HOW VULNERABLE TO OIL ARE NET OIL IMPORTING COUNTRIES IN EUROPE?

Carla Margarida Saraiva de Oliveira Henriques, chenriques@iscac.pt
Polytechnic of Coimbra, Coimbra Business School Research Centre, ISCAC, Coimbra, Portugal
INESC Coimbra, DEEC, Rua Sílvio Lima, Polo II, 3030-290 Coimbra, Portugal
CeBER, Faculty of Economics, University of Coimbra, Av Dias da Silva 165, 3004-512 Coimbra, Portugal

Maria Elisabete Duarte Neves
Polytechnic of Coimbra, Coimbra Business School Research Centre, ISCAC, Coimbra, Portugal
University of Trás-os-Montes and Alto Douro| CETRAD, Vila Real, Portugal

Alexandre Emanuel do Couto Lima
Polytechnic of Coimbra, Coimbra Business School, ISCAC, Coimbra, Portugal

Duc K. Nguyen
IPAG Business School, Paris, France
International School, Vietnam National University, Hanoi, Vietnam
Index

- Motivation
- Methodology
- Data
- Discussion of results
- Conclusions
Motivation

➢ Aim:

➢ Measure the vulnerability to oil of net oil importing countries;
➢ Analyse changes in efficiency/technological progress;
➢ Evaluate robustness of the results obtained.
Motivation

➢ Research questions:
 ➢ Which *countries* have the highest level of vulnerability to oil supply?
 ➢ Which *factors* had the greatest influence on the level of vulnerability of each country?
 ➢ Are the results obtained *robust* in the event of disturbances in the values of the evaluation factors used?
 ➢ Which factors contributed the most to the *productivity* gains recorded?
Methodology

WRDDM (Weighted Russell Directional Distance Model):

\[
\max \beta^R_0 = \max (w_y (\sum_r \omega_y^r \alpha_0^r) + w_x (\sum_i \omega_x^i \zeta_0^i)) \\
\text{s.t. } \sum_{j=1}^{n} \lambda_j y_{rj} \geq y_{ro}^c + \alpha_0^r g_{yr}, \ r = 1, \ldots, s, \\
\sum_{j=1}^{n} \lambda_j x_{ij} \leq x_{io} - \zeta_0^i g_{xi}, \ i = 1, \ldots, m, \\
\sum_{j=1}^{n} \lambda_j = 1, \\
\lambda_j \geq 0 \ (\forall j),
\]

- **Non-radial and non-oriented model;**
- **Allows the assignment of different weights to the various valuation factors.**
Methodology

WRDDM (Weighted Russell Directional Distance Model):

\[
\text{max } \sum_r s_r^+ + \sum_i s_i^-
\]

s.t. \(\sum_{j=1}^{n} \lambda_j y_{rj} - s_r^+ = y_{ro} + \alpha_{0}^{r*} g_{yr}, r = 1,\ldots, s,\)

\(\sum_{j=1}^{n} \lambda_j x_{ij} + s_i^- = x_{io} - \zeta_{0}^{i*} g_{xi}, i = 1,\ldots, m,\)

\(\sum_{j=1}^{n} \lambda_j = 1, \lambda_j \geq 0 (\forall j),\)

\(s_r^+ \geq 0 (\forall r),\)

\(s_i^- \geq 0 (\forall i)\)

➢ Allows identifying benchmarks
Methodology

WRDDM (Weighted Russell Directional Distance Model):

\[
\max \left(w_y \left(\sum_r \alpha_y^r \frac{s_r^+}{g_{yr}} \right) + w_x \left(\sum_i \alpha_x^i \frac{s_i^-}{g_{xi}} \right) \right)
\]

s.t. \(\sum_{j=1}^n \lambda_j y_{rj} = y_{ro} + s_r^+, \ r = 1, \ldots, s, \)

\(\sum_{j=1}^n \lambda_j x_{ij} = x_{io} - s_i^-, \ i = 1, \ldots, m, \)

