

DEMYSTIFYING CELL AND GENE THERAPY: ANSWERS FOR REGULATORS, RESEARCHERS, AND COMMUNITIES

HOW ARE GENE AND CELL THERAPIES DIFFERENT FROM TRADITIONAL TREATMENTS?

Traditional treatments often manage symptoms, while gene and cell therapies aim to correct the root cause at the molecular or cellular level.

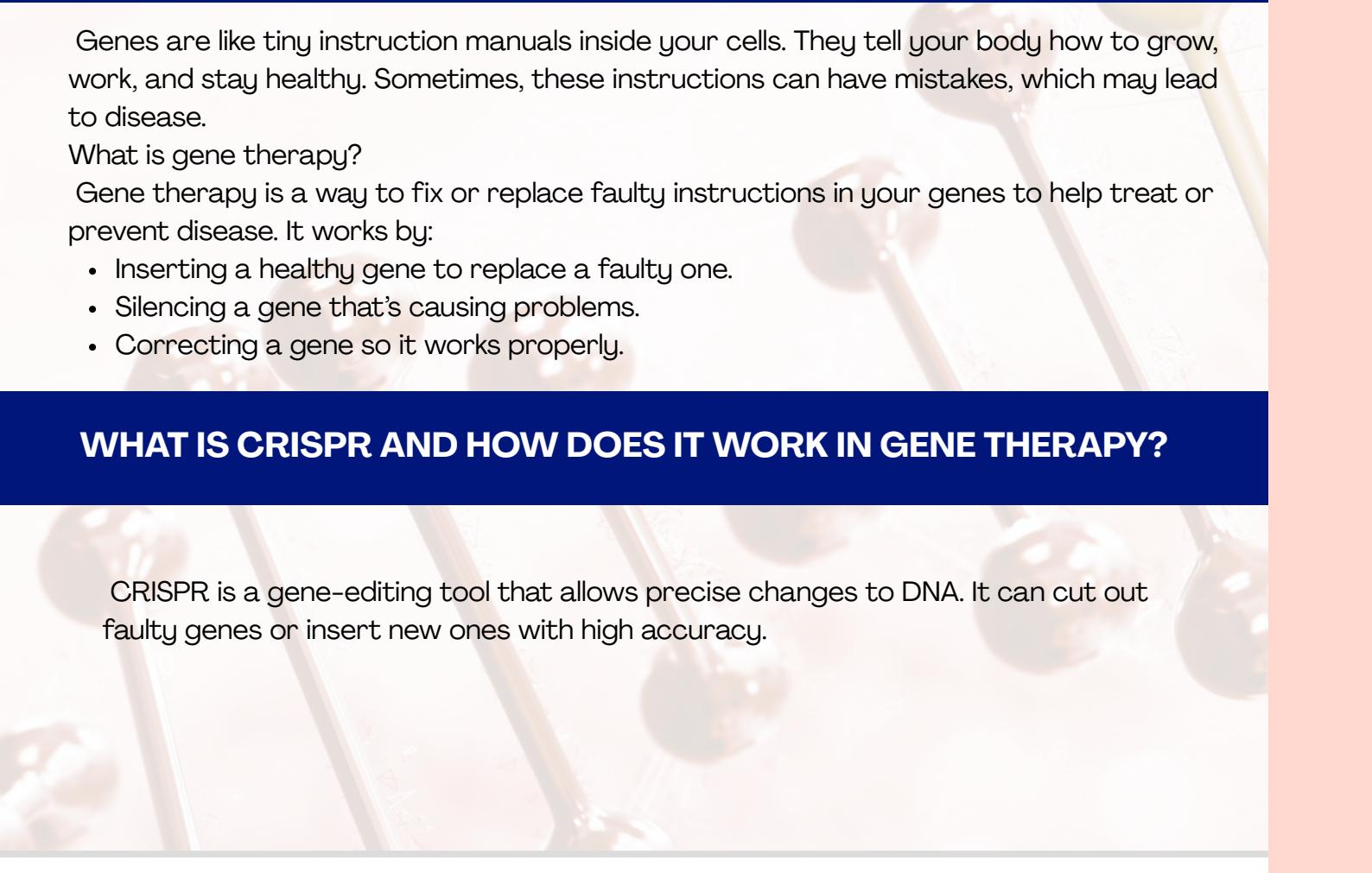
WHAT IS CELL THERAPY?

Cell therapy is a treatment where healthy or specially modified cells are given to a patient to help fight disease or restore normal body function.

Examples include:

- Stem cell therapy (also known as bone marrow transplant), used to replace damaged blood cells.
- CAR T-cell therapy, where immune cells are modified to better attack diseases like cancer.

WHAT ARE GENES?


