

Parallel and Distributed Computing with MATLAB

Ángel Sierra % asierra@mathworks.com

Carlos Sanchis % csanchis@mathworks.com

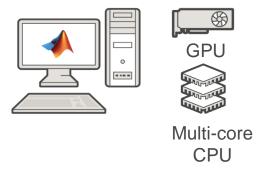
9 (

UNIVERSIDADE D COIMBRA

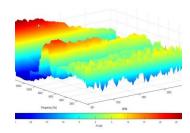
Organized with the collaboration of the Laboratory for Advanced Computing at University of Coimbra

Why parallel computing?

- Save time and tackle increasingly complex problems
 - Reduce computation time by using available compute cores and GPUs
- Why parallel computing with MATLAB and Simulink?
 - Accelerate workflows with minimal to no code changes to your original code
 - Scale computations to clusters and clouds
 - Focus on your engineering and research, not the computation



Benefits of parallel computing



Automotive Test Analysis

Validation time sped up 2X Development time reduced 4 months

Heart Transplant Study
Process time sped up 6X
4 week process reduced to 5 days

Discrete-Event Model of Fleet Performance

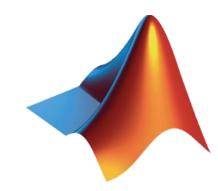
Simulation time sped up 20X Simulation time reduced from months to hours

Calculating Derived Market Data

Updates sped up 8X Updates reduced from weeks to days

Accelerating and Parallelizing MATLAB Code

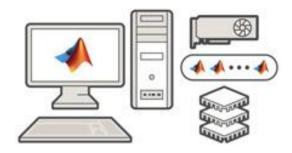
- Optimize your serial code for performance
- Analyze your code for bottlenecks and address most critical items



- Include compiled languages
- Leverage parallel computing tools to take advantage of additional computing resources

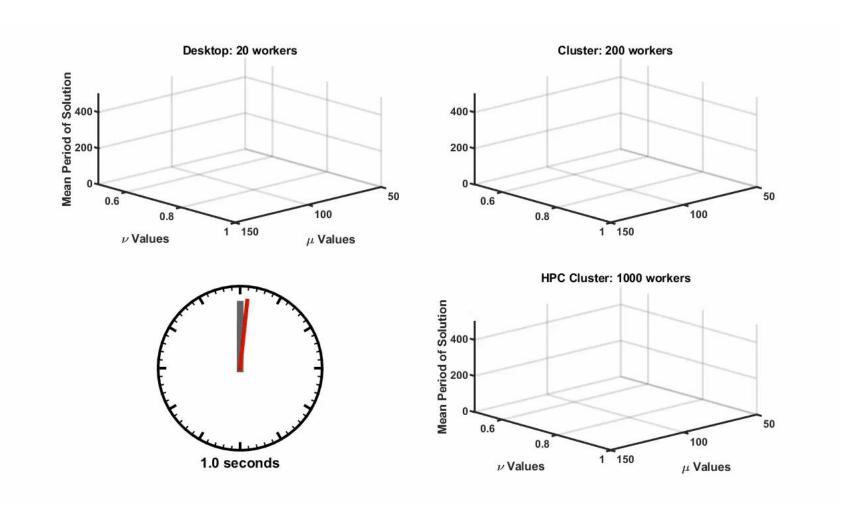
https://www.mathworks.com/discovery/matlab-acceleration.html

Run MATLAB on multicore machines



- Built-in multithreading (implicit)
 - Automatically enabled in MATLAB
 - Multiple threads in a single MATLAB computation engine
 - Functions such as fft, eig, svd, and sort are multithreaded in MATLAB
- Parallel computing using explicit techniques
 - Multiple computation engines (workers) controlled by a single session
 - Perform MATLAB computations on GPUs
 - High-level constructs to let you parallelize MATLAB applications
 - Scale parallel applications beyond a single machine to clusters and clouds

Compute 40,000 iterations (mean of 2.2 seconds per iteration) van der Pol Equation study with parfor

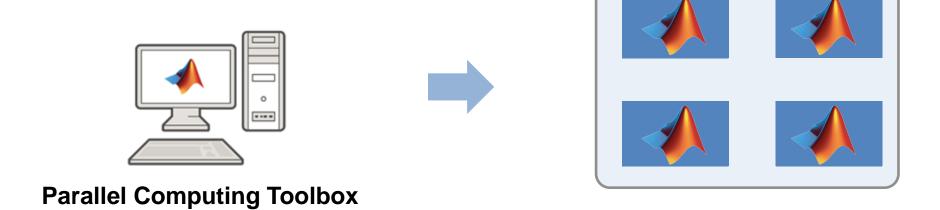


Agenda

- Utilizing multiple cores on a desktop computer
- Scaling up to cluster and cloud resources
- Tackling data-intensive problems on desktops and clusters
- Accelerating applications with NVIDIA GPUs
- Summary and resources

Parallel Computing Paradigm

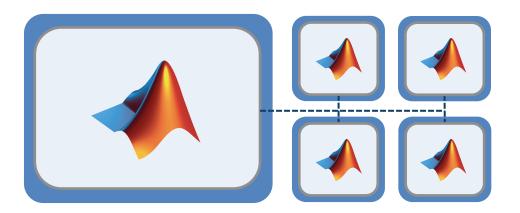
Multicore Desktops



Run multiple iterations on a process or thread level

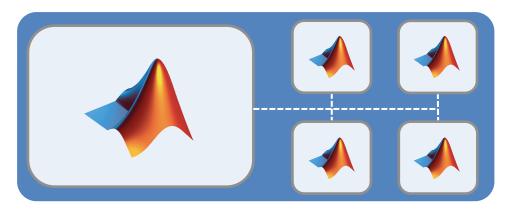
>> parpool("local")

Workers run as their own process



>> parpool("threads")

Workers run as threads in main MATLAB process and share memory



Choose between thread-based and process-based environments

Accelerating MATLAB and Simulink Applications

Parallel-enabled toolboxes

('UseParallel', true)

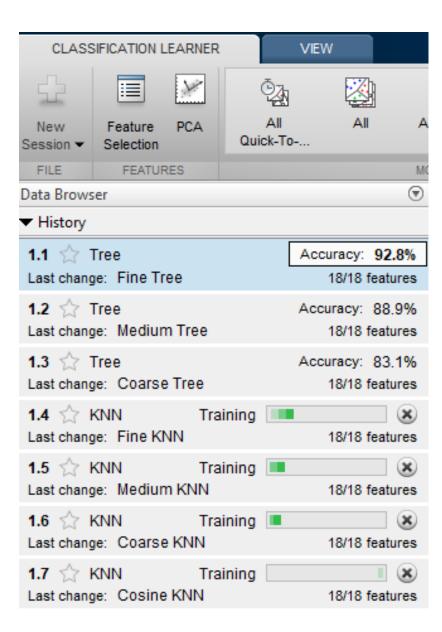
Common programming constructs

Advanced programming constructs

Demo: Classification Learner App

Analyze sensor data for human activity classification

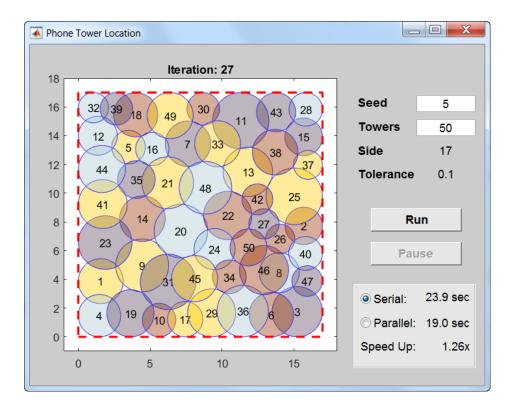
- Objective: visualize and classify cellphone sensor data of human activity
- Approach:
 - Load human activity dataset
 - Leverage multicore resources to train multiple classifiers in parallel