\(\sum_{j=1}^n \lambda_j z_{uj} = z_{uo} - s_u^-, \ u = 1, \ldots, q, \)

\(\sum_{j=1}^n \lambda_j = 1, \ \lambda_j \geq 0, \ j = 1, \ldots, n, \)

\(s_r^+ \geq 0 \ (\forall_r), \ s_i^- \geq 0 \ (\forall_i), \ s_u^- \geq 0 \ (\forall_u) \)

- If \((s_r^+*, s_i^-*, s_u^-, \lambda_j^*)\) is the optimal solution to original problem, then the overall measure of inefficiency obtained from the WRDDM method is given by:

\[
(w_y \left(\sum_r \alpha_o^{r*} \frac{s_r^+}{g_{yr}} \right) + w_x \left(\sum_i \zeta_o^{i*} \frac{s_i^-}{g_{xi}} \right), \)

where \(\alpha_o^{r*} = \alpha_y^r \frac{g_{yr}}{g_{yr}} \) and \(\zeta_o^{i*} = \alpha_x^i \frac{g_{xi}}{g_{xi}}. \)

- Allows identifying the contribution of each factor to the inefficiency
Methodology

WRDDM (Weighted Russell Directional Distance Model):

\[
\max \beta^L = \max \left(w_y (\sum_{r \in 0} \omega^r_y \alpha^r_o) + w_x (\sum_{i \in I} \omega^i_x \zeta^i_o) \right)
\]
\[
s.t. \sum_{j \neq 0} \lambda_j y_{rj}^L \geq y_{r0}^L + \alpha^r_o g_{yr}, r = 1, ..., s,
\]
\[
\sum_{j \neq 0} \lambda_j x_{ij}^L \leq x_{i0}^L - \zeta^i_o g_{xi}, i = 1, ..., m,
\]
\[
\sum_{j \neq 0} \lambda_j z_{uj}^L \leq z_{u0}^L, u = 1, ..., q,
\]
\[
\sum_{j \neq 0} \lambda_j = 1, \lambda_j \geq 0, j = 1, ..., n.
\]

\[
\max \beta^U = \max \left(w_y (\sum_{r \in 0} \omega^r_y \alpha^r_o) + w_x (\sum_{i \in I} \omega^i_x \zeta^i_o) \right)
\]
\[
s.t. \sum_{j \neq 0} \lambda_j y_{rj}^U \geq y_{r0}^L + \alpha^r_o g_{yr}, r = 1, ..., s,
\]
\[
\sum_{j \neq 0} \lambda_j x_{ij}^L \leq x_{i0}^L - \zeta^i_o g_{xi}, i = 1, ..., m,
\]
\[
\sum_{j \neq 0} \lambda_j z_{uj}^L \leq z_{u0}^L, u = 1, ..., q,
\]
\[
\sum_{j \neq 0} \lambda_j = 1, \lambda_j \geq 0, j = 1, ..., n.
\]

➢ Allows performing the robustness analysis
Methodology

WRDDM (Weighted Russell Directional Distance Model):

\[
TECHCH_t^{t+1} = \frac{1}{2}\left\{\overline{D}^{t+1}(x^t_k, y^t_k, b^t_k) + \overline{D}^{t+1}(x^{t+1}_k, y^{t+1}_k, b^{t+1}_k) - \overline{D}^t(x^t_k, y^t_k, b^t_k) - \overline{D}^t(x^{t+1}_k, y^{t+1}_k, b^{t+1}_k)\right\},
\]

\[
EFFCH_t^{t+1} = \overline{D}^t(x^t_k, y^t_k, b^t_k) - \overline{D}^{t+1}(x^{t+1}_k, y^{t+1}_k, b^{t+1}_k),
\]

\[
TFP_t^{t+1} = TECHCH_t^{t+1} + EFFCH_t^{t+1}.
\]

