ANA SOFIA LOPES & PAULINO TEIXEIRA

Productivity, Wages, and the Returns to Firm-Provided Training: Fair Shared Capitalism?

ESTUDOS DO GEMF

N.º 5 2010

PUBLICAÇÃO CO-FINANCIADA PELA FUNDAÇÃO PARA A CIÊNCIA E TECNOLOGIA

Impresso na Secção de Textos da FEUC
COIMBRA 2010
Productivity, Wages, and the Returns to Firm-Provided Training: Fair Shared Capitalism?

Ana Sofia Lopes
Instituto Politécnico de Leiria and GEMF

Paulino Teixeira
Universidade de Coimbra and GEMF

July 2012 – Revised version
(First version: April 2010)

Abstract

In this study, we develop an alternative modelling that examines a) the determinants of firm productivity and wages and b) the internal rate of return (IRR) to firm training for both firms and workers. Using a six-year linked employer-employee dataset, our estimates indicate that an additional hour of training per worker results in an increase of 0.12% in productivity and 0.04% in wages, or an increase of 0.16% and 0.08%, respectively, if one uses firm training as a stock variable. We then find that 82% of the gains in productivity are captured by firms and 18% by workers. Given the training costs, we finally obtain an IRR of 13% for firms and 33% for workers at sample means. Firms are heterogeneous, and we do find that dispersion in the rates of return across firms is high.

JEL classification
J24, J31, I2

Keywords
Firm-Provided Training, Internal Rate of Return, Human Capital, Productivity, Wages

Corresponding author:
Ana Sofia Lopes
Instituto Politécnico de Leiria
Campus 2 – Morro do Lena – Alto do Vieiro
Apartado 4163 | 2411-901 Leiria – Portugal
Email: analopes@estg.ipleiria.pt
1. Introduction

Despite a lack of reliable international data, it is fairly safe to say that the investments that firms make in human capital through formal training can be as high as 3% of total labour costs (Bassanini et al. 2007). Since the costs of most of these training programmes are born by firms, either directly by paying all direct costs (e.g. fees paid to training institutions), or indirectly through a loss of working time, firms are expected to capitalise on their investment in training through higher productivity. However, firm-sponsored training, whether general or firm-specific, would not be worthwhile if workers were allowed to use up all of the productivity gains by receiving higher wages. The need for training investments to be worthwhile seems to be self-evident, as otherwise they would not even be considered by companies, but it remains to be seen the extent to which the productivity gains associated with workplace training are shared by both the firms concerned and their workers.

The novelty of our approach is that the gains enjoyed by firms are computed as net gains – i.e. net of the training costs on the one hand, and net of all the gains accruing to workers through higher wages on the other. The wage gains are obtained from a wage equation and the training costs estimated from a training cost function. Both are fitted to firm-level data. We model, therefore, the impact of an additional hour of training on both productivity and wages in a unified framework. Then, in order to compute the internal rate of return for workers and firms, we take into account that training participants sacrifice a fraction of their leisure time, while at the same time firms support all the direct training costs, as well as the foregone output associated with having training sessions during normal working hours.

The key aspect in our modelling is that it allows us to derive an explicit formula for the internal rate of return for firms and workers. As far as we know this is the first time that such an approach has been used. Confirming our priors, in the case of the firms’ returns to training the model predicts that the rate of return is associated positively with the elasticity of output with respect to training hours and negatively with the elasticity of training costs with respect to training, the foregone output, the wage gains, and the rate of depreciation. For workers, the internal rate of return depends directly on the elasticity of wages with respect to training and inversely on the size of the workers’ opportunity costs.

Empirically, we observe that most firms do indeed benefit from training in net terms. In fact, 86% of all training firms have a positive internal rate of return, while on aggregate we estimate that the internal rate of return for firms is 13%. Since the training costs for workers are small, the corresponding net gains evaluated at sample means are more pronounced, at 33%. We also estimate that workers capture approximately 20% of the estimated productivity
gains. Overall, our results confirm that training does matter, as has been shown in many previous studies (e.g. Bartel, 2000, Pischke, 2005, Frazis and Lowenstein, 2005, Leuven, 2005, Ballot, Fakhfakh, and Taymaz, 2006, Dearden, Reed, and Van Reenen, 2006, and Bassanini et al, 2007).

Our main contribution is to derive a unique and distinct analytical framework for the determinants of the internal rate of return to firm-sponsored training. A recent study by Almeida and Carneiro (2009), for example, examines the internal rate of return to the investment that firms make in training very extensively but derives no explicit internal rate of return. The corresponding returns for firms are not net of the wage gains obtained by workers, nor is the return rate for workers modelled. However, a great deal of effort goes into estimating production and cost functions. Our modelling of the wage equation is also inspired by Dearden, Reed, and Van Reenen (2006), while the analysis of the workers’ and firms’ shares of the productivity gains is based on Ballot, Fakhfakh, and Taymaz (2006). Finally, unlike Dearden, Reed, and Van Reenen, our analysis is carried out at the firm, rather than sector level, while the work carried out by Ballot, Fakhfakh, and Taymaz put forward a totally different rationale for the firm-level wage equation. On the whole, we believe that our integrated modelling is appealing as it shows the key aspects at stake in a unified framework. Our treatment of the stock of training variable also includes some improvements on those to be found in extant literature.

This paper is organized as follows: In the next section, we present the modelling strategy used to evaluate the relation between productivity/wages and firm-provided training, which is based on an augmented Cobb-Douglas production function. Then, we investigate the relationship between training costs and training intensity and present the framework required to control the unobserved heterogeneity of firms, as well as a full derivation of the internal rate of return to training for workers and their firms. Section 3 describes our dataset and Section 4 presents the results. The main conclusions are drawn in Section 5.

2. Modelling

2.1 The impact of training on productivity and wages

Consider a Cobb-Douglas production function given by:

\[Y_{\mu} = AH_{\mu}^\alpha K_{\mu}^\beta T_{\mu}^\delta e^{[|q_{\mu}| + a_\mu]}, \]

(1.1)

where \(Y \) denotes value added, \(A \) is an efficiency parameter, \(H \) is hours of work, and \(K \) is the
stock of capital; \(Tr \) is the number of hours of firm-sponsored training and \(Z \) denotes the vector of time-variant and time-invariant firm characteristics, including information regarding workforce composition. \(u \) is the error term and subscripts \(j \) and \(t \) are firm and period (year) identifiers, respectively.

By dividing equation (1.1) by \(H \), we obtain the hourly productivity of labour, \(y_{jt} \), given by:

\[
y_{jt} = A H_{jt}^{\alpha + \beta + \lambda - 1} k_{jt}^\beta tr_{jt}^\lambda e^{(\eta Z_{jt} + u_{jt})},
\]

where \(k \) and \(tr \) denote capital and hours of training per hour of work, respectively.

Taking logs from equation (1.2), we have: \(^1\)

\[
\log y_{jt} = \log A + (\alpha + \beta + \lambda - 1) \log H_{jt} + \beta \log k_{jt} + \lambda \log tr_{jt} + \eta Z_{jt} + u_{jt}.
\]

Following the literature (e.g. Hellerstein, Newmark and Troske, 1999, Dearden, Reed and Reenen, 2006, and Ballot, Fakhfakh and Taymaz, 2006), we use a common set of regressors in the log hourly wage and productivity equations. Thus, using equation (1.3), we have: \(^2\)

\[
\log w_{jt} = \log a + \ell \log H_{jt} + \beta_u \log k_{jt} + \varphi \log tr_{jt} + \eta_u Z_{jt} + \mu_{jt}.
\]

As with parameter \(\lambda \) in model (1.3), \(\varphi \) in model (1.4) is expected to be positive, that is, we anticipate that training will have a positive impact on the hourly wage. Whether \(\lambda \) is higher or lower than \(\varphi \) is another matter to which we shall turn to below.

2.2 Controlling for unobserved firm heterogeneity

We deal with unobserved firm heterogeneity by assuming that the error term \(\mu_{jt} \) in model (1.4) is given by \(\mu_{jt} = \psi_j + e_{jt} \), where \(e_{jt} \) is i.i.d. and \(\psi_j \) is the unobserved firm fixed-effect. Then, using matrix notation, (1.4) becomes:

\[
\log W = X\theta + G\psi + e,
\]

where \(G \) denotes a \(JT \times J \) matrix of dummies representing the set of \(J \) firms in the sample, \(T \) is the length of the panel, and
\[
X\theta = \begin{bmatrix}
1 & \log H_{11} & \log k_{11} & \log r_{11} & Z_{11} \\
1 & \log H_{12} & \log k_{12} & \log r_{12} & Z_{12} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \log H_{jt} & \log k_{jt} & \log r_{jt} & Z_{jt}
\end{bmatrix}
\begin{bmatrix}
\log A_w \\
x \\
\beta_w \\
\phi \\
\eta_w
\end{bmatrix}.
\]

Multiplying (2.1) by \(M_G\), with \(M_G = I - P_G\) and \(P_G = G(G^T G)^{-1} G^T\), we have:

\[
M_G \log W = M_G X\theta + M_G G\psi + M_G e. \tag{2.2}
\]

By definition \(M_G G\psi = 0\), which leads us to:

\[
\hat{\theta} = \left(X^T M_G X\right)^{-1} \left(X^T M_G \log W\right). \tag{2.3}
\]

Then using equation (2.1), we have:

\[
\hat{\psi} = \left(G^T G\right)^{-1} G^T \left(\log W - X \hat{\theta}\right). \tag{2.4}
\]

which can be rewritten as:

\[
\hat{\psi}_j = \left(G^T G\right)^{-1} G^T \left[\log w_{jt} - \left(\log A_w + \ell \log r_{jt} + \beta_w \log k_{jt} + \phi \log \log r_{jt} + \eta_w \log r_{jt}\right)\right]. \tag{2.4'}
\]

Equation (2.4) – or (2.4’) – indicates that we measure the unobserved firm effect by using the difference between the observed average wage of the firm and the expected average wage, given \(X\), where \(X\) denotes the full set of firm- and worker-level characteristics.

