obtain L R :: <real = real = real = real>
where
*: «Labc<Raboo{Labc..RabcC{a..b}yr <cg{Labc..Rabc}
if <a < b> for a b c
proof -
have <Ix y. a < X AX<y Ay <bA-(x<cAc<y) if <a for a b c :: real
using that dense less le trans not le not less iff gr or eq by (metis (full types))

then have <Ix y. x <y A {x .. y} C{a .. b} A c & {x .. y}» if <a < b> for a b c :: real
using that by fastforce

then show ?thesis
using that by metis
ged

define P :: <nat = real x real>

where
<P = rec nat
(L1 (foO),
RO1(f0O))

(An (x, y). (L xy (f (Suc n)),
R xy (f (Suc n))))»

with *(1) have 0: <fst (P n) < snd (P n)> for n
unfolding split def by (induct n) simp all

define I :: <nat = real set>
where
«<I = An. {fst (P n) .. snd (P n)}>

with 0 have <I n # {}> for n
using less imp le by fastforce

moreover from 0 *(2) have <decseq I»
unfolding I def P def split def decseq Suc iff by simp

ultimately have <finite S — ((neS. I n) # {}»> for S
using decseqD subset empty INF greatest Max ge by metis

moreover have <closed (I n)»> for n
unfolding I def by simp

moreover have <compact (I n)> for n
unfolding I def using compact Icc compact Int closed decseqD inf.absorb iff2 1e® by simp

ultimately have <([)n. I n) # {}>

using INT insert compact imp fip image empty subsetI finite insert

moreover from 0 *(3) have <f n € I n> for n
unfolding I def P def split def by (induct n) simp all

ultimately show ?thesis ..
ged

then obtain e where <In. f n = e>
using INT E UNIV I ex in conv by metis

moreover from assumption have <dn. f n = e»
ultimately show ?thesis ..
ged
ged

end

inf.absorb_iff2 by metis

We have with good results explained the proof to a group of
mathematicians with little or no knowledge of formal methods.

a »n

In particular the “...” notation is useful and might be relevant to
implement.

We have not yet fully investigated if our approach can be
generalized to other proofs except that we have recently
considered a related proof, namely that the set of rational
numbers is in fact countable, based on the rather scattered
formalization in the Isabelle Library which incidentally differs in a
number of ways from the traditional proof