Demo: Cell Phone Tower Optimization

Using Parallel-Enabled Functions

- Parallel-enabled functions in Optimization Toolbox
- Set flags to run optimization in parallel
- Use pool of MATLAB workers to enable parallelism



Parallel-enabled Toolboxes (MATLAB® Product Family)

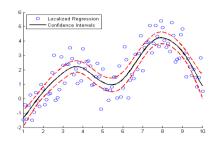
Enable parallel computing support by setting a flag or preference

Image Processing

Batch Image Processor, Block Processing, GPU-enabled functions

Statistics and Machine Learning

Resampling Methods, k-Means clustering, GPU-enabled functions

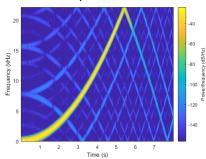


Deep Learning

Deep Learning, Neural Network training and simulation

Signal Processing and Communications

GPU-enabled FFT filtering, cross correlation, BER simulations

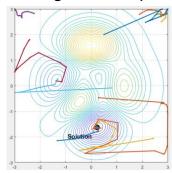


Computer Vision

Bag-of-words workflow, object detectors

Optimization & Global Optimization

Estimation of gradients, parallel search

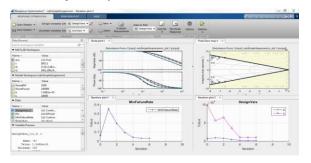


Parallel-enabled Toolboxes (Simulink® Product Family)

Enable parallel computing support by setting a flag or preference

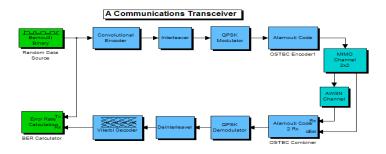
Simulink Design Optimization

Response optimization, sensitivity analysis, parameter estimation



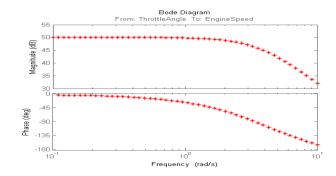
Communication Systems Toolbox

GPU-based System objects for Simulation Acceleration



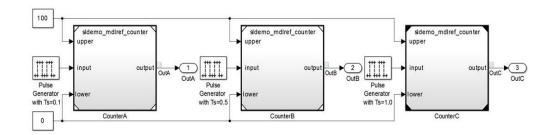
Simulink Control Design

Frequency response estimation



Simulink/Embedded Coder

Generating and building code



Accelerating MATLAB and Simulink Applications

Parallel-enabled toolboxes

Common programming constructs

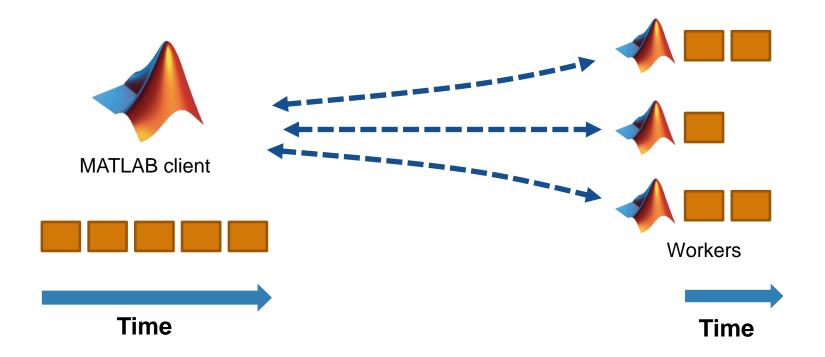
(parfor, batch)

Advanced programming constructs

Explicit Parallelism: Independent Tasks or Iterations

Simple programming constructs: parfor

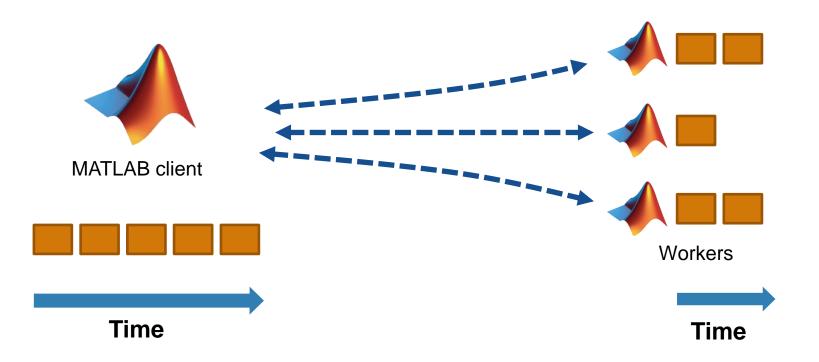
- Examples: parameter sweeps, Monte Carlo simulations
- No dependencies or communications between tasks



Explicit Parallelism: Independent Tasks or Iterations

```
for i = 1:5
    y(i) = myFunc(myVar(i));
end
```

```
parfor i = 1:5
    y(i) = myFunc(myVar(i));
end
```



Demo: parameter sweep for van der Pol oscillator

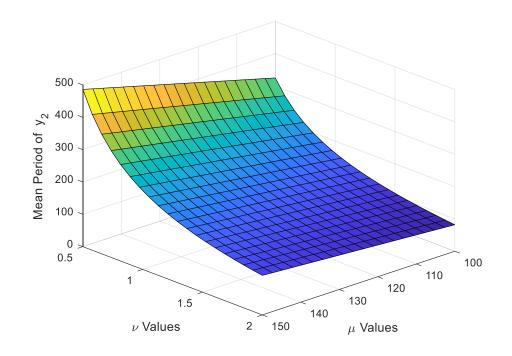
Embarrassingly parallel tasks in MATLAB

System of ODEs

$$\dot{y}_1 = \nu y_2$$

$$\dot{y}_2 = \mu (1 - y_1^2) y_2 - y_1$$

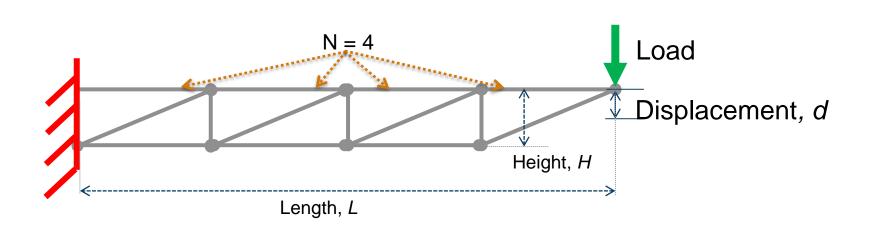
- Compute mean period of y
- Use parfor to study impact of ν , μ

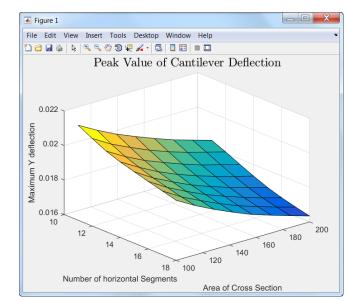


Demo: Parameter Sweep

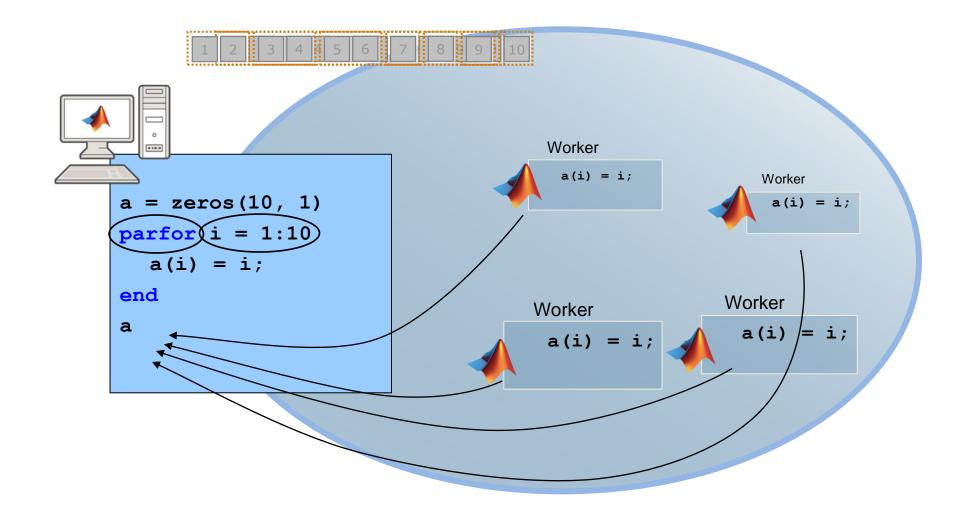
Embarrassingly parallel tasks in MATLAB

- Parameter sweep
 - Truss under a dynamic load
 - Sweeping over cross-sectional area and number of elements