Finally, adding \(\hat{\psi}_j\) to models (1.3) and (1.4), we obtain:

\[
\log y_{jt} = \log A + (\alpha + \beta + \lambda - 1) \log H_{jt} + \beta \log k_{jt} + \lambda \log r_{jt} + \eta Z_{jt} + \pi \hat{\psi}_j + \varepsilon_{jt}, \tag{2.5}
\]

and

\[
\log w_{jt} - \hat{\psi}_j = \log A_w + \ell \log H_{jt} + \beta_w \log k_{jt} + \phi \log r_{jt} + \eta_w Z_{jt} + e_{jt}. \tag{2.6}
\]

By construction, \(\psi_j\) contains average unobserved worker attributes. This means that
our treatment ultimately controls for a possible correlation between the unobserved ability of workers and their participation in training. This is, of course, a non-trivial notion.

Finally, since the effects of training are expected to last for more than one period, we derive an alternative stock measure, which is given in the appendix. The estimated stock variable then allows us to examine the effect of lagged training on the current productivity level. The results in Section 4 below use the two training variables for comparison purposes.

2.3 Training costs

Following Frazis and Loewenstein (2005), we use the Box-Cox transformation to investigate the appropriate functional form for the direct costs of training. Accordingly, we specify the training cost as a function of \(\left(Tr^\rho - 1 \right) / \rho \) – where, again, \(Tr \) denotes the hours of training – and obtained \(\hat{\rho} = 0.09 \), which is estimated using non-linear least squares. Given this evidence, the following log-log training cost function was assumed:

\[
\log C_{jt} = \log \tau_0 + \tau \log Tr_{jt} + \eta e^{Z'_{jt}} + \nu_{jt},
\]

(3.1)

where \(C_{jt} \) denotes the direct training costs of firm \(j \) in period \(t \) (net of public subsidies). \(Z' \) denotes observed firm characteristics, including capital and hours of work. In this equation, \(\tau \) gives the elasticity of direct training costs with respect to hours of training.

To calculate the foregone value of production – i.e. the indirect costs resulting from the fact that training often occurs during normal working hours – we return to equation (1.1) (subscripts \(j \) and \(t \) being omitted) and specify that:

\[
Y = A[H(Tr)]^\alpha K^\beta Tr^\lambda e^{(\eta Z + \nu)}.
\]

(3.2)

In this framework, the (negative) indirect effect of training on value added is obtained via \([H(Tr)]^\alpha\), so that we have:

\[
\frac{\partial Y}{\partial H} \frac{dH}{dTr} = \alpha \frac{Y}{H} \frac{dH}{dTr},
\]

(3.3)
where $\alpha = \frac{\partial Y}{\partial H} \frac{H}{Y}$ indicates the elasticity of output with respect to hours. Based on (3.3), the derivative $\frac{dH}{dTr}$ gives the relationship between the hours of work and hours of training, which is assumed to be negative as an increase in training hours produces a decrease in the number of hours spent on production. However, training is not always carried out during normal working hours, in which case we have the effect of training on hours given by $\Delta H = \frac{R}{Tr}(-\Delta Tr)$, where R denotes the number of hours subtracted from production due to training, with $R \leq Tr$. Thus, making $\frac{dH}{dTr} \approx \frac{\Delta H}{\Delta Tr} = -\frac{R}{Tr}$ we have, in absolute value:

$$\frac{\partial Y}{\partial H} \frac{dH}{dTr} = \alpha \frac{Y}{H} \frac{R}{Tr} \approx \frac{R}{Tr} y.$$ \hspace{1cm} (3.4)

2.4 The internal rate of return to training for firms

We model firm-sponsored training in a similar way to an investment in physical equipment. We further assume that training takes place in year t, while the productivity gains are felt in the post-training year $t+1$ up to period $t+n$. The training costs in turn are assumed to be fully paid in year t. Under this set of assumptions, the internal rate of return, r, is such that we have:\footnote{The internal rate of return to training is defined as the discount rate that makes the present value of future benefits equal to the present value of future costs.}

$$\sum_{i=1}^{n} \frac{NMgB_{i+1}}{(1+r)^i} = MgC_i,$$ \hspace{1cm} (4.1)

where $NMgB$ is the net marginal benefit of an additional hour of training and MgC is the corresponding marginal training cost. We emphasize that the internal rate of return in this case is net of any possible wage gain to workers. Thus, in contrast to Almeida and Carneiro (2009), in our case the rate of return for employers depends explicitly on the effects of training on productivity and wages, as well as on the training costs. In other words, our parameter of interest is the net benefit accruing to firms, while Almeida and Carneiro are only concerned with the productivity gains associated with an additional hour of training.

In this framework, we therefore assume that $NMgB$ is given by:
\[
\sum_{i=1}^{n} \frac{N \times g \times B_{t+i}}{(1+r)^i} = \sum_{i=1}^{n} \frac{1}{(1+r)^i} \frac{\partial Y_{t+i}}{\partial T_r} - \sum_{i=1}^{n} \frac{1}{(1+r)^i} \frac{\partial W_{t+i}}{\partial T_r}
\]

(4.2)

where \(W \) is the annual wage bill.

Then, using the production function (1.1) and replacing \(T_r \) by the stock variable \(M_i \) (see equation (A.2) in the appendix), we have:

\[
Y_t = A H_i^\alpha K_i^\beta \left[T_r + (1-\delta) T_{r-1} + (1-\delta)^2 T_{r-2} + \ldots + (1-\delta)^i T_{r-i} \right]^{\lambda} e^{(q z_i + y z + e_i)},
\]

(4.3)

where \(\delta \) is the firm-specific depreciation rate. (Expression (A.5) in the appendix shows how the stock of training is calculated in practice.)

Now, differentiating (4.3) with respect to \(T_{r-i} \) we have:

\[
\frac{\partial Y}{\partial T_{r-i}} = \lambda (1-\delta)^i \frac{Y}{M_i} = \lambda (1-\delta)^i \frac{Y_i}{m_i},
\]

(4.4)

where \(m_i = \frac{M_i}{H_i} \).

Using equation (4.4) we can assume that \(\frac{\partial Y_{t+i}}{\partial T_r} = \lambda (1-\delta)^i \frac{Y_i}{m_i} \). Then, given that \(\phi \) is the elasticity of the hourly wage with respect to \(T_r \) (by (2.6)), the marginal effect of training on wages can be given by \(\frac{\partial W_{t+i}}{\partial T_r} = \phi (1-\delta)^i \frac{W_i}{m_i} \).

Thus, using (4.2), we have:

\[
\sum_{i=1}^{n} \frac{N \times g \times B_{t+i}}{(1+r)^i} = \left(\lambda \frac{(1-\delta)^i Y_i}{(1+r)^i m_i} + \ldots + \lambda \frac{(1-\delta)^n Y_n}{(1+r)^n m_n} \right) - \left(\phi \frac{(1-\delta)^i W_i}{(1+r)^i m_i} + \ldots + \phi \frac{(1-\delta)^n W_n}{(1+r)^n m_n} \right),
\]

(4.5)

which is equivalent to:

\[
\sum_{i=1}^{n} \frac{N \times g \times B_{t+i}}{(1+r)^i} = \left(\lambda \frac{Y_i}{m_i} - \frac{\phi W_i}{m_i} \right) \frac{(1-\delta)^i}{(1+r)^i} + \ldots + \left(\lambda \frac{Y_n}{m_n} - \frac{\phi W_n}{m_n} \right) \frac{(1-\delta)^n}{(1+r)^n}.
\]

(4.6)

Now, \(\frac{(1-\delta)^i}{(1+r)^i} + \ldots + \frac{(1-\delta)^n}{(1+r)^n} \) is a geometric series with \(n \) terms, and a common ratio of \(\frac{1-\delta}{1+r} \), and an initial value given by \(\frac{1-\delta}{1+r} \), yielding:
\[
\left(1 - \frac{\delta}{1+r}\right) \left(1 - \frac{1 - \left(\frac{\delta}{1+r}\right)^n}{1 - \left(\frac{\delta}{1+r}\right)^{n_r}}\right) = \left(1 - \frac{\delta}{r + \delta}\right) \left(1 - \left(\frac{1 - \delta}{1 + r}\right)^n\right).
\]

(4.7)

Assuming \(n \to +\infty \), we then have:

\[
\left(1 - \frac{\delta}{r + \delta}\right) \left(1 - \left(\frac{1 - \delta}{1 + r}\right)^{\infty}\right) = \frac{1 - \delta}{r + \delta}.
\]

(4.8)

Finally, we substitute (4.8) into (4.6) to obtain the present discount value of the net marginal benefit for firms:

\[
\sum_{i=1}^{\infty} \frac{N M g B_{r_i}}{(1 + r)^i} = \left(\lambda \frac{y_i}{m_i} - \phi \frac{w_i}{m_i}\right) \left(1 - \frac{\delta}{r + \delta}\right).
\]

(4.9)

At this point we recall that the training costs contains two components, i.e. the direct cost and the foregone output. Firstly, the marginal direct cost of training can be computed using (3.1) to obtain:

\[
\frac{\partial C_{r_i}}{\partial T_{r_i}} = \tau \frac{C_{r_i}}{T_{r_i}},
\]

(4.10)

while the marginal indirect cost is given by (3.4).

