

EU-**Sys**Flex

Innovative approaches to unlock flexibility. The experience of EU-SysFlex

Workshop on Energy System Flexibility, INESC Coimbra. 2 Feb 2022

Miguel Marques, EDP NEW

AGENDA

- ① EU-SysFlex Project Overview
- ② Virtual Power Plant: Overview and Key Findings
- ③ EU-SysFlex: Key messages

EU-**SysFlex**

AGENDA

- ① EU-SysFlex Project Overview
- ② Virtual Power Plant: Overview and Key Findings
- ③ EU-SysFlex: Key messages

EU-**SysFlex**

EU-SysFlex is a very large Horizon 2020 project...

...Carried out across Europe in a multi-disciplinary consortium

The project demonstrates reliable and efficient flexibility solutions to integrate 50% RES in the European Power System...

...in a future power system increasingly reliant on variable and non-synchronous sources of electricity

Energy Transition
52% RES-E for Europe in 2030

Energy Transition
aligned with EU REF 2030

23 % VRES

% of non-synchronous renewable generation

0%

Renewable Ambition
66% RES-E for Europe in 2030

Renewable Ambition
aligned with EU REF 2050

34 % VRES

Share of Non Synchronous Penetration (Wind + PV) (%)
in Renewable Ambition scenario (34% VRES)

The project delivers a comprehensive roadmap for system flexibility, demos playing a key role testing the various options & contexts for flexibility provision

In Portugal we have tested two distinct concepts in two demonstrations

Virtual Power Plant

Flexibility from aggregation of generation technologies

- Joint operation & dispatch of vRES + dispatchable units
- Demonstrate the technical and economic benefits of **portfolio management of generation assets**
- Demonstrate the possibility of wind farms participating (via VPP) in reserve markets (aFRR, RR)

Demo Site

- Venda Nova III Variable Speed Pump Storage Hydro **756 MW**
- Alto da Coutada WF **115 MW**
- Falperra WF **50 MW**

9

Flexibility Hub

Flexibility from DSO-connected assets

- Provision of **flexibility (P,Q)** from assets (RES, storage, etc.) connected to DSO grid
- Technical validation of **market flexibility** activated by TSO
- Provision of equivalent dynamic model of the DSO grid to the TSO, for operation and planning

Q market Demo

- In the HV (**60 kV**) distribution grid
- 2 Wind Farms Barroso II **12 MW** & Barroso III **23 MW**
- 2 Capacitor Banks **3.43 MVA**

P market Demo

- In the MV (**15kV**) distribution grid
- PV Monte das Flores **2.5 MW**
- MV Grid Storage Valverde **480 kW / 360 kWh**

AGENDA

- ① EU-SysFlex Project Overview
- ② **Virtual Power Plant: Overview and Key Findings**
- ③ EU-SysFlex: Key messages

EU-**SysFlex**

VPP, the basic idea: aggregation of generation units

Combining different units' outputs...

Intermittent

Controllable

...to act as one single unit

“Self balanced” unit

The Portuguese VPP: an overview

Flexibility provided by aggregating PSP and RES

- Joint operation & dispatch of a var. speed pumped storage power plant combined with 2 wind farms
- Demonstrate the technical and economic benefits of **portfolio management of generation assets**
- Demonstrate the possibility of wind farms participating (via VPP) in **reserve markets** (aFRR, RR)
- Show the **replicability potential of the concept**, starting with an offline testing in a Hydro+Wind configuration

The Portuguese VPP: the components

Large var. speed storage hydro plant

Venda Nova III

- Variable speed pumped storage Hydro Plant
- **2 x 420 MVA** DFIM motors-generators (Europe's largest of their kind)
- Rated Power: **756 MW (2 x 378)**
- Able to inject 840 MVA in the grid in **2 min**

Two wind farms

Alto da Coutada

Rated power: 115MW
50 x 2,3 MW machines

Falperra

Rated power: 50MW
25 x 2 MW machines

The VPP: architecture of the deployed infrastructure

Bidding with the VPP: an optimization problem

VPP provides a **decision support tool** to optimize the revenue and the resource use (water) from the combination of the different units

VPP: the Online Demo

VPP Core

VPP Controller

EDP UNGE

EDP Produção

Testing the VPP offline: comparing different scenarios

- Simulation of performance over one year with VPP Core
 - Simulation of multiple scenarios for demo site based on 1-year historic input data
- Result preparation with Tableau
 - Provide overview on market bidding, power dispatch time series data
- KPI calculation
 - Show imbalance reduce with VPP approach

Scenario	Scenario Description	Net Profit Energy [M€]	Net Profit Reserve [M€]	Profit Sum [M€]	Imbalances [GWh]	Imbalance Penalties [k€]
1a	VNIII	11.79	1.75	13.54	55.7	429.9
1b	WPs	11.42	0	11.42	39.1	396.9
1	Sum of VNIII + WPs	23.21	1.75	24.96	84.8	826.8
2	VPP	23.49	1.88	25.37	69.4 (-18%)	515.1
10a	Perfect forecast only RES	23.61	1.86	25.47	52.1	360.3
10b	Perfect forecast	31.69	2.21	33.9	10.8	90.8

Scenario Analysis: Tableau

VPP: Key findings

- **Pooling of volatile producers** (renewable energy resources) reduces relative forecasting errors.
- **Pooling of producers and consumers** reduces effects from uncertainty in market price forecast. Local balancing of power generation and consumption reduces the overall capacities to be traded on energy / reserve markets.
- **Energy storage** can shift power production and consumption, do price arbitrage on markets and handle deviations from forecasts.
- One of the main lever for improving overall output of the VPP will be more **accurate forecasting of market prices** as well as further enhancements of the algorithmic features for market bidding strategies.

AGENDA

- ① EU-SysFlex Project Overview
- ② Virtual Power Plant: Overview and Key Findings
- ③ **EU-SysFlex: Key messages**

EU-**SysFlex**

EU-SysFlex: Key messages

EU-SysFlex: 2 upcoming final events

>> 7 Feb: Public final online event

Including project summary and main results, introducing the project roadmap, and including a roundtable with high-profile speakers

>> 14 Feb: Final Webinar: Demonstration projects

Presentation of demo projects and their results

>>> Please register at eusysflex.com

Thank you!

Follow us

eusysflex.com

@eusysflex

@eusysflex

@eusysflex

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 773505.