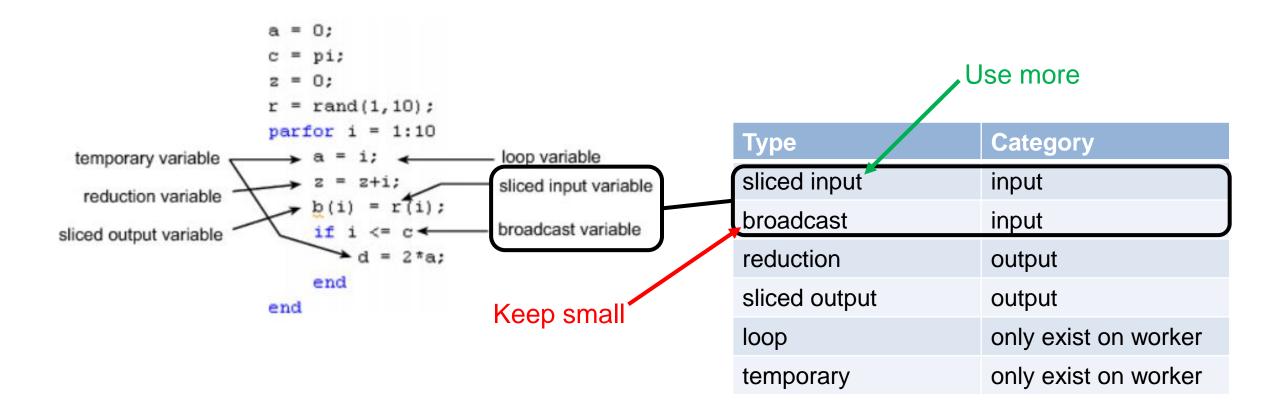




Mechanics of parfor Loops



Optimizing parfor



Parallelism using parfor

```
a = zeros(5, 1);
                                                                                                                          No warnings found.
        b = pi;
                                                                                                                          (Using Default Settings)
3
4
       Eparfor i = 1:5
              a(i) = i + b;
5
        end
        disp(a)
        a = zeros(5, 1);
        b = pi;
3
       Eparfor i = 2:6
              a(i) = \underline{a}(i-1) + b;
                                                           Line 4: In a PARFOR loop, variable 'a' is indexed in different ways, potentially causing dependencies between iterations.
5
        end
        disp(a)
```


Tips for Leveraging parfor

 Consider creating smaller arrays on each worker versus one large array prior to the parfor loop

Take advantage of parallel.pool.Constant to establish variables on pool workers prior to the loop

Encapsulate blocks as functions when needed

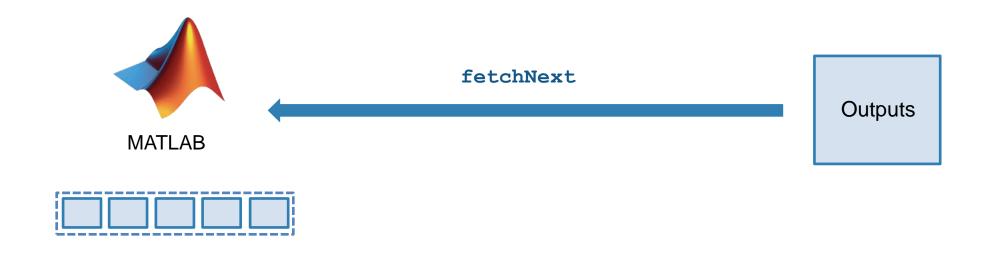
Execute additional code as iterations complete

 Send data or messages from parallel workers back to the MATLAB client

 Retrieve intermediate values and track computation progress

```
function a = parforWaitbar
D = parallel.pool.DataQueue;
h = waitbar(0, 'Please wait ...');
afterEach(D, @nUpdateWaitbar)
N = 200;
p = 1;
parfor i = 1:N
    a(i) = max(abs(eig(rand(400))));
    send(D, i)
end
    function nUpdateWaitbar(~)
        waitbar(p/N, h)
        p = p + 1;
    end
end
                        Please wait ...
```


Execute functions in parallel asynchronously using parfeval



- Asynchronous execution on parallel workers
- Useful for "needle in a haystack" problems

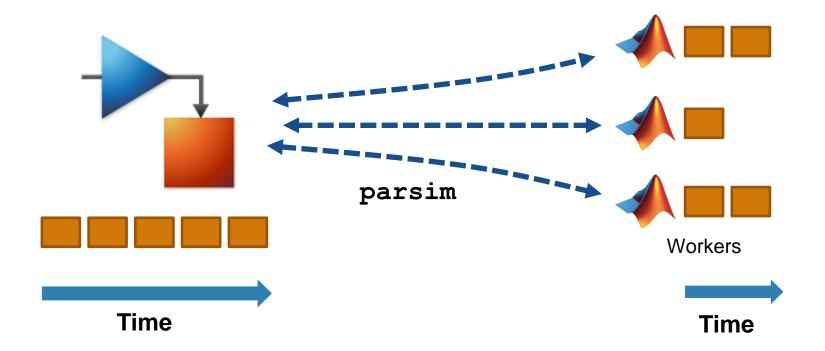
```
for idx = 1:10
   f(idx) = parfeval(@magic,1,idx);
end

for idx = 1:10
   [completedIdx,value] = fetchNext(f);
   magicResults{completedIdx} = value;
end
```


Run Multiple Simulations in Parallel with parsim

Run independent
 Simulink simulations in parallel using the parsim function

```
for i = 10000:-1:1
    in(i) = Simulink.SimulationInput(my_model);
    in(i) = in(i).setVariable(my_var, i);
end
out = parsim(in);
```



Virgin Orbit Simulates LauncherOne Stage Separation Events

Challenge

Simulate separation events for LauncherOne spacecraft

Solution

- Use MATLAB, Simulink, and Simscape
 Multibody to model components and automate
 Monte Carlo simulations
- Used Parallel Computing Toolbox to run simulations in parallel on multicore processors

Results

- Simulations completed 10 times faster
- Simulation set up times cut by up to 90%
- Hardware designs informed by simulation results

Virgin Orbit's LauncherOne vehicle assembled (top), with exploded view showing the fairing, payload, and first and second stages (bottom).

"With Simulink, we can employ simplifying assumptions and parallel processing to reduce simulation times from days to hours...Just as important, we can automate the simulations so they run in the background or overnight, and have the results waiting for us in the morning."