Genes are like tiny instruction manuals inside your cells. They tell your body how to grow, work, and stay healthy. Sometimes, these instructions can have mistakes, which may lead to disease.

What is gene therapy?

Gene therapy is a way to fix or replace faulty instructions in your genes to help treat or prevent disease. It works by:

- Inserting a healthy gene to replace a faulty one.
- Silencing a gene that's causing problems.
- Correcting a gene so it works properly.

WHAT IS CRISPR AND HOW DOES IT WORK IN GENE THERAPY?

CRISPR is a gene-editing tool that allows precise changes to DNA. It can cut out faulty genes or insert new ones with high accuracy.

HOW ARE THERAPEUTIC GENES DELIVERED INTO THE BODY?

Doctors use special tools often modified viruses to deliver the new or fixed gene into the patient's cells. These tools act like tiny delivery trucks carrying the correct instructions. Other delivery methods include, lipid nanoparticles, electroporation, and direct injection into tissues or the bloodstream.

WHAT ARE VIRAL VECTORS AND WHY ARE THEY USED?

Viral vectors are engineered viruses used to deliver therapeutic genes into cells. They are effective because viruses naturally insert genetic material into host cells.

WHAT DETERMINES THE CHOICE OF DELIVERY SYSTEM?

Factors include the target tissue, type of therapy, safety profile, and efficiency of gene transfer.

ARE THERE RISKS WITH GENE DELIVERY?

Yes. Risks include immune reactions, off-target effects, and insertional mutagenesis. These are mitigated through rigorous testing and design.

WHICH DISEASES CAN BE TREATED WITH CELL AND GENE THERAPY (CGT)?

CGTs are increasingly being developed to treat a broad and growing range of diseases, including:

- Rare genetic disorders (e.g Sickle Cell Disease)
- Certain cancers such as leukemia, other blood cancers, and, increasingly, solid tumors
- Autoimmune disorders
- Infectious diseases e.g HIV

WHAT ARE SOME SUCCESSFUL GENE THERAPY EXAMPLES?

Examples include:

- Sickle Cell Disease: Gene editing to restore normal hemoglobin production.
- Inherited Blindness: AAV-based gene therapy restoring vision.
- Cancer: CAR T-cell therapy targeting leukemia and lymphoma.

HOW ARE CGTS MANUFACTURED AND ARE THESE PROCESSES SCALABLE AND ACCESSIBLE TO LMICS?

Manufacturing Overview

CGT manufacturing is complex, resource intensive but increasingly adaptable.

CGTs are produced using highly controlled, Good Manufacturing Practice (GMP)-compliant processes designed to ensure safety, consistency, and potency.

For gene therapies, the process often involves producing special delivery systems called vectors (like modified viruses that cannot cause disease such as modified lentivirus or AAV) —that deliver therapeutic genes into target cells.

For cell therapies, such as CAR-T or CAR-NK products, the patient's own cells (autologous) or healthy donor cells (allogeneic) are collected, engineered to express therapeutic genes, expanded in culture, and then formulated for infusion back into patients.

Each step—cell collection, genetic modification, expansion, formulation, and quality testing—must meet strict regulatory standards and is carefully documented.

SCALABILITY CHALLENGES

Unlike conventional medicines, CGTs are individualized and complex to produce, posing unique scalability challenges:

Autologous therapies (from the patient's own cells) are personalized and must be made one batch at a time, which limits throughput and increases cost.

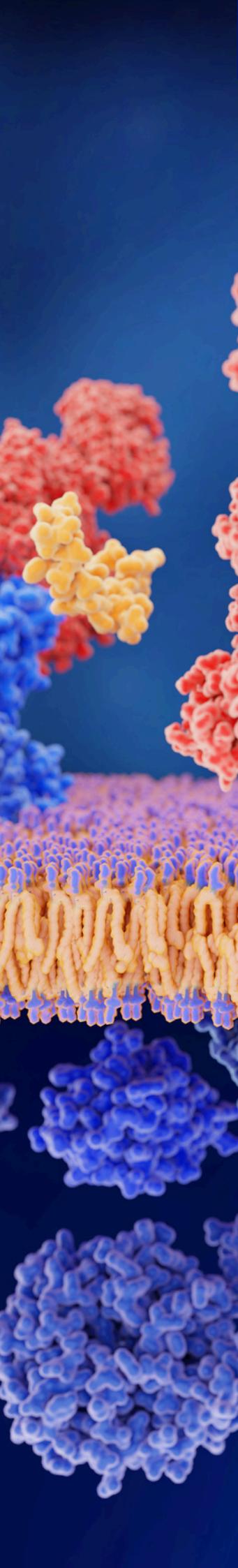
Allogeneic or "off-the-shelf" approaches, using donor-derived or stem cell-derived cell banks, are being developed to make large batches that can treat multiple patients—this is a promising path toward industrial-scale manufacturing.