Thus, combining (4.1) and (4.9), we have:

\[
\left(\lambda \frac{y_i}{m_i} - \phi \frac{w_i}{m_i}\right) \left(1 - \frac{\delta}{r + \delta}\right) = \tau \frac{C_{r_i}}{Y_i} \frac{y_i}{T_{r_i}} + \alpha \frac{R_i}{Y_i} \frac{y_i}{T_{r_i}},
\]

(4.11)

which is equivalent to:

\[
\left(\lambda - \phi \frac{w_i}{y_i}\right) \left(1 - \frac{\delta}{r + \delta}\right) = \left(\tau c_{i_r} \frac{m_i}{T_{r_i}} + \alpha s_{i_r}\right) \frac{m_i}{T_{r_i}},
\]

(4.12)

with \(w_i = \frac{w_i}{y_i}, \ c_{i_r} = \frac{C_{r_i}}{Y_i}, \) and \(s_{i_r} = \frac{R_i}{Y_i} \).

Further manipulation of (4.12) then gives us a general formula for the internal rate of return:

\[
r = \frac{\left(\lambda - \phi \frac{w_i}{y_i}\right) \left(1 - \frac{\delta}{r + \delta}\right)}{\left(\tau c_{i_r} \frac{m_i}{T_{r_i}} + \alpha s_{i_r}\right) \frac{m_i}{T_{r_i}}},
\]

(4.13)

Expression (4.13) shows that the internal rate of return to training depends directly on
the elasticity of the value added with respect to training hours and, inversely, on a) the direct
costs of training, b) the foregone output, c) the wage increases, and d) the depreciation rate.

2.5 The internal rate of return for workers
We assume that the direct costs of training are paid by employers. We also rule out the
possibility of any nominal wage reduction during the training period. Given that we leave
apprentices out of the estimation sample and that there is little evidence that workers pay
indirectly for the training costs through lower wages (e.g. Bassanini, et al. 2007, p. 200), we
do not find this set of simplifying assumptions too restrictive. However, if workers are trained
outside normal working hours, that implies an indirect cost to those workers. We proxy this
cost by using information regarding the overtime-pay premium observed in the data. We note
that this information is not available in Balanço Social: it was obtained from Quadros de
Pessoal instead (see section 3 below).5

The indirect cost to workers of training is therefore calculated as follows: firstly, we
specify the overtime wage bill as a function of hours of work to obtain the corresponding
elasticity, \(\alpha^o \), given by
\[
\frac{\partial W_t^o}{\partial H_t} = \alpha^o \frac{W_t^o}{H_t},
\]
where \(W_t^o \) denotes the overtime wage bill.

Then, given that only a fraction \(\frac{Tr_t - R_t}{Tr_t} \) of total training hours occurs outside
normal working hours, the workers’ marginal indirect training costs are given by:
\[
\alpha^o \frac{W_t^o}{H_t} \frac{(Tr_t - R_t)}{Tr_t} = \alpha^o v_t \frac{W_t^o}{Tr_t},
\]
with \(v_t = \frac{(Tr_t - R_t)}{H_t} \) and \(\frac{W_t^o}{H_t} \). (\(v_t \) is rather small in our sample, at 0.2%, on average.)

To compute the internal rate of return for workers, we next use the second term in the
right-hand-side of equation (4.5) to obtain:
\[
\sum_{i=1}^{n} \frac{MgB_i^L}{(1+r_L)^i} = \varphi \frac{w_i}{m_i} \left(1 - \delta \right) \frac{(1 - \delta)}{1 + r_L} + \cdots + \frac{(1 - \delta)^n}{(1 + r_L)^n},
\]

(5.3)

where \(r_L \) is the internal rate of return to training for workers.

Finally, we equate the marginal benefit of training in (5.3) to the indirect cost of training in (5.2) to yield:

\[
r_L = \frac{\varphi (1 - \delta) \frac{w_i}{m_i}}{\alpha_w \frac{m_i}{tr_i}},
\]

(5.4)

We now have, therefore, an explicit formula for the internal rate of return for workers \((r_L) \) that depends directly on the elasticity of the hourly wage with respect to training and inversely on both the depreciation rate and the indirect training cost. As expected, the latter indicates that the higher the percentage of training hours that occurs within standard working hours, the higher is the return to training enjoyed by workers.

3. The Data

Our main source of raw data comes from Balanço Social. This dataset has been collated by Gabinete de Estudos e Planeamento (GEP) of the Portuguese Ministry of Labour, and covers all firms having at least 100 employees in the business sector of the Portuguese economy. In particular, we follow all training firms for a period of six consecutive years, from 1995 to 2000 (annual data), where a training firm is defined as one that offered at least some type of training in every single year of the period under study. In the raw sample, some 50% of firms did not provide any training in at least one year of the 1995-2000 interval. These firms were excluded from the estimation sample and as a result we were left with a total of 1,030 ‘training’ firms, a subset representing approximately 30% of the total Portuguese business sector workforce.

Balanço Social provides us information regarding a number of relevant firm-level variables useful to our study such as: value added, capital depreciation, labour costs, the wage bill, the number of employees, hours of work, location, industry, and legal form. The data
base also provides information regarding the levels of schooling, tenure, and skills of the workforce. The information regarding the overtime premium was obtained from *Quadros de Pessoal*, a linked employer-employee dataset also collated by GEP.

A unique feature of *Balanço Social* is that it contains detailed information on formal training offered by firms, including the number of participants (by occupation) and the number of training hours by type (on- and off-the-job training). Direct and indirect costs of training are also provided by *Balanço Social*, with the latter being proxyied by R/H times the wage bill.

As shown in Table 1, which summarizes the training statistics, the proportion of total training hours (see column (3), first row) is approximately 1% of total hours of work, with most (i.e. 77%) of the training hours taking place during standard working time. On average, each worker spends approximately 16 hours per year in training. As one might expect, the dispersion across firms in the sample is very high, with more than fifty percent offering less than 8 hours of training per employee and year. Total training costs amount to 0.70% of total value added and the indirect costs, given by R/H times the wage bill, amount to 0.28%.

(Table 1 near here)

Table 2 presents the mean and standard deviation of an extended set of firm-level variables grouped into two categories: firms with training hours above *and* below the median, respectively. Clearly, firms offering more intensive training have both a higher level of productivity and higher wages. They are also larger in terms of the number of employees and capital intensity, and show a higher level of schooling and skill content as well. Tenure is slightly higher in firms with an intensity of training that is above the median.

(Table 2 near here)
4. Results and interpretation

4.1 The impact of training on productivity and wages

The results obtained from model (2.5) are shown in Table 3, column (1). The R^2 coefficient indicates that the model explains more than 75% of the variation in firm productivity. The parameter $(\alpha + \beta + \lambda - 1)$ is negative and statistically significant (at 0.1 level), pointing to the presence of a decreasing returns to scale technology. In turn, the elasticity of the (log) value added with respect to hours is equal to 0.69.8

(Table 3 near here)

The impact of training on value added per hour is given by the training variable coefficient. Thus, if firms double their number of training hours – i.e. increase them from 1% to 2% or 16 additional hours of training per worker (per year) – then productivity will increase by 1.8%. Alternatively, 10 hours of additional training per worker will increase productivity by 1.2%, an effect that is comparable to the results reported by Almeida and Carneiro (2009), who claim that 10 additional hours of training per worker result a 0.6 to 1.3% increase in productivity.9

Column (2) of Table 3 gives the results from model (2.6), where it is apparent that the higher the ratio of training hours to total hours, the higher are the (average) wages paid by the firm. This result suggests that workers do benefit from the gains achieved through firm-provided training. Not surprisingly, the coefficient of the training variable in column (2) is smaller than the corresponding coefficient in column (1).