- Patrick Harvey, Associate Engineer at Virgin Orbit

Link to user story

parsim has simplified running parallel simulations

```
model = 'sldemo suspn 3dof';
 load system(model);
 parpool;
 Cf
                     = evalin('base', 'Cf');
                     = Cf*(0.05:0.1:0.95);
 Cf sweep
                     = length(Cf sweep);
 iterations
 simout(iterations) = Simulink.SimulationOutput;

    spmd

     currDir = pwd;
     addpath(currDir);
     tmpDir = tempname;
     mkdir(tmpDir);
     cd(tmpDir);
     % Load the model on the worker
     load system(model);
 end
parfor idx=1:iterations
     set param([model '/Road-Suspension Interaction'], 'MaskValues',...
         {'Kf', num2str(Cf sweep(idx)), 'Kr', 'Cr'});
     simout(idx) = sim(model, 'SimulationMode', 'normal');
 end
spmd
     cd(currDir);
     rmdir(tmpDir, 's');
     rmpath(currDir);
     close system(model, 0);
 end
                                    Pre-R2017a
 close system(model, 0);
 delete(gcp('nocreate'));
```

```
mdl = 'sldemo_suspn_3dof';
load_system(mdl);

Cf_sweep = Cf*(0.05:0.1:0.95);
numSims = length(Cf_sweep);

in(l:numSims) = Simulink.SimulationInput(mdl);

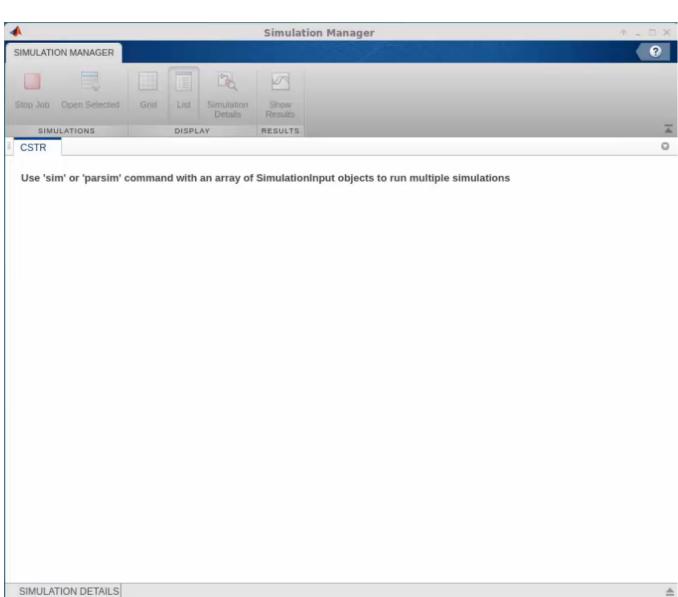
for i = 1:numSims
    in(i) = setBlockParameter(in(i), [mdl '/Road-Suspension Interaction'], ...
    'Cf', num2str(Cf_sweep(i)));
end

out = parsim(in, 'ShowProgress', 'on');
```

Starting with R2017a

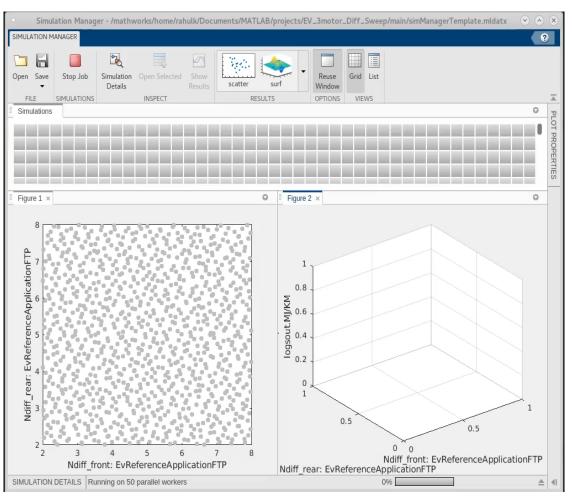
Monitor Multiple Simulations at Once with Simulation Manager

- View the progress of the simulations
- Examine simulation settings and diagnostics
- View simulation results in the Simulation Data Inspector.



Simulation Manager can also be used to inspect the variation in outputs with parameters

 Visualize simulation results as the simulations are running



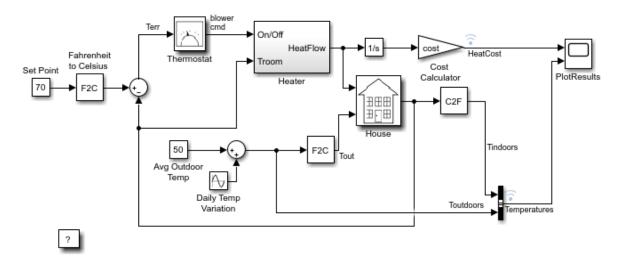
Demo: Thermal Model of House

Run parallel simulations with parsim

- Simulation of home heating cost by parameter sweeping (temperature set point)
- Use a SimulationInput object to change block parameter and run simulations in parallel

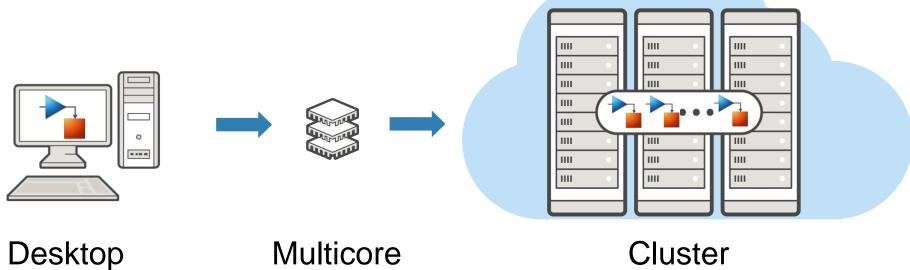
Thermal Model of a House

Note: Time given in units of hours



Benefits of using parsim

- Run multiple simulations on your machine or clouds and clusters
- Transfer base workspace variables to workers
- Automatically transfer all files to workers
- Automatically return file logging data
- Automatically manage build folders
- Display progress
- Manage errors



Accelerating MATLAB and Simulink Applications

Parallel-enabled toolboxes

Common programming constructs

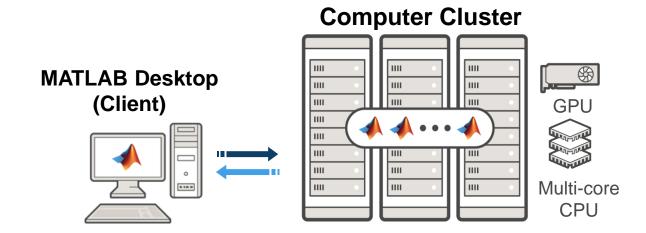
Advanced programming constructs (spmd, createJob, labSend, ..)

Agenda

- Utilizing multiple cores on a desktop computer
- Scaling up to cluster and cloud resources
- Tackling data-intensive problems on desktops and clusters
- Accelerating applications with NVIDIA GPUs
- Summary and resources

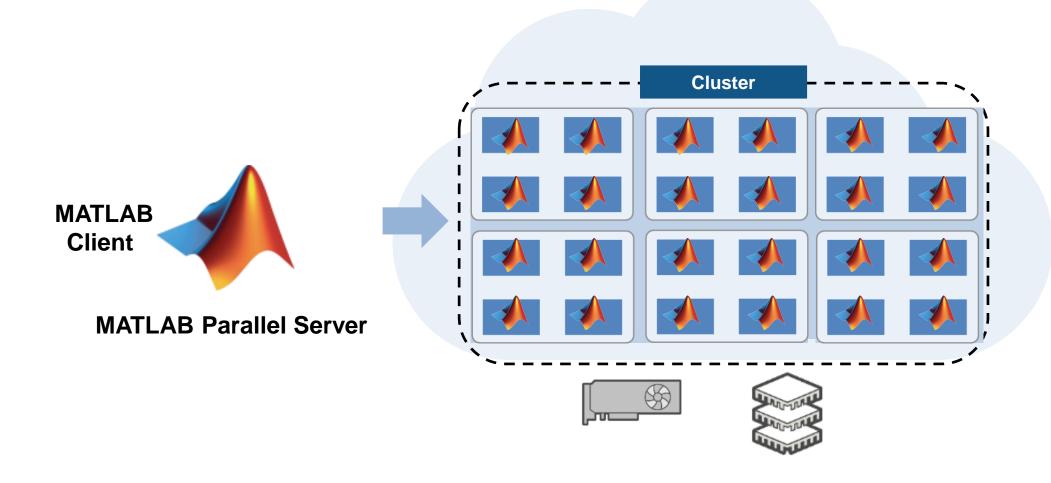
Take Advantage of Cluster Hardware

- Offload computation:
 - Free up desktop
 - Access better computers
- Scale speed-up:
 - Use more cores
 - Go from hours to minutes
- Scale memory:
 - Utilize tall arrays and distributed arrays
 - Solve larger problems without re-coding algorithms



Parallel Computing Paradigm

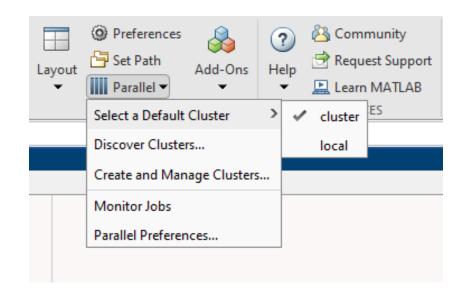
Clusters and Clouds



Scale to clusters and clouds

With MATLAB Parallel Server, you can...