➢ Allows performing productivity analysis (i.e., Efficiency changes and TP)
Data

Indicators used in the DEA model.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Definition</th>
<th>Unit of Measure</th>
<th>Reference</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOCKS (controllable output)</td>
<td>Strategic oil reserves</td>
<td>Number of consumption days each country has in terms of strategic reserves</td>
<td>Nordaus (1974), Taylor and Doren (2005), Ren and Yumeng (2015), Guo et al. (2020)</td>
<td>IEA</td>
</tr>
<tr>
<td>PRICE (Non-controllable Input)</td>
<td>Price of oil delivered at the border of the importing country, which includes all charges relating to insurance and freight to the destination</td>
<td>CIF Price ($/t)</td>
<td>Zhang et al. (2013)</td>
<td>UE - European Commission UK - IEA</td>
</tr>
<tr>
<td>OIL IN ENERGY MIX (controllable input)</td>
<td>Weight of oil in total primary energy sources (energy mix)</td>
<td>%</td>
<td>Zeng et al. (2017)</td>
<td>Eurostat</td>
</tr>
<tr>
<td>SHANNON INDEX (bad input)</td>
<td>Shannon-Wiener Index weighted by an index of political stability and absence of terrorism</td>
<td>Dimensionless</td>
<td>Chalvatzis and Loannidis (2017)</td>
<td>Imports - European Commission, Political stability index and absence of terrorism - WorldBank</td>
</tr>
</tbody>
</table>
Discussion of results

- Ranking of the countries studied, according to their geographical location:
Discussion of results

➢ Decomposition of the inefficiency of the countries studied:
Discussion of results

- Robustness analysis:
Discussion of results

➢ Productivity analysis:

Contribution to TFP from 2013 to 2014

Contribution to TFP from 2014 to 2019
Discussion of results

➢ Productivity analysis:

TFP change from 2013 to 2014 by each input/output variable

TFP change from 2014 to 2019 by each input/output variable
Conclusions

➢ Which **countries** have the highest level of vulnerability to oil supply?

➢ Slovakia, Czech Republic and Sweden on the podium of the most efficient countries in terms of security in oil supply;

➢ On the contrary, Hungary, Poland and Portugal had the worst results.
Conclusions

➢ Which factors had the greatest influence on the level of vulnerability of each country?

➢ Regarding the countries that obtained better scores, the significant influence of the **low weight of oil on the energy mix** stands out;

➢ On the contrary, the **low level of diversity of suppliers** was the predominant factor for countries that recorded the worst scores.
Conclusions

➢ Are the results obtained robust in the event of disturbances in the values of the evaluation factors used?

➢ Despite the good results obtained for Slovakia, through robustness analysis, it was possible to assess that these are not robust in the event of disturbances in the indicators used.
Conclusions

➢ Which factors contributed the most to the *productivity* gains recorded?

➢ It was possible to conclude that technological progress made the greatest contribution to increasing total productivity;

➢ The factor that made the greatest contribution to technological progress was the “SHANNON INDEX”.
HOW VULNERABLE TO OIL ARE NET OIL IMPORTING COUNTRIES IN EUROPE?

Carla Margarida Saraiva de Oliveira Henriques, chenriques@iscac.pt
Polytechnic of Coimbra, Coimbra Business School Research Centre, ISCAC, Coimbra, Portugal
INESC Coimbra, DEEC, Rua Sílvio Lima, Polo II, 3030-290 Coimbra, Portugal
CeBER, Faculty of Economics, University of Coimbra, Av Dias da Silva 165, 3004-512 Coimbra, Portugal

Maria Elisabete Duarte Neves
Polytechnic of Coimbra, Coimbra Business School Research Centre, ISCAC, Coimbra, Portugal
University of Trás-os-Montes and Alto Douro| CETRAD, Vila Real, Portugal

Alexandre Emanuel do Couto Lima
Polytechnic of Coimbra, Coimbra Business School, ISCAC, Coimbra, Portugal

Duc K. Nguyen
IPAG Business School, Paris, France
International School, Vietnam National University, Hanoi, Vietnam