Columns (3) and (4) of Table 3 replicate columns (1) and (2), but now use the estimated stock of training hours rather than the corresponding annual flow.10 As can been seen, using the stock variable produces an increase in the impact of training on productivity and wages. Note that by comparing columns (1) and (3) and (2) and (4), it follows that the training coefficients in the productivity equations are at least twice as big as the corresponding coefficients in the wage equations. These estimates compare well with those of Dearden, Reed and Reenen (2006), who found that the impact of training on productivity is twice as evident as its impact on wages.
In this context, it is also worthwhile obtaining a quick measure of the percentage of the productivity gains enjoyed by both workers and firms. Formally, since (i) the marginal gain in output associated with an additional hour of training is given by $\frac{dY}{dT} = \lambda \frac{Y}{Tr}$ and (ii) the marginal gain in wages is given by $\frac{dW}{dT} = \phi \frac{W}{Tr}$, it follows that the shares of the workers and firms are given by $\frac{\phi W}{Tr}$ (or $\frac{\phi w^i}{\lambda}$) and $\frac{\lambda - \phi w^i}{\lambda}$, respectively.

Using these formulae, and values of $w^i = 0.37$, $\lambda = 0.025$, and $\phi = 0.012$, the workers’ share is 18%, while the firms’ share is 82%. The workers’ share is therefore lower than that obtained by Ballot, Fakhfakh and Taymaz (2006) for Sweden and France, at 0.35 and 0.30, respectively.

Interestingly, the proportion of gains captured by workers from firm-supplied training is substantially smaller than, for example, the case of the investment in schooling, which is 27%. This result is not surprising given the general content (or portability) of the investment in formal education.

Next, we briefly report on the results obtained by applying models (2.5) and (2.6) to the subsamples of low- and high-training firms, which are defined as firms with training hours below and above the median, respectively. It seems that training has a greater impact on the productivity of firms with less intensive training, while the impact on wages is higher for firms that offer a more intensive training programme. However, the difference across the two groups of firms is smaller (in absolute value) in the latter case. In other words, training seems to improve the relative productivity of firms that engage in low levels of training and to slightly increase the relative wages of firms that offer more intensive training.

We finally test for the existence of training spillovers between workers in a given firm by investigating the extent to which low-skilled workers benefit from the training intensity of
highly-skilled workers. To this end, we specify a model in which the dependent variable is the average hourly wage of unskilled workers. The right-hand-side variables are the same as in model (2.6) but with two training variables: the training intensity of low- and highly-skilled workers, respectively. We found that the wage of low-skilled workers depend directly on their training intensity, as well as on the training intensity of the highly-skilled group. There seems to be therefore confirmation of the results obtained by De Grip and Sauermann (2012), pointing to the existence of externalities across co-workers. This evidence also underscores the importance of firm-level information as the effect of training will tend to be underestimated in worker-level data.

4.2 The training cost function

Table 4 shows the results from model (3.1). The coefficient of the training variable indicates that if, for example, firms duplicate the intensity of training, the direct training costs will increase by 66%, showing a relatively inelastic relationship between costs and training hours. Capital intensity, firm size, the proportion of skilled workers and their level of schooling also have a statistically significant impact on direct costs.

(Table 4 near here)

As mentioned above, indirect costs of training are based on the estimated loss of output. Thus, given that the direct and indirect marginal training costs are given by (4.10) and (3.4), respectively, our estimate, at sample means, of the percentage of the indirect marginal costs in total marginal training costs is given by:

\[
\frac{\alpha \frac{R_t}{H_t} \frac{y_t}{tr_t}}{\left(\tau \frac{CF_i}{Tr_i} + \alpha \frac{R_t}{H_t} \frac{y_t}{tr_t}\right)} = \frac{\alpha \frac{R_t}{H_t}}{\left(\tau \frac{CF_i}{Y_t} + \alpha \frac{R_t}{H_t}\right)} = \frac{0.69 \times 0.0075}{0.66 \times 0.0042 + 0.69 \times 0.0075} = 0.65.
\]
That is, the forgone output represents 65% of total training costs, which is virtually the same percentage as the one derived from the raw data (see Section 3, footnote 7). Clearly, one cannot ignore the existence of the indirect costs of training.

4.3 Estimates for the Internal Rate of Return

Table 5, column (1), presents the summary statistics relating to the estimated internal rate of return for firms, r, obtained by using equation (4.13). The median of r is 30%, while the proportion of firms with a negative internal rate is 14%. The level of dispersion is also very high, an aspect that is associated with the high dispersion observed as companies invest in training as shown in Table 1.

(Table 5 near here)

We can also derive an aggregate internal rate of return at sample means. In this case, equation (4.13) yields:

$$r = \frac{(\lambda - \varphi) (1 - \delta)}{(\tau c + \alpha s) m - tr} = \frac{(0.025 - 0.012*0.37)*0.81}{(0.66*0.0042 + 0.69*0.0075)*6.5} - 0.19 = 0.125.$$

Finally, in column (2) of Table 5, we give the summary statistics for the internal rate of return for workers, r_w. The reported values are obtained by applying model (5.4) to a sample of firms in which the ratio v_t, given by $\frac{(Tr_i - R_i)}{H_i}$, is greater than 0.02%. Since a) workers do not bear any direct training costs, b) the estimated workers’ indirect costs of training are small, and c) workers were able to capture approximately 20% of the productivity gains, it is not surprising that the average rate of return for workers is very positive, at 62.5%. At sample means the internal rate of return is substantially lower, at 33%, which is of course much more palatable. Interestingly enough, we found no statistically significant correlation between worker and firm internal rates of return.
5. Conclusions

In this paper we derive firm-level productivity and wage models as a function of workplace training. The results obtained from our model specifications indicate that an investment in training has a positive and statistically significant impact both on productivity and wages. In particular, it is estimated that one additional hour of training per worker results in a 0.12% increase in productivity and a 0.04% increase in wages. These two effects become stronger if the selected training variable used is the stock of training rather than the flow. Furthermore, our estimates indicate that 80% of the gains in productivity are captured by firms and 20% by workers.

We have also derived a general model for the internal rate of return to training that, for the first time to our knowledge, addresses a) the effects of training on productivity and wages, b) the corresponding costs (both direct and indirect), and c) unobserved firm heterogeneity, all in a context in which a wide set of firm and worker-average characteristics are observed, including detailed information regarding training costs. Considering the subset of training firms, the internal rate of return for firms, at sample means, is 12.5%.

Training is good for workers too. In fact, the internal rate of return for workers at sample means is 33%, which, as expected, is higher than the rate of return for firms, as training costs are mostly born by firms. All in all, the estimated gains for both workers and firms are far from trivial, a finding that should encourage policy makers to treat firm training as a genuinely worthwhile investment.
Appendix

Let us consider the following expression:

\[M_{jt} = Tr_{jt} + \left(1 - \delta_{j,t-1}\right)M_{jt-1}, \quad (A.1) \]

where the stock of training in firm \(j \) at the end of period \(t \) (\(M_{jt} \)) is given by the amount of training offered in \(t \) (\(Tr_{jt} \)) plus the stock of training at the end of previous period (\(M_{jt-1} \)), adjusted by the firm-specific depreciation rate (\(\delta_{j,t-1} \)). In our implementation, \(\delta_{j,t-1} \) depends on the observed job separation rate of firm \(j \) in period \(t-1 \), which is defined as the ratio of the number of separations observed in year \(t-1 \) to the number of employees in the beginning of the same year. We assume therefore that worker separation generates a loss in firm-specific human capital.

Using (A.1), we easily obtain:

\[M_{jt} = Tr_{jt} + \left(1 - \delta_{j,t-1}\right)Tr_{jt-1} + \left(1 - \delta_{j,t-2}\right)^2 Tr_{jt-2} + \ldots + \left(1 - \delta_{j,t-1}\right)^l Tr_{jt-l}, \quad (A.2) \]

where \(l \) denotes the number of years of cumulative training. Parameter \(l \) is proxied by using the age of each firm, values of which are available in our dataset.

Furthermore, in our dataset, we have longitudinal information regarding the percentage of training hours in the total number of hours worked for the period 1995-2000 and regarding the corresponding separation rates for all firms in the sample. Additionally, assuming that the training flow before 1995 can be proxied by the 1995-2000 average, we then have, for \(t=1999 \) (or \(t = 99 \) to shorten the notation):

\[M_{j,99} = Tr_{j,99} + \left(1 - \delta_{j,98}\right)Tr_{j,98} + \ldots + \left(1 - \delta_{j,95}\right)^4 Tr_{j,95} + \]

\[+ \left(1 - \bar{\delta}_j\right)^5 \left[\frac{1}{T} \sum_{t=1}^{T} Tr_{jt} + \left(1 - \bar{\delta}_j\right)\frac{1}{T} \sum_{t=1}^{T} Tr_{jt} + \ldots + \left(1 - \bar{\delta}_j\right)^4\frac{1}{T} \sum_{t=1}^{T} Tr_{jt} \right], \quad (A.3) \]

where \(\bar{\delta}_j = \frac{1}{T} \sum_{t=1}^{T} \delta_{jt} \), \(\bar{\delta}_j = \frac{1}{T} \sum_{t=1}^{T} \delta_{jt} \), and \(T=6 \).