- Use more hardware with minimal code change
- Submit to on-premise or cloud clusters
- Support cross-platform submission
 - Windows client to Linux cluster



Aberdeen Asset Management Implements Machine Learning–Based Portfolio Allocation Models in the Cloud

Challenge

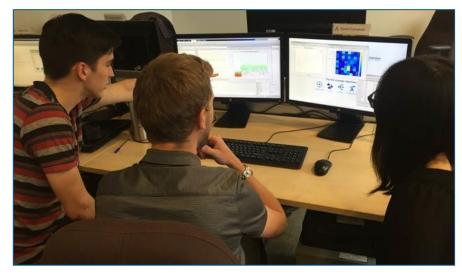
Improve asset allocation strategies by creating model portfolios with machine learning techniques

Solution

- Use MATLAB to develop classification tree, neural network, and support vector machine learning models
- Enable rapid results using MATLAB Parallel
 Server to run the models in the Azure cloud

Results

- Processing times cut from 24 hours to 3
- Quickly validate results by iterating multiple machine learning models



Interns using MATLAB at Aberdeen Asset Management.

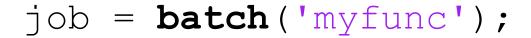
"Our processing times went from 24 hours to 3 when we started running on the Azure cloud with MATLAB Parallel Server," notes Mann. "Because the job scheduler is integrated into MATLAB, it's easy to take advantage of parallel computing just by opening a pool and using parfor loops."

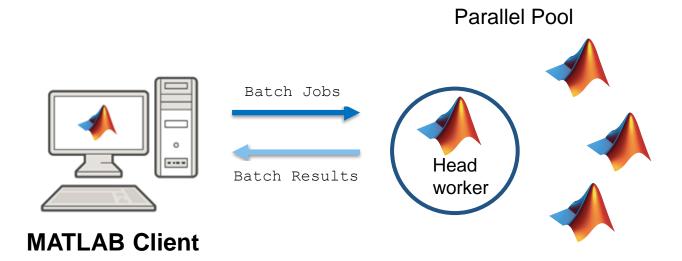
- Emilio Llorente-Cano, senior investment strategist at Aberdeen Asset Management

Link to user story

batch Simplifies Offloading Serial Computations

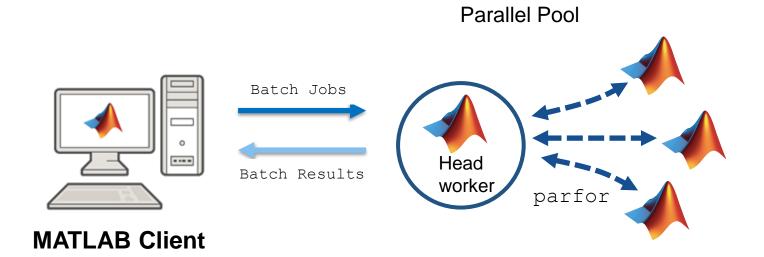
Submit jobs from MATLAB and free up MATLAB for other work





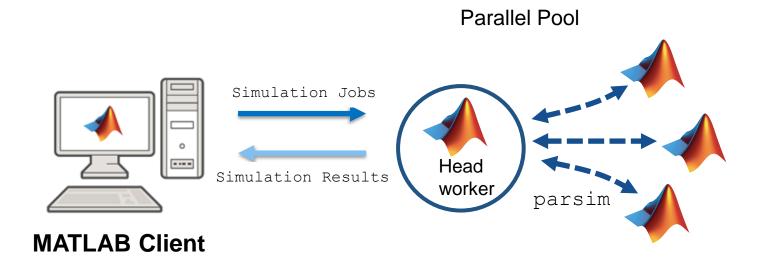
batch Simplifies Offloading Serial Computations

Submit jobs from MATLAB, free up MATLAB for other work, access results later



batchsim Simplifies Offloading Simulations

Submit jobs from MATLAB to offload and run Simulink simulations



Speed up a parameter sweep using parfor on a cluster with MATLAB Parallel Server

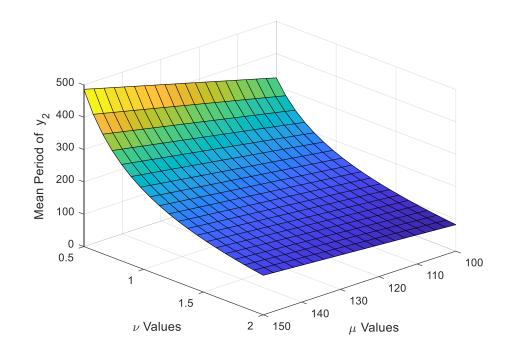
Demo: Parameter sweep for van der Pol oscillator

System of ODEs

$$\dot{y}_1 = \nu y_2$$

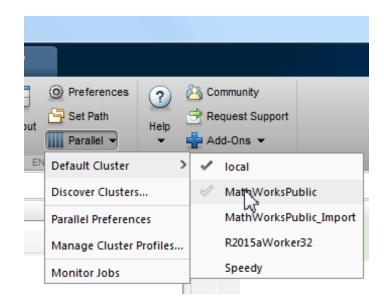
$$\dot{y}_2 = \mu (1 - y_1^2) y_2 - y_1$$