Manufacturing requirements are demanding, needing highly skilled personnel, specialized cleanroom facilities, and advanced quality control systems, which can be resource-intensive for low- and middle-income countries (LMICs).

Innovations in decentralized or place-of-care manufacturing—where therapies are produced closer to the patient at local hospitals or regional hubs—could reduce logistical challenges, shorten supply chains, and improve access in LMICs. These approaches also support flexibility in responding to patient demand and mitigate the high costs and complexity of centralized production.

GLOBAL ACCESSIBILITY AND EQUITY CONSIDERATIONS

Currently, CGT manufacturing capacity is concentrated in high-income countries, which creates access inequities. Some strategies that could accelerate global access include:


Technology transfer and regional manufacturing hubs are being explored to bring production closer to LMICs.

Partnerships between regulators, research institutions, and global health organizations (e.g., WHO, African Medicines Agency, the European and Developing Countries Clinical Trials Partnership (EDCTP), Gates Foundation) can facilitate capacity building, training, and GMP-compliant infrastructure development.

Simplified, closed-system manufacturing platforms and non-viral gene delivery technologies (such as CRISPR, transposon systems, mRNA delivery) are emerging as more scalable and potentially cost-effective alternatives.

HOW LONG DO THE EFFECTS OF CGTS LAST?

Some gene therapies can provide long-term or even lifelong effects, while others may be temporary—this largely depends on the therapeutic platform and the target disease. For example, viral vector-based gene therapies (such as those using lentiviral or AAV vectors) often enable stable or long-term expression of the introduced gene. This durability is particularly advantageous for chronic or inherited conditions, such as sickle cell disease, where sustained gene correction is needed for lasting clinical benefit.

In contrast, non-viral or mRNA-based approaches typically result in transient expression, making them more suitable for short-term therapeutic needs, such as treating acute infections or providing temporary immune stimulation. Because the long-term effects and safety profiles of cell and gene therapies (CGTs) are still being understood, regulatory authorities and the WHO recommend post-treatment follow-up for up to 15 years to monitor for delayed adverse events or loss

HOW ARE CGT CLINICAL TRIALS DIFFERENT FROM REGULAR DRUG TRIALS?

Smaller patient populations: CGT trials often enroll fewer participants, especially when targeting rare diseases.

Complex pretreatment procedures: For ex vivo therapies, patients may undergo cell collection (apheresis) and pretreatment conditioning—such as lymphodepleting chemotherapy—to prepare the body for the engineered cells.

Complex manufacturing and supply chain logistics: CGT products require intricate production processes and often ultra-cold chain logistics to maintain cell viability and potency. For autologous therapies, this process is even more challenging; if a patient's cells are suboptimal (both quality and quantity), additional collections may be needed to reach the target cell dose. In contrast, conventional drugs are typically produced as a single uniform batch, sufficient for all trial participants.

Specialized administration: Delivery of the therapy, such as cell infusion, is complex and must be performed at an accredited facility with trained personnel and specialized equipment.

Evolving regulatory landscape: Guidance and frameworks for CGTs—covering preclinical studies, clinical trial design, CMC (chemistry, manufacturing, controls), and pharmacovigilance—are constantly evolving. In addition, a fit-for-purpose framework is often ideal for CGTs to tailor the product to the evolving science, to enable safe innovation and to address unique risks. This differs from conventional drug trials, where regulatory frameworks are often generic and remain unchanged for years with only occasional updates.

Continuous regulatory evolution supports the need for long-term follow-up, as accumulating data informs the ongoing risk–benefit assessment.

Long-term follow-up: Recipients of gene or cell therapies require extended monitoring—often spanning decades—to assess both safety and efficacy due to potential delayed effects.

HOW IS PATIENT SAFETY ENSURED IN THESE TRIALS?

Patient safety is ensured through multiple layers of protection:

Careful patient selection: Only patients who meet specific eligibility criteria (e.g., disease stage, health status, prior treatments) are enrolled to minimize risk.

Continuous monitoring for adverse events: Patients are closely observed during and after treatment for any side effects or complications, with prompt interventions if needed. The safety parameters are often shaped by both the known and unknown characteristics of the product.

Regulatory oversight: Health authorities (both local and where applicable international) review the trial design, safety data, and manufacturing practices to ensure compliance with established standards.

Independent ethics review: Research Ethics Committees (RECs) assess the study's risk–benefit profile, consent processes, and overall ethical conduct.

Standardized protocols and trained staff: Therapies are administered according to rigorous protocols by specially trained personnel in accredited facilities.

Long-term follow-up: Many CGTs require extended monitoring (sometimes decades) to detect delayed adverse effects and assess long-term efficacy.