Further manipulation of (A.3) yields:
\[M_{j,99} = T_{j,99} + (1 - \delta_{j,98}) T_{j,98} + \ldots + (1 - \delta_{j,95})^4 T_{j,95} + (1 - \delta_j)^5 T_{j} \left[1 + (1 - \delta_j) + \ldots + (1 - \delta_j)^{j-5} \right], \] (A.4)

which, by considering the geometric series with common ratio \((1 - \delta_j)\) and initial value equal to 1, is equivalent to:

\[M_{j,99} = T_{j,99} + (1 - \delta_{j,98}) T_{j,98} + \ldots + (1 - \delta_{j,95})^4 T_{j,95} + (1 - \delta_j)^5 T_{j} \left(\frac{1 - (1 - \delta_j)^{j-5}}{1 - (1 - \delta_j)} \right). \] (A.5)

The calculations for all the other sample years are similar.
ENDNOTES

1 Model (1.3) is similar to that described by Ballot, Fakhfakh and Taymaz (2006), equation (2), except that we have used hours of work rather than the number of employees as the labour input. In our case, a standard test carried out on the statistical significance of the \((\alpha + \beta + \lambda - 1)\) term will indicate whether there are economies of scale in the production function.

2 A similar specification can be derived using a standard data generation process for worker (log) earnings. Thus, if worker earnings are a function of both individual and firm characteristics, it then follows that a firm’s average wage will depend on worker average and firm-level characteristics too. We note that the rationale presented in Ballot, Fakhfakh and Taymaz (2006), for example, has a different micro foundation, being the equilibrium wage rate based on a Nash bargaining solution to the bargaining problem. The implications are nevertheless the same: both the wage rate and the labour productivity are ultimately determined by a common set of explanatory variables.

3 We omit the subscript \(j\) to simplify the notation.

4 We assume \(\delta_j \approx \delta_i\), with \(\delta_i\) given by the time average of the depreciation rate over the sample period, to obtain a more parsimonious expression for the internal rate of return. Our results are not affected by this assumption.

5 In Quadros de Pessoal, and for the selected sample of firms, the observed average overtime premium is 1.86 times higher than the standard hourly wage rate.

6 Our modelling does not separate on- and off-the-job components: for two main reasons: it would considerably complicate the model derivations and, empirically, it would adversely affect the results due to the lack of information available from a sufficiently large number of firms.

7 Given that the wage bill is approximately 37% of the value added created by firms, the forgone output due to training occurring within normal working time is 0.76% (= 0.28%/0.37). The actual share of indirect costs is therefore 64% (= 0.76/(0.76+0.42)), not 40% (= 0.28/0.70).

8 Using the results in the first column of Table 3, we have

\[
\alpha + \beta + \lambda - 1 = -0.033 \iff \alpha = 1 - 0.258 - 0.018 - 0.033, \text{ or } \alpha = 0.691.
\]
We do not find any statistically significant correlation between the change in sector-level productivity and the firm-level training flow variable. This result indicates that the endogeneity of training is not obvious in the data.

The average proportion of the stock of training in total hours is 4.8%, which is six times higher than the ratio of the training hours flow to total hours. The computation of the stock variable is strongly robust to changes in the depreciation rate. We tested several alternatives, including the case in which the depreciation rate is time-invariant and constant across firms, and found that the correlation across the different measures of the stock of training is always above 0.90.

Training participation figures are not available on an individual (worker) basis from Balanço Social. Instead, the information regarding training is given according to skill groups, and that information allows us to find the percentage of a specific skill group that has actually participated in training sessions in a given year, as well as the corresponding number of hours spent on training. In turn, the average hourly wage by skill group is obtained using Quadros de Pessoal.
REFERENCES

TABLE 1

Firm-provided training, summary statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>On-the-job training (1)</th>
<th>Off-the-job training (2)</th>
<th>Training (On- and off-the-job) (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training hours per hour of work</td>
<td>0.007 (0.014)</td>
<td>0.003 (0.009)</td>
<td>0.008 (0.015)</td>
</tr>
<tr>
<td>Hours of training taken in working hours (in percentage)</td>
<td>n.a.</td>
<td>n.a.</td>
<td>76.74% (32.92%)</td>
</tr>
<tr>
<td>Training hours per worker</td>
<td>14.76 (28.22)</td>
<td>5.20 (13.10)</td>
<td>15.58 (28.34)</td>
</tr>
<tr>
<td>Training costs as a percentage of value-added</td>
<td>0.59% (2.11%)</td>
<td>0.2% (0.53%)</td>
<td>0.66% (1.93%)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>2,695</td>
<td>3,664</td>
<td>3,664</td>
</tr>
</tbody>
</table>

Notes: The reported means were computed from a sample containing only firms that have provided some training in all years of the sample period. The median of the training hours per hour of work is 0.4%. Standard deviations are given in parentheses.
TABLE 2

Summary statistics of the selected variables by type of firm

<table>
<thead>
<tr>
<th>Variables</th>
<th>Firms with training hours above the median (1)</th>
<th>Firms with training hours below the median (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productivity</td>
<td>22.98 (17.76)</td>
<td>13.62 (10.82)</td>
</tr>
<tr>
<td>Hourly wage</td>
<td>5.20 (0.69)</td>
<td>3.86 (0.58)</td>
</tr>
<tr>
<td>Capital</td>
<td>4.06 (5.11)</td>
<td>2.34 (2.88)</td>
</tr>
<tr>
<td>Hours of work per worker</td>
<td>1,766 (227.74)</td>
<td>1,813 (240.01)</td>
</tr>
<tr>
<td>Number of workers</td>
<td>747.95 (1,714.42)</td>
<td>401.71 (634.70)</td>
</tr>
<tr>
<td>Schooling</td>
<td>0.346 (0.220)</td>
<td>0.221 (0.177)</td>
</tr>
<tr>
<td>Tenure</td>
<td>0.497 (0.275)</td>
<td>0.466 (0.254)</td>
</tr>
<tr>
<td>Top managers and professionals</td>
<td>0.074 (0.079)</td>
<td>0.049 (0.051)</td>
</tr>
<tr>
<td>Other managers and professionals</td>
<td>0.079 (0.082)</td>
<td>0.047 (0.067)</td>
</tr>
<tr>
<td>Foremen and supervisors</td>
<td>0.065 (0.056)</td>
<td>0.066 (0.058)</td>
</tr>
<tr>
<td>Highly-skilled and skilled personnel</td>
<td>0.476 (0.214)</td>
<td>0.447 (0.235)</td>
</tr>
<tr>
<td>Semiskilled personnel</td>
<td>0.201 (0.209)</td>
<td>0.222 (0.218)</td>
</tr>
<tr>
<td>Unskilled personnel</td>
<td>0.071 (0.118)</td>
<td>0.125 (0.168)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>1,839</td>
<td>1,825</td>
</tr>
</tbody>
</table>

Notes: Columns (1) and (2) report the mean and the standard deviation of the corresponding variables by firm category. The variables are described in Appendix Table A1.
TABLE 3

The impact of training on firm productivity and wages, with control for firm unobserved heterogeneity