- Compute mean period of y
- Use parfor, study impact of ν, μ

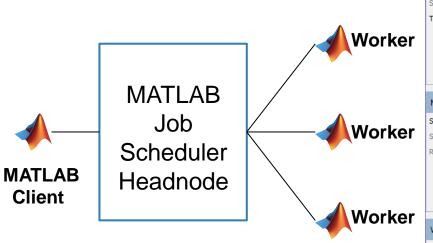


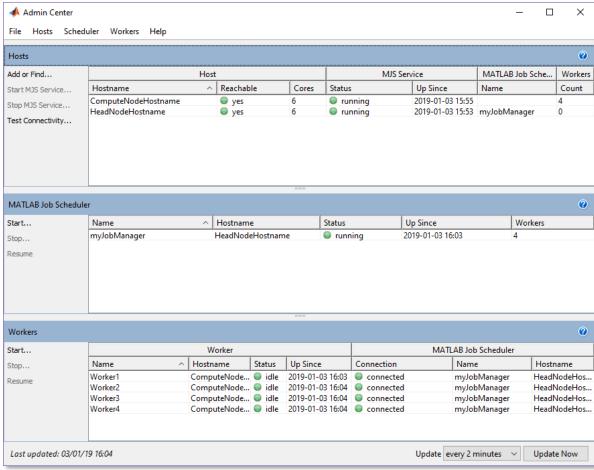
Migrate to Cluster / Cloud

- Use MATLAB Parallel Server
- Change hardware without changing algorithm



MATLAB Job Scheduler allows you to set up a MATLAB cluster from scratch

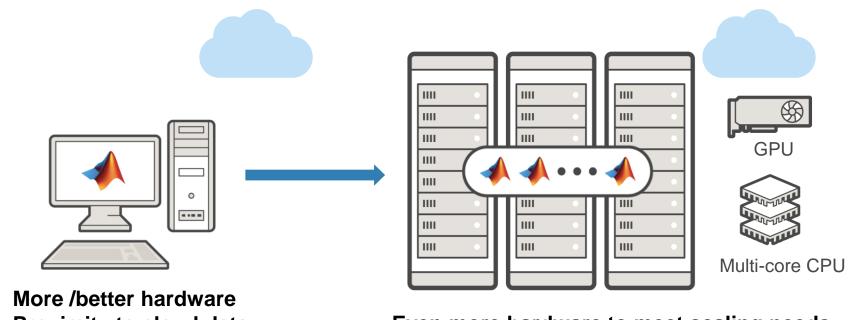




Support for integration with third-party schedulers

Scheduler	Ready to use options	Customizable via generic scheduler API	Example Plugins available	
Slurm	✓	\checkmark	✓	
Microsoft® Windows® HPC Server	✓			
Grid Engine family		\checkmark	\checkmark	
IBM® Platform LSF	✓	\checkmark	✓	
PBS family	✓	\checkmark	✓	
HTCondor		\checkmark	\checkmark	
Other schedulers		\checkmark		

Broad Range of Needs and Cloud Environments Supported



- Proximity to cloud data

Even more hardware to meet scaling needs

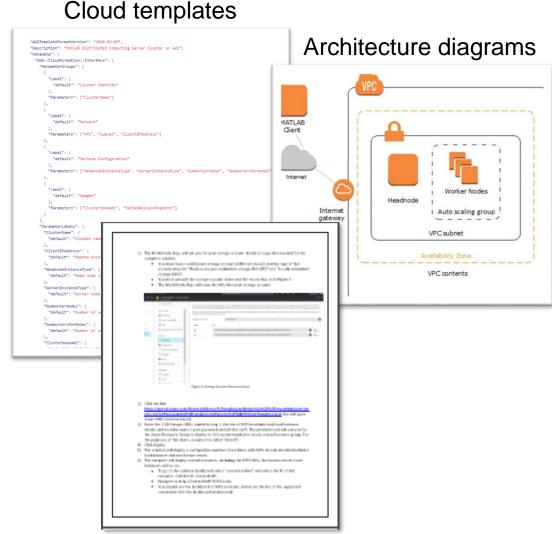
Access requirements	Desktop in the cloud Cluster in the cloud (Client can be any cloud on on-premise desl		
Any user could set up	ser could set up NVIDIA GPU Cloud MathWorks Cloud Center		
Customizable template-based set up	MathWorks Cloud Reference Architecture		
Full set-up in custom environment	Custom installation - DIY		

Learn More: Parallel Computing on the Cloud

MathWorks Reference architectures enable advanced environments

Amazon Web Services and Microsoft Azure

- Published on GitHub, by MathWorks
 - MATLAB
 - MATLAB Parallel Server
 - MATLAB Production Server
- Benefits:
 - Quick infrastructure setup in the cloud
 - MATLAB pre-installed
 - Incorporates best practices
 - You can adapt or extend for your specific needs

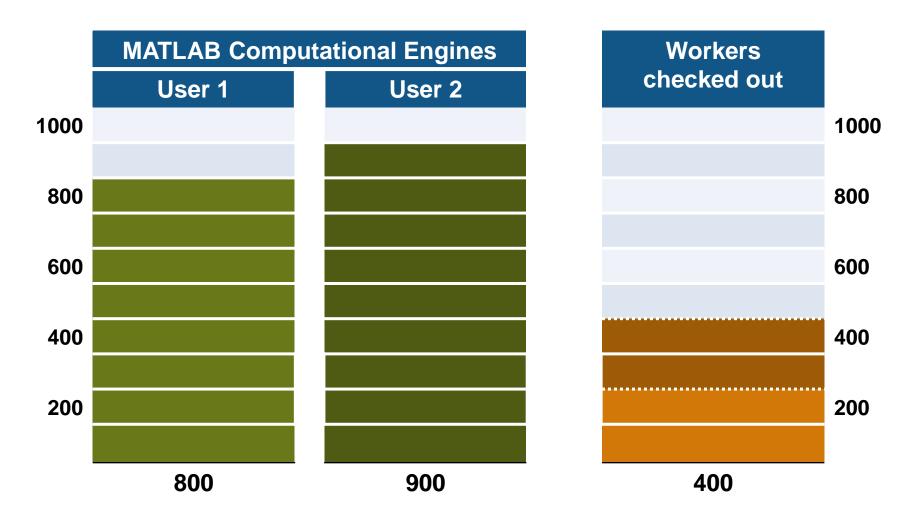


Step by step instructions

MATLAB Parallel Server – license update

Users who checkout 200 workers can scale without further check-outs

Backward compatible: Update license file and network license manager OR use online licensing

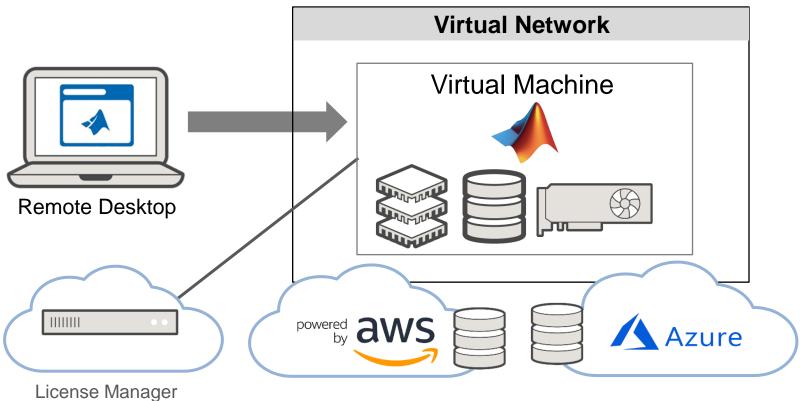


MATLAB Parallel Server for Campus-Wide License

- One license, no limits
 - Updated license allows unlimited scaling for all users
 - Network license manager (Flex)
 - Typically used with HPC centers, organizational clusters, or departmental clusters
 - One activation can simultaneously serve multiple clusters on the same network
 - Online licensing
 - Typically used with cloud clusters, personal clusters, or group clusters
 - Eliminates the need to set up a network license manager

Run MATLAB in the cloud

(Hosted by your organization or by MathWorks)



- Run MATLAB in the cloud to access better hardware
- Perform data analytics on cloud-stored data
- Deploy MATLAB via Azure Marketplace or MathWorks Reference Architecture

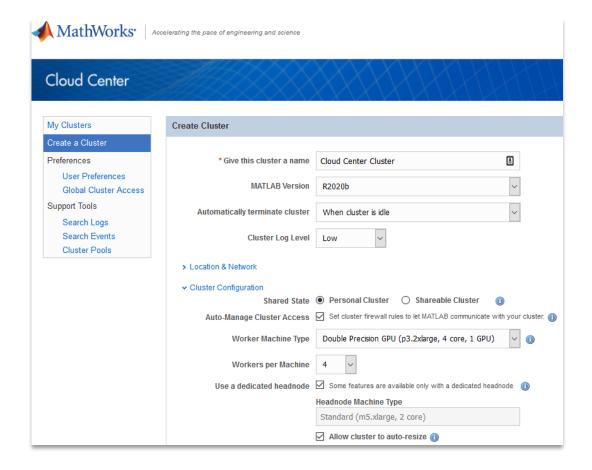
Create and manage AWS cloud clusters with Cloud Center

Use <u>Cloud Center</u> to create and access compute clusters in the Amazon cloud for parallel computing

You can access a cloud cluster from your client MATLAB session like any other cluster in your own onsite network

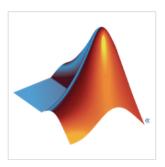
Requires:

- MATLAB Parallel Server license configured to use <u>online licensing</u>
- 2. Amazon Web Services (AWS) account



Create and manage cloud clusters in the Azure Marketplace

Products > MATLAB Parallel Server (BYOL)



MATLAB Parallel Server (BYOL) Save to my list MathWorks

 $\star\star\star\star\star$ (0) Write a review

Overview

Plans

Reviews

GET IT NOW

Pricing information
Cost of deployed template components

Categories Analytics Compute

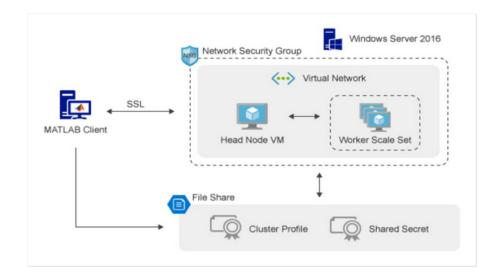
Support Support Help

License Agreement Privacy Policy MATLAB Parallel Server™ lets you scale MATLAB® programs and Simulink® simulations.