HOW ARE ADVERSE EVENTS FOLLOWING CGT MANAGED AND REPORTED?

Patient safety is a top priority in all medical research — including CGTs and conventional drugs. However, for cell and gene therapies, the approach to safety monitoring is more extensive and long-term because these therapies may permanently alter cells or genes and can have delayed effects. All side effects or unexpected reactions are carefully recorded and managed by trained investigators and healthcare professionals, with mandatory reporting to national regulatory authorities and ethics committees. In addition, patients receiving CGTs are followed for several years (the current global recommendation is up to 15 years or more) to monitor for late-onset adverse events, such as insertional mutagenesis or immune reactions.

This long-term follow-up requirement and continuous regulatory oversight help ensure that any potential risks are detected early and that the risk–benefit profile of the therapy remains favorable as more data accumulate. Data from these long-term follow-ups feed into global safety databases and help improve future therapies.

Low- and Middle-Income Countries can strengthen their readiness by adopting harmonized reporting tools, training investigators on global pharmacovigilance standards, and establishing national registries for CGT follow-up.

HOW COULD CGTS BE LICENSED AND ACCESSED IN LMICS WITHOUT STRONG HEALTH SYSTEMS OR INSURANCE COVERAGE AND REIMBURSEMENT SYSTEMS?

Access to therapies is especially challenging in the absence of insurance or national health coverage and requires a multi-pronged approach including flexible regulation, innovative financing mechanisms, local or regional production and active community engagement.

Public–private partnerships, global health funding, tiered pricing through subsidies, partnerships or negotiated agreements, and donation programs can help make therapies affordable and reach priority populations. Local or regional manufacturing hubs can shorten supply chains, reduce costs (leveraging negotiated agreements), and improve scalability, particularly for decentralized or “place-of-care” production.

Ethical and equitable distribution is also essential. Licensing and access programs must consider disease burden, priority groups, and cultural acceptability, while community engagement helps build trust and awareness. Even in resource-limited settings, partnerships with hospitals, academic centers, and global registries support long-term follow-up and safety monitoring.

HOW DOES THE COMMUNITY PLAY A ROLE IN THE SUCCESS OF CELL AND GENE THERAPIES?

The community is essential to the safe and effective use of cell and gene therapies. Community engagement helps to:

1. Build trust and understanding— Patients, families, and local leaders learn what the therapy involves, including potential risks and benefits. Engagement also helps demystify myths, clarify misconceptions, and address cultural or religious concerns, ensuring the community feels informed and confident about the therapy and its long-term follow-up requirements.
2. Support informed participation— Clear communication ensures patients can give truly informed consent before joining a trial.
3. Encourage adherence and follow-up— Long-term monitoring is critical for CGTs, and community support helps patients return for check-ups and report side effects.
4. Shape ethical and culturally sensitive practices— Feedback from the community guides researchers and regulators to design trials that respect local values and priorities.

By involving the community early and continuously, CGT programs are safer, more ethical, and more likely to succeed.

REFERENCE MATERIAL:

1. Towards access for all: 1st Working Group Report for the Global Gene Therapy Initiative (GGTI). Adair JE et al. <https://doi.org/10.1038/s41434-021-00284-4>
2. The translational gap for gene therapies in low- and middle-income countries. Doxzen KW et al. <https://doi.org/10.1126/scitranslmed.adn1902>
3. Nothing about us without us: Advocacy and engagement in genetic medicine. Olayiwola O et al. <https://doi.org/10.1126/scitranslmed.adn2401>
4. Place of care manufacturing of chimeric antigen receptor cells: Opportunities and challenges. Orentas R et al. <https://doi.org/10.1053/j.seminhematol.2023-189149>
5. Place of care manufacturing of gene therapies. Adair JE et al. [https://doi.org/10.1016/S2352-3026\(22\)00327-1](https://doi.org/10.1016/S2352-3026(22)00327-1).
6. Decentralized manufacturing of anti CD19 CAR-T cells using CliniMACS Prodigy: real-world experience and cost analysis in India. Palani HK et al. <https://doi.org/10.1038/s41409-022-01866-5>.
7. CAR-T and cellular gene therapies are too expensive. Dropulic B. <https://doi.org/10.1038/s41591-024-03231-z>
8. Collaborative science to advance gene therapies in resource-limited parts of the world. McCune JM et al. <https://doi.org/10.1016/jymthe.2021.05.024>
9. <https://patienteducation.asgct.org/understanding-cell-gene-therapy/what-is-gene-therapy>
10. Guidance for human genome data collection, access, use and sharing. Geneva: World Health Organization; 2024. Licence: CC BY-NC-SA 3.0 IGO.
11. How to democratize cell and gene therapy: A global approach. Rouce and Grilley. <https://doi.org/10.1016/j.ymthe.2025.03.061>