<table>
<thead>
<tr>
<th>Variables</th>
<th>Training measured as a flow variable</th>
<th>Training measured as a stock variable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Productivity (1)</td>
<td>Wages (2)</td>
</tr>
<tr>
<td>(log) Training</td>
<td>0.018</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>(4.65)</td>
<td>(3.64)</td>
</tr>
<tr>
<td>(log) Capital</td>
<td>0.258</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>(37.46)</td>
<td>(3.27)</td>
</tr>
<tr>
<td>(log) Hours</td>
<td>-0.033</td>
<td>-0.034</td>
</tr>
<tr>
<td></td>
<td>(-3.12)</td>
<td>(-7.88)</td>
</tr>
<tr>
<td>Schooling</td>
<td>0.497</td>
<td>0.364</td>
</tr>
<tr>
<td></td>
<td>(10.97)</td>
<td>(19.42)</td>
</tr>
<tr>
<td>Tenure</td>
<td>0.193</td>
<td>0.190</td>
</tr>
<tr>
<td></td>
<td>(7.23)</td>
<td>(17.24)</td>
</tr>
<tr>
<td>Top managers and professionals</td>
<td>0.671</td>
<td>0.844</td>
</tr>
<tr>
<td></td>
<td>(5.18)</td>
<td>(15.74)</td>
</tr>
<tr>
<td>Other managers and professionals</td>
<td>0.876</td>
<td>0.737</td>
</tr>
<tr>
<td></td>
<td>(7.60)</td>
<td>(15.45)</td>
</tr>
<tr>
<td>Foremen and supervisors</td>
<td>0.580</td>
<td>0.412</td>
</tr>
<tr>
<td></td>
<td>(4.50)</td>
<td>(7.74)</td>
</tr>
<tr>
<td>Highly-skilled and skilled personnel</td>
<td>0.637</td>
<td>0.395</td>
</tr>
<tr>
<td></td>
<td>(7.83)</td>
<td>(11.75)</td>
</tr>
<tr>
<td>Semiskilled personnel</td>
<td>0.607</td>
<td>0.384</td>
</tr>
<tr>
<td></td>
<td>(7.53)</td>
<td>(11.50)</td>
</tr>
<tr>
<td>Unskilled personnel</td>
<td>0.553</td>
<td>0.271</td>
</tr>
<tr>
<td></td>
<td>(6.43)</td>
<td>(7.61)</td>
</tr>
<tr>
<td>Firm age</td>
<td>0.0002</td>
<td>0.0006</td>
</tr>
<tr>
<td></td>
<td>(1.43)</td>
<td>(7.37)</td>
</tr>
<tr>
<td>Medium/large firm</td>
<td>0.035</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>(2.01)</td>
<td>(2.19)</td>
</tr>
<tr>
<td>Norte</td>
<td>-0.109</td>
<td>-0.115</td>
</tr>
<tr>
<td></td>
<td>(-7.28)</td>
<td>(-18.65)</td>
</tr>
<tr>
<td>Centro</td>
<td>-0.157</td>
<td>-0.178</td>
</tr>
<tr>
<td></td>
<td>(-7.61)</td>
<td>(-20.93)</td>
</tr>
</tbody>
</table>
Notes: Columns (1) and (3) present the estimates from model (2.5), while columns (2) and (4) present the estimates from model (2.6). The dependent variable in columns (1) and (3) is the (log) value added per hour of work; in columns (2) and (4) the dependent variable is given by the (log) wage per hour of work. The model includes a constant, 27 industry dummies, 5 time dummies and 2 dummies flagging the legal form of the firm. The t-statistics are given in parentheses. The variables are described in Appendix Table A1.

TABLE 4

The determinants of training costs

<table>
<thead>
<tr>
<th>Variables</th>
<th>Direct Cost of Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>(log) Training</td>
<td>0.664</td>
</tr>
<tr>
<td></td>
<td>(54.92)</td>
</tr>
<tr>
<td>(log) Capital</td>
<td>0.157</td>
</tr>
<tr>
<td></td>
<td>(5.32)</td>
</tr>
<tr>
<td>(log) Hours</td>
<td>1.045</td>
</tr>
<tr>
<td></td>
<td>(32.40)</td>
</tr>
<tr>
<td>Schooling</td>
<td>0.691</td>
</tr>
<tr>
<td></td>
<td>(4.95)</td>
</tr>
<tr>
<td>Tenure</td>
<td>-0.212</td>
</tr>
<tr>
<td></td>
<td>(-2.57)</td>
</tr>
<tr>
<td>Top managers and professionals</td>
<td>1.677</td>
</tr>
<tr>
<td></td>
<td>(4.20)</td>
</tr>
<tr>
<td>Other managers and professionals</td>
<td>1.336</td>
</tr>
<tr>
<td></td>
<td>(3.76)</td>
</tr>
<tr>
<td>Foremen and supervisors</td>
<td>0.751</td>
</tr>
<tr>
<td></td>
<td>(1.89)</td>
</tr>
<tr>
<td>Highly-skilled and skilled personnel</td>
<td>0.831</td>
</tr>
<tr>
<td></td>
<td>(3.31)</td>
</tr>
<tr>
<td>Semiskilled personnel</td>
<td>0.611</td>
</tr>
<tr>
<td></td>
<td>(2.46)</td>
</tr>
<tr>
<td>Unskilled personnel</td>
<td>0.357</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Firm age</td>
<td>0.001</td>
</tr>
<tr>
<td>Medium/large firm</td>
<td>0.155</td>
</tr>
<tr>
<td>Norte</td>
<td>-0.149</td>
</tr>
<tr>
<td>Centro</td>
<td>-0.110</td>
</tr>
<tr>
<td>Alentejo</td>
<td>-0.014</td>
</tr>
<tr>
<td>Algarve</td>
<td>0.190</td>
</tr>
<tr>
<td>Firm unobserved heterogeneity</td>
<td>0.552</td>
</tr>
<tr>
<td>Number of observations</td>
<td>3,677</td>
</tr>
<tr>
<td>F-statistic</td>
<td>214.03</td>
</tr>
</tbody>
</table>

Notes: The reported results are from model (3.1). See notes to Table 3.

TABLE 5

Summary statistics of the internal rate of return to training

<table>
<thead>
<tr>
<th></th>
<th>For firms (1)</th>
<th>For workers (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.690</td>
<td>0.625</td>
</tr>
<tr>
<td>Median</td>
<td>0.303</td>
<td>0.168</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1.000</td>
<td>1.059</td>
</tr>
<tr>
<td>Number of observations</td>
<td>3,226</td>
<td>740</td>
</tr>
</tbody>
</table>

Note: The results are based on the estimates reported in Table 3, columns (3) and (4).
<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>Hours of training per hour of work.</td>
</tr>
<tr>
<td>Productivity</td>
<td>Value added per hour of work.</td>
</tr>
<tr>
<td>Hourly wage</td>
<td>The wage bill (total earnings) divided by total hours of work.</td>
</tr>
<tr>
<td>Capital</td>
<td>Capital stock per hour of work. The stock of capital is proxied by the annual volume of capital depreciation.</td>
</tr>
<tr>
<td>Hours</td>
<td>Annual number of contractual (standard) hours.</td>
</tr>
<tr>
<td>Schooling</td>
<td>Proportion of workers with at least a high-school degree.</td>
</tr>
<tr>
<td>Tenure</td>
<td>Proportion of workers with 10 or more years of service.</td>
</tr>
<tr>
<td>Top managers and professionals</td>
<td>Proportion of top managers and professionals.</td>
</tr>
<tr>
<td>Other managers and professionals</td>
<td>Proportion of other managers and professionals.</td>
</tr>
<tr>
<td>Foremen and supervisors</td>
<td>Proportion of foremen and supervisors.</td>
</tr>
<tr>
<td>Highly-skilled and skilled personnel</td>
<td>Proportion of highly-skilled and skilled personnel.</td>
</tr>
<tr>
<td>Semiskilled personnel</td>
<td>Proportion of semiskilled personnel.</td>
</tr>
<tr>
<td>Unskilled personnel</td>
<td>Proportion of unskilled personnel.</td>
</tr>
<tr>
<td>Norte/Centro/Lisboa e Vale do Tejo/Alentejo/Algarve</td>
<td>Dummy: 1 if the firm is located in Norte/Centro/Lisboa e Vale do Tejo/Alentejo/Algarve; 0 otherwise.</td>
</tr>
<tr>
<td>Firm age</td>
<td>Number of years of the firm age.</td>
</tr>
<tr>
<td>Medium/large firm</td>
<td>Dummy: 1 if the number of employees is more than 250; 0 otherwise.</td>
</tr>
<tr>
<td>Firm unobserved heterogeneity</td>
<td>Given by Ψ_j in equation (2.4)</td>
</tr>
<tr>
<td>Number of workers</td>
<td>Total number of workers in the firm.</td>
</tr>
</tbody>
</table>
2010-05 Productivity, wages, and the returns to firm-provided training: who is grabbing the biggest share?
 - Ana Sofia Lopes & Paulino Teixeira

2010-04 Health Status Determinants in the OECD Countries. A Panel Data Approach with Endogenous Regressors
 - Ana Poças & Elias Soukiazis

2010-03 Employment, exchange rates and labour market rigidity
 - Fernando Alexandre, Pedro Baçao, João Cerejeira & Miguel Portela

2010-02 Slip Sliding Away: Further Union Decline in Germany and Britain
 - John T. Addison, Alex Bryson, Paulino Teixeira & André Pahnke

2010-01 The Demand for Excess Reserves in the Euro Area and the Impact of the Current Credit Crisis
 - Fátima Teresa Sol Murta & Ana Margarida Garcia

2009-16 The performance of the European Stock Markets: a time-varying Sharpe ratio approach
 - José A. Soares da Fonseca

2009-15 Exchange Rate Mean Reversion within a Target Zone: Evidence from a Country on the Periphery of the ERM
 - António Portugal Duarte, João Sousa Andrade & Adelaide Duarte

2009-14 The Extent of Collective Bargaining and Workplace Representation: Transitions between States and their Determinants. A Comparative Analysis of Germany and Great Britain
 - John T. Addison, Alex Bryson, Paulino Teixeira, André Pahnke & Lutz Bellmann

 - Micaela Antunes & Elias Soukiazis

 - John T. Addison, Chad Cotti & Christopher J. Surfield

2009-11 The PIGS, does the Group Exist? An empirical macroeconomic analysis based on the Okun Law
 - João Sousa Andrade

2009-10 A Política Monetária do BCE. Uma estratégia original para a estabilidade nominal
 - João Sousa Andrade