Use the MATLAB Parallel Server (BYOL) for Azure Marketplace software plans to easily scale your MATLAB® programs and Simulink® simulations on Azure. The flexibility of Azure infrastructure combined with MATLAB Parallel Server enables you to scale your computation to the right size cluster at the right time.

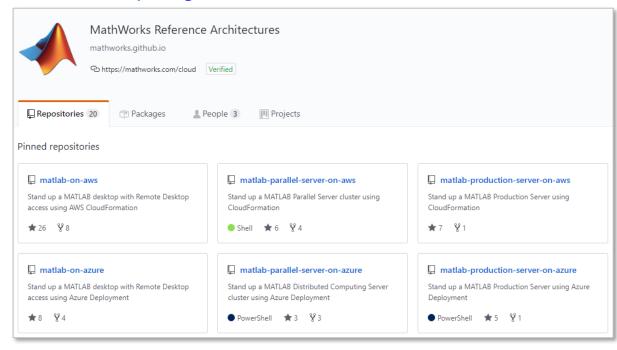
These software plans, developed by MathWorks for Azure, incorporates best practices to let you quickly create, configure, and deploy a cluster with MATLAB Parallel Server and MATLAB Job Scheduler, the MATLAB optimized scheduler provided with MATLAB Parallel Server. MathWorks provides ARM templates that use preconfigured virtual machines to create the required cluster infrastructure. This means you can configure the infrastructure and software quickly.

MATLAB Parallel Server™ lets you scale MATLAB® programs and Simulink® simulations to cloud clusters. You can prototype your programs and simulations on the MATLAB desktop and then run them on the cloud without recoding.



Create and manage cloud clusters with cloud reference architectures

https://github.com/mathworks-ref-arch



MATLAB Parallel Server on Amazon Web Services

Step 1. Launch the Template Click the Launch Stack button for your desired region below to deploy the cloud resources on AWS. This will open the AWS console in your web browser. Region Launch Link us-east-1 Launch Stack

- What's included:
 - Virtual machine images
 - Cloud templates
 - Architecture diagrams
 - Step-by-step instructions

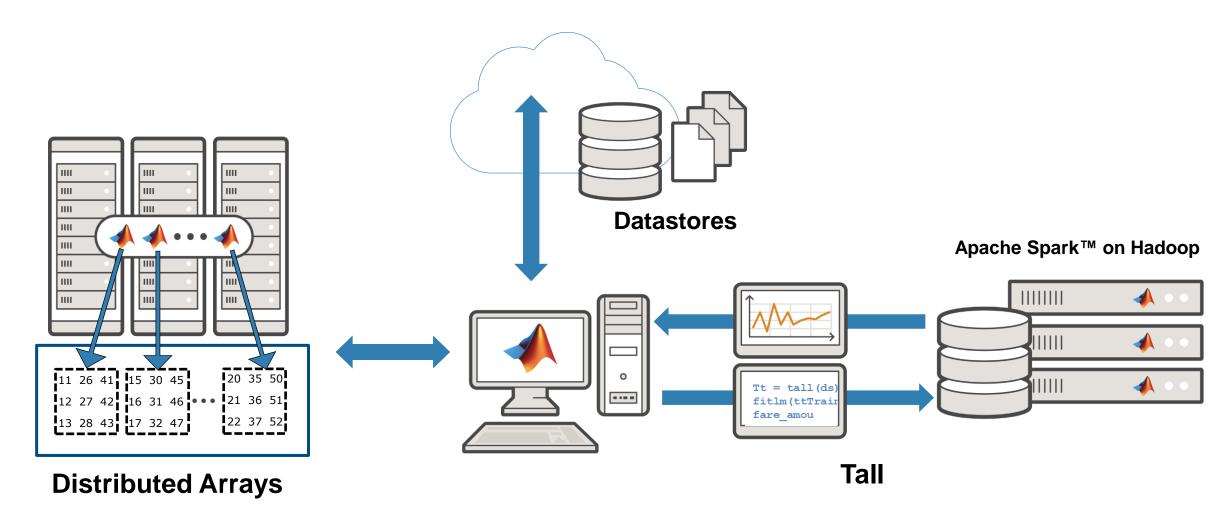
Resources for scaling: clouds and clusters

Environment	Motivation	
Cloud Workstation	 AWS Reference Architecture (MATLAB) Azure Reference Architecture (MATLAB) Azure Marketplace – MATLAB (BYOL) 	
DGX, NGC (GPU Workstation)	 MATLAB Deep Learning container on NVIDIA GPU Cloud for NVIDIA DGX Create a MATLAB Container Image 	
On-Premise and Cloud Clusters	 Integrate MATLAB with Third-Party Schedulers Integrate MATLAB Job Scheduler for Online Licensing 	
Cloud Center	MathWorks Cloud Center (AWS)	
Marketplace	Microsoft Azure Marketplace (MATLAB Parallel Server)	
Cloud Reference Architecture	AWS Reference Architecture (MATLAB Parallel Server) Azure Reference Architecture (MATLAB Parallel Server)	

Agenda

- Utilizing multiple cores on a desktop computer
- Scaling up to cluster and cloud resources
- Tackling data-intensive problems on desktops and clusters
- Accelerating applications with NVIDIA GPUs
- Summary and resources

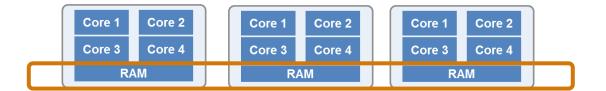
Extend Big Data Capabilities in MATLAB with Parallel Computing



Overcoming Single Machine Memory Limitations

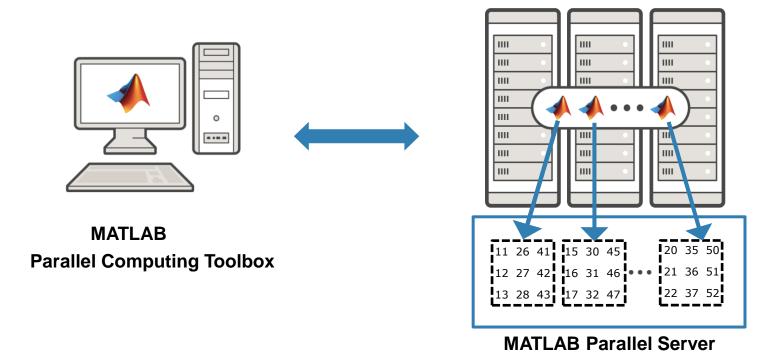
Distributed Arrays

- Distributed Data
 - Large matrices using the combined memory of a cluster
- Common Actions
 - Matrix Manipulation
 - Linear Algebra and Signal Processing
- A large number of standard MATLAB functions work with distributed arrays just as they do for normal variables



distributed arrays

- Distribute large matrices across workers running on a cluster
- Support includes matrix manipulation, linear algebra, and signal processing
- Several hundred MATLAB functions overloaded for distributed arrays



distributed arrays

Develop and prototype locally and then scale to the cluster

MATLAB Parallel Computing Toolbox

```
% prototype with a small data set
parpool('local')
% Read the data - read in part of the data
ds = datastore('colchunk_A_1.csv');
% Send data to workers
dds = distributed(ds);
% Run calculations
A = sparse(dds.i, dds.j, dds.v);
x = A \ distributed.ones(n^2, 1);
% Transfer results to local workspace
xg = gather(x);
```