2009-09 Wage Dispersion in a Partially Unionized Labor Force
 - John T. Addison, Ralph W. Bailey & W. Stanley Siebert

2009-08 Employment and exchange rates: the role of openness and technology
 - Fernando Alexandre, Pedro Baçao, João Cerejeira & Miguel Portela

2009-07 Channels of transmission of inequality to growth: A survey of the theory and evidence from a Portuguese perspective
 - Adelaide Duarte & Marta Simões

2009-06 No Deep Pockets: Some stylized results on firms’ financial constraints
 - Filipe Silva & Carlos Carreira

2009-05 Aggregate and sector-specific exchange rate indexes for the Portuguese economy
 - Fernando Alexandre, Pedro Baçao, João Cerejeira & Miguel Portela

2009-04 Rent Seeking at Plant Level: An Application of the Card-De La Rica Tenure Model to Workers in German Works Councils
 - John T. Addison, Paulino Teixeira & Thomas Zwick

2009-03 Unobserved Worker Ability, Firm Heterogeneity, and the Returns to Schooling and Training
 - Ana Sofia Lopes & Paulino Teixeira

2009-02 Worker Directors: A German Product that Didn’t Export?
 - John T. Addison & Claus Schnabel
Fiscal and Monetary Policies in a Keynesian Stock-flow Consistent Model
- Edwin Le Heron

Uniform Price Market and Behaviour Pattern: What does the Iberian Electricity Market Point Out
- Vítor Marques, Isabel Soares & Adelino Fortunato

The partial adjustment factors of FTSE 100 stock index and stock index futures: The informational impact of electronic trading systems
- Helder M. C. V. Sebastião

Water Losses and Hydrographical Regions Influence on the Cost Structure of the Portuguese Water Industry
- Rita Martins, Fernando Coelho & Adelino Fortunato

The Shadow of Death: Analysing the Pre-Exit Productivity of Portuguese Manufacturing Firms
- Carlos Carreira & Paulino Teixeira

A Note on the Determinants and Consequences of Outsourcing Using German Data
- John T. Addison, Lutz Bellmann, André Pahnke & Paulino Teixeira

Exchange Rate and Interest Rate Volatility in a Target Zone: The Portuguese Case
- António Portugal Duarte, João Sousa Andrade & Adelaide Duarte

Taylor-type rules versus optimal policy in a Markov-switching economy
- Fernando Alexandre, Pedro Bação & Vasco Gabriel

Entry and exit as a source of aggregate productivity growth in two alternative technological regimes
- Carlos Carreira & Paulino Teixeira

Optimal monetary policy with a regime-switching exchange rate in a forward-looking model
- Fernando Alexandre, Pedro Bação & John Driffill

Estrutura económica, intensidade energética e emissões de CO₂: Uma abordagem Input-Output
- Luís Cruz & Eduardo Barata

The Stability and Growth Pact, Fiscal Policy Institutions, and Stabilization in Europe
- Carlos Fonseca Marinheiro

The Consumption-Wealth Ratio Under Asymmetric Adjustment
- Vasco J. Gabriel, Fernando Alexandre & Pedro Bação

European Integration and External Sustainability of the European Union An application of the thesis of Feldstein-Horioka
- João Sousa Andrade

Uma Aplicação da Lei de Okun em Portugal
- João Sousa Andrade

Education and growth: an industry-level analysis of the Portuguese manufacturing sector
- Marta Simões & Adelaide Duarte

Levels of education, growth and policy complementarities
- Marta Simões & Adelaide Duarte

Internal and External Restructuring over the Cycle: A Firm-Based Analysis of Gross Flows and Productivity Growth in Portugal
- Carlos Carreira & Paulino Teixeira

Cost Structure of the Portuguese Water Industry: a Cubic Cost Function Application
- Rita Martins, Adelino Fortunato & Fernando Coelho

The Impact of Works Councils on Wages
- John T. Addison, Paulino Teixeira & Thomas Zwick

Ricardian Equivalence, Twin Deficits, and the Feldstein-Horioka puzzle in Egypt
- Carlos Fonseca Marinheiro
2006-06 L’intégration des marchés financiers
 - José Soares da Fonseca

2006-05 The Integration of European Stock Markets and Market Timing
 - José Soares da Fonseca

 - João Sousa Andrade

2006-03 Works Councils, Labor Productivity and Plant Heterogeneity: First Evidence from Quantile Regressions
 - Joachim Wagner, Thorsten Schank, Claus Schnabel & John T. Addison

2006-02 Does the Quality of Industrial Relations Matter for the Macroeconomy? A Cross-Country Analysis Using Strikes Data
 - John T. Addison & Paulino Teixeira

2006-01 Monte Carlo Estimation of Project Volatility for Real Options Analysis
 - Pedro Manuel Cortesão Godinho

2005-17 On the Stability of the Wealth Effect
 - Fernando Alexandre, Pedro Bação & Vasco J. Gabriel

2005-16 Building Blocks in the Economics of Mandates
 - John T. Addison, C. R. Barrett & W. S. Siebert

2005-15 Horizontal Differentiation and the survival of Train and Coach modes in medium range passenger transport, a welfare analysis comprising economies of scope and scale
 - Adelino Fortunato & Daniel Murta

2005-14 ‘Atypical Work’ and Compensation
 - John T. Addison & Christopher J. Surfield

2005-13 The Demand for Labor: An Analysis Using Matched Employer-Employee Data from the German LIAB. Will the High Unskilled Worker Own-Wage Elasticity Please Stand Up?
 - John T. Addison, Lutz Bellmann, Thorsten Schank & Paulino Teixeira

2005-12 Works Councils in the Production Process
 - John T. Addison, Thorsten Schank, Claus Schnabel & Joachim Wagner

 - J. Q. Smith & António A. F. Santos

2005-10 Firm Growth and Persistence of Chance: Evidence from Portuguese Microdata
 - Blandina Oliveira & Adelino Fortunato

2005-09 Residential water demand under block rates – a Portuguese case study
 - Rita Martins & Adelino Fortunato

2005-08 Politico-Economic Causes of Labor Regulation in the United States: Alliances and Raising Rivals’ Costs (and Sometimes Lowering One’s Own)
 - John T. Addison

2005-07 Firm Growth and Liquidity Constraints: A Dynamic Analysis
 - Blandina Oliveira & Adelino Fortunato

2005-06 The Effect of Works Councils on Employment Change
 - John T. Addison & Paulino Teixeira

2005-05 Le Rôle de la Consommation Publique dans la Croissance: le cas de l’Union Européenne
 - João Sousa Andrade, Maria Adelaide Silva Duarte & Claude Berthomieu

2005-04 The Dynamics of the Growth of Firms: Evidence from the Services Sector
 - Blandina Oliveira & Adelino Fortunato
- John T. Addison

2005-02 Has the Stability and Growth Pact stabilised? Evidence from a panel of 12 European countries and some implications for the reform of the Pact
- Carlos Fonseca Marinheiro

2005-01 Sustainability of Portuguese Fiscal Policy in Historical Perspective
- Carlos Fonseca Marinheiro

2004-03 Human capital, mechanisms of technological diffusion and the role of technological shocks in the speed of diffusion. Evidence from a panel of Mediterranean countries
- Maria Adelaide Duarte & Marta Simões

2004-02 What Have We Learned About The Employment Effects of Severance Pay? Further Iterations of Lazear et al.
- John T. Addison & Paulino Teixeira

2004-01 How the Gold Standard Functioned in Portugal: an analysis of some macroeconomic aspects
- António Portugal Duarte & João Sousa Andrade

- Blandina Oliveira & Adelino Fortunato

2003-06 Régimes Monétaires et Théorie Quantitative du Produit Nominal au Portugal (1854-1998)
- João Sousa Andrade

2003-05 Causas do Atraso na Estabilização da Inflação: Abordagem Teórica e Empírica
- Vítor Castro

2003-04 The Effects of Households’ and Firms’ Borrowing Constraints on Economic Growth
- Maria da Conceição Costa Pereira

2003-03 Second Order Filter Distribution Approximations for Financial Time Series with Extreme Outliers
- J. Q. Smith & António A. F. Santos

2003-02 Output Smoothing in EMU and OECD: Can We Forego Government Contribution? A risk sharing approach
- Carlos Fonseca Marinheiro

2003-01 Um modelo VAR para uma Avaliação Macroeconómica de Efeitos da Integração Europeia da Economia Portuguesa
- João Sousa Andrade

2002-08 Discrimination des facteurs potentiels de croissance et type de convergence de l’économie portugaise dans l’UE à travers la spécification de la fonction de production macroéconomique. Une étude appliquée de données de panel et de séries temporelles
- Marta Simões & Maria Adelaide Duarte

2002-07 Privatisation in Portugal: employee owners or just happy employees?
- Luis Moura Ramos & Rita Martins

2002-06 The Portuguese Money Market: An analysis of the daily session
- Fátima Teresa Sol Murta

2002-05 As teorias de ciclo políticos e o caso português
- Rodrigo Martins
2002-04 Fundos de acções internacionais: uma avaliação de desempenho
- Nuno M. Silva

2002-03 The consistency of optimal policy rules in stochastic rational expectations models
- David Backus & John Driffill

2002-02 The term structure of the spreads between Portuguese and German interest rates during stage II of EMU
- José Soares da Fonseca

2002-01 O processo desinflacionista português: análise de alguns custos e benefícios
- António Portugal Duarte

2001-14 Equity prices and monetary policy: an overview with an exploratory model
- Fernando Alexandre & Pedro Bação

2001-13 A convergência das taxas de juro portuguesas para os níveis europeus durante a segunda metade da década de noventa
- José Soares da Fonseca

- Adelaide Duarte & Marta Simões

2001-11 Ricardian Equivalence: An Empirical Application to the Portuguese Economy
- Carlos Fonseca Marinheiro

2001-10 A Especificação da Função de Produção Macro-Económica em Estudos de Crescimento Económico.
- Maria Adelaide Duarte e Marta Simões

2001-09 Eficácia da Análise Técnica no Mercado Accionista Português
- Nuno Silva

2001-08 The Risk Premiums in the Portuguese Treasury Bills Interest Rates: Estimation by a cointegration method
- José Soares da Fonseca

2001-07 Principais factores de crescimento da economia portuguesa no espaço europeu
- Maria Adelaide Duarte e Marta Simões

2001-06 Inflation Targeting and Exchange Rate Co-ordination
- Fernando Alexandre, John Driffill e Fabio Spagnolo

2001-05 Labour Market Transition in Portugal, Spain, and Poland: A Comparative Perspective
- Paulino Teixeira

2001-04 Paridade do Poder de Compra e das Taxas de Juro: Um estudo aplicado a três países da UEM
- António Portugal Duarte

2001-03 Technology, Employment and Wages
- John T. Addison & Paulino Teixeira

2001-02 Human capital investment through education and economic growth. A panel data analysis based on a group of Latin American countries
- Maria Adelaide Duarte & Marta Simões

- José Soares da Fonseca
2000-08 Identificação de Vectores de Cointegração: Análise de Alguns Exemplos
 - Pedro Miguel Avelino Bação

2000-07 Imunização e M-quadrado: Que relação?
 - Jorge Cunha

2000-06 Eficiência Informacional nos Futuros Lisbor 3M
 - Nuno M. Silva

2000-05 Estimation of Default Probabilities Using Incomplete Contracts Data
 - J. Santos Silva & J. Murteira

2000-04 Un Essaie d’Application de la Théorie Quantitative de la Monnaie à l’économie portugaise, 1854-1998
 - João Sousa Andrade

2000-03 Le Taux de Chômage Naturel comme un Indicateur de Politique Economique? Une application à l’économie portugaise
 - Adelaide Duarte & João Sousa Andrade

2000-02 La Convergence Réelle Selon la Théorie de la Croissance: Quelles Explications pour l’Union Européenne?
 - Marta Cristina Nunes Simões

2000-01 Política de Estabilização e Independência dos Bancos Centrais
 - João Sousa Andrade

1999-09 Nota sobre a Estimação de Vectores de Cointegração com os Programas CATS in RATS, PCFIML e EVIEWS
 - Pedro Miguel Avelino Bação

1999-08 A Abertura do Mercado de Telecomunicações Celulares ao Terceiro Operador: Uma Decisão Racional?
 - Carlos Carreira

1999-07 Is Portugal Really so Arteriosclerotic? Results from a Cross-Country Analysis of Labour Adjustment
 - John T. Addison & Paulino Teixeira

1999-06 The Effect of Dismissals Protection on Employment: More on a Vexed Theme
 - John T. Addison, Paulino Teixeira e Jean-Luc Grosso

1999-05 A Cobertura Estática e Dinâmica através do Contrato de Futuros PSI-20. Estimação das Rácios e Eficácia Ex Post e Ex Ante
 - Helder Miguel C. V. Sebastião

1999-04 Mobilização de Poupança, Financiamento e Internacionalização de Carteiras
 - João Sousa Andrade

1999-03 Natural Resources and Environment
 - Adelaide Duarte

1999-02 L’Analyse Positive de la Politique Monétaire
 - Chistian Aubin

1999-01 Economias de Escala e de Gama nos Hospitais Públicos Portugueses: Uma Aplicação da Função de Custo Variável Translog
 - Carlos Carreira

1998-11 Equilíbrio Monetário no Longo e Curto Prazos - Uma Aplicação à Economia Portuguesa
 - João Sousa Andrade
<table>
<thead>
<tr>
<th>Ano</th>
<th>Título</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998-10</td>
<td>Algumas Observações Sobre o Método da Economia</td>
<td>João Sousa Andrade</td>
</tr>
<tr>
<td>1998-09</td>
<td>Mudança Tecnológica na Indústria Transformadora: Que Tipo de Viés Afinal?</td>
<td>Paulino Teixeira</td>
</tr>
<tr>
<td>1998-08</td>
<td>Portfolio Insurance and Bond Management in a Vasicek’s Term Structure of Interest Rates</td>
<td>José Alberto Soares da Fonseca</td>
</tr>
<tr>
<td>1998-07</td>
<td>Financial Innovation and Money Demand in Portugal: A Preliminary Study</td>
<td>Pedro Miguel Avelino Bação</td>
</tr>
<tr>
<td>1998-05</td>
<td>A Moeda Única e o Processo de Difusão da Base Monetária</td>
<td>José Alberto Soares da Fonseca</td>
</tr>
<tr>
<td>1998-04</td>
<td>La Structure par Termes et la Volatilité des Taux d’intérêt LISBOR</td>
<td>José Alberto Soares da Fonseca</td>
</tr>
<tr>
<td>1998-03</td>
<td>Regras de Comportamento e Reformas Monetárias no Novo SMI</td>
<td>João Sousa Andrade</td>
</tr>
<tr>
<td>1998-02</td>
<td>Um Estudo da Flexibilidade dos Salários: o Caso Espanhol e Português</td>
<td>Adelaide Duarte e João Sousa Andrade</td>
</tr>
<tr>
<td>1998-01</td>
<td>Moeda Única e Internacionalização: Apresentação do Tema</td>
<td>João Sousa Andrade</td>
</tr>
<tr>
<td>1997-09</td>
<td>Inovação e Aplicações Financeiras em Portugal</td>
<td>Pedro Miguel Avelino Bação</td>
</tr>
<tr>
<td>1997-08</td>
<td>Estudo do Efeito Liquidez Aplicado à Economia Portugues</td>
<td>João Sousa Andrade</td>
</tr>
<tr>
<td>1997-07</td>
<td>An Introduction to Conditional Expectations and Stationarity</td>
<td>Rui Manuel de Almeida</td>
</tr>
<tr>
<td>1997-06</td>
<td>Definição de Moeda e Efeito Berlusconi</td>
<td>João Sousa Andrade</td>
</tr>
<tr>
<td>1997-05</td>
<td>A Estimação do Risco na Escolha dos Portafolíos: Uma Visão Selectiva</td>
<td>António Alberto Ferreira dos Santos</td>
</tr>
<tr>
<td>1997-04</td>
<td>A Previsão Não Paramétrica de Taxas de Rentabilidade</td>
<td>Pedro Manuel Cortesão Godinho</td>
</tr>
<tr>
<td>1997-03</td>
<td>Propriedades Assimptóticas de Densidades</td>
<td>Rui Manuel de Almeida</td>
</tr>
<tr>
<td>1997-02</td>
<td>Co-Integration and VAR Analysis of the Term Structure of Interest Rates: an empirical study of the Portuguese money and bond markets</td>
<td>João Sousa Andrade & José Soares da Fonseca</td>
</tr>
<tr>
<td>1997-01</td>
<td>Repartição e Capitalização. Duas Modalidades Complementares de Financiamento das Reformas</td>
<td>Maria Clara Murteira</td>
</tr>
<tr>
<td>1996-08</td>
<td>A Crise e o Ressurgimento do Sistema Monetário Europeu</td>
<td>Luis Manuel de Aguiar Dias</td>
</tr>
<tr>
<td>1996-07</td>
<td>Housing Shortage and Housing Investment in Portugal a Preliminary View</td>
<td>Vítor Neves</td>
</tr>
</tbody>
</table>
1996-06 Housing, Mortgage Finance and the British Economy
- Kenneth Gibb & Nile Istephan

1996-05 The Social Policy of The European Community, Reporting Information to Employees, a U.K. perspective: Historical Analysis and Prognosis
- Ken Shackleton

1996-04 O Teorema da Equivalência Ricardiana: aplicação à economia portuguesa
- Carlos Fonseca Marinheiro

1996-03 O Teorema da Equivalência Ricardiana: discussão teórica
- Carlos Fonseca Marinheiro

1996-02 As taxas de juro no MMI e a Restrição das Reservas Obrigatórias dos Bancos
- Fátima Assunção Sol e José Alberto Soares da Fonseca

1996-01 Uma Análise de Curto Prazo do Consumo, do Produto e dos Salários
- João Sousa Andrade