MATLAB Parallel Server

```
% prototype with a large data set
parpool('cluster');

% Read the data - read the whole dataset
ds = datastore('colchunk_A(*.csv');

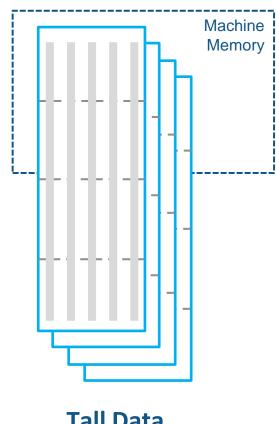
% Send data to workers
dds = distributed(ds);

% Run calculations
A = sparse(dds.i, dds.j, dds.v);
x = A \ distributed.ones(n^2, 1);

% Transfer results to local workspace
xg = gather(x);
```


Tall Arrays

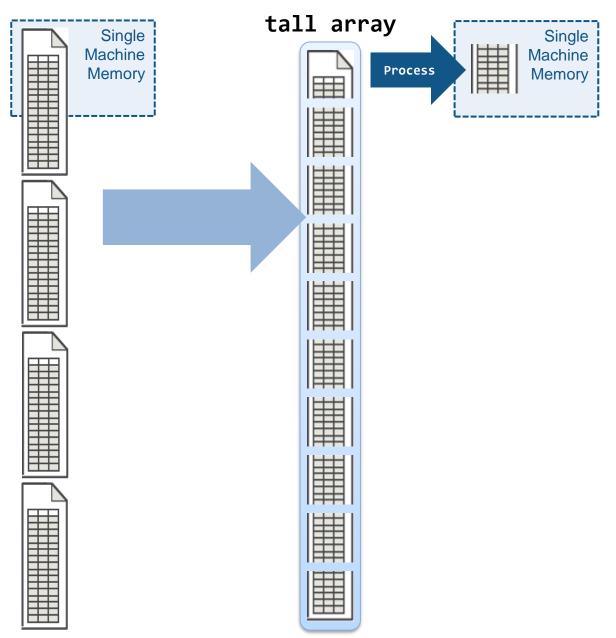
- Applicable when:
 - Data is columnar with many rows
 - Overall data size is too big to fit into memory
 - Operations are mathematical/statistical in nature
- Statistical and machine learning applications
 - Hundreds of functions supported in MATLAB and Statistics and Machine Learning Toolbox



Tall Data

Tall Arrays

- Automatically breaks data up into small "chunks" that fit in memory
- Tall arrays scan through the dataset one "chunk" at a time
- Processing code for tall arrays is the same as ordinary arrays



Demo: Predicting Cost of Taxi Ride in NYC

Working with tall arrays in MATLAB

Objective: Create a model to predict the cost of a taxi ride in New York City

Inputs:

- Monthly taxi ride log files
- The local data set contains > 2 million rows

Approach:

- Preprocess and explore data
- Work with subset of data for prototyping
- Fit linear model
- Predict fare and validate model

Preview Data

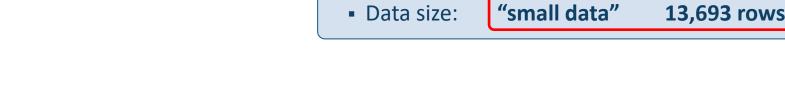
Description

Location: **New York City**

Date(s):

(Partial) January 2015

13,693 rows / ~2 MB

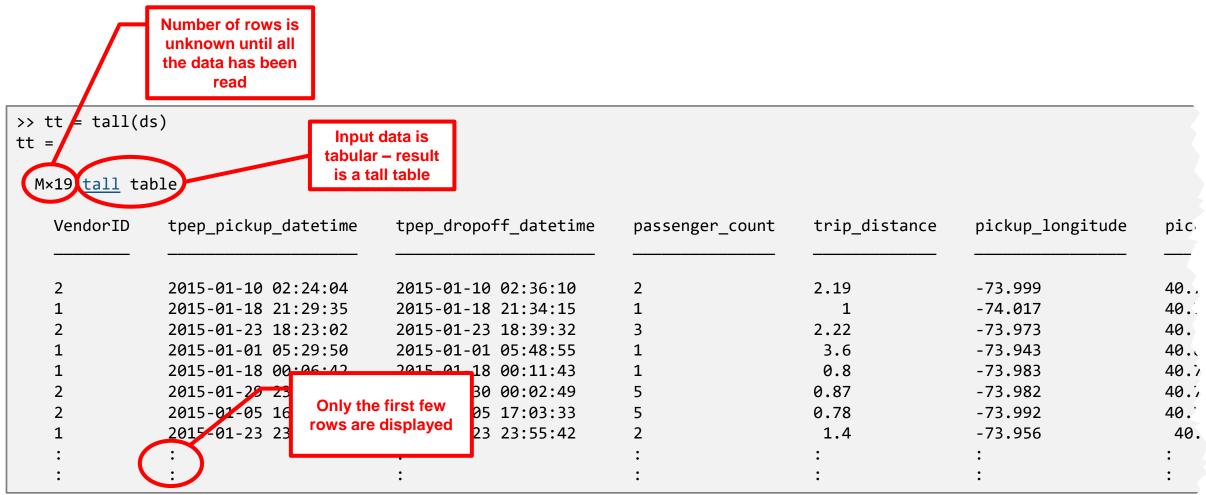


>> ds = datastore(taxidataNYC_1_2015.csv');

· · P. C. = C (5.5)	>>	<pre>preview(ds)</pre>	
---------------------	----	------------------------	--

VendorID	tpep_pickup_datetime	tpep_dropoff_datetime	passenger_count	trip_distance	pickup_longitude	pic'
2	2015-01-10 02:24:04	2015-01-10 02:36:10	2	2.19	-73.999	40.
1	2015-01-18 21:29:35	2015-01-18 21:34:15	1	1	-74.017	40.
2	2015-01-23 18:23:02	2015-01-23 18:39:32	3	2.22	-73.973	40.
1	2015-01-01 05:29:50	2015-01-01 05:48:55	1	3.6	-73.943	40.8
1	2015-01-18 00:06:42	2015-01-18 00:11:43	1	0.8	-73.983	40.7
2	2015-01-29 23:56:41	2015-01-30 00:02:49	5	0.87	-73.982	40.
2	2015-01-05 16:58:24	2015-01-05 17:03:33	5	0.78	-73.992	40.7
1	2015-01-23 23:49:53	2015-01-23 23:55:42	2	1.4	-73.956	40.

Create a Tall Array



Calling Functions with a Tall Array

Once the tall table is created, can process much like an ordinary table

```
% Calculate average trip duration
mnTrip = mean(tt.trip minutes, 'omitnan')
mnTrip =
   tall double
Preview deferred. Learn more.
% Execute commands and gather results into workspace
mn = gather(mnTrip)
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 4 sec
Evaluation completed in 4 sec
mn =
   13.2763
```

- Most results are evaluated only when explicitly requested (e.g., gather)
- MATLAB automatically optimizes queued calculations to minimize the number of passes through the data

Calling Functions with a Tall Array

```
% Remove some bad data
tt.trip minutes = minutes(tt.tpep_dropoff_datetime -
tt.tpep pickup datetime);
                                                                       Figure 1
tt.speed_mph = tt.trip_distance ./ (tt.trip_minutes ./ 60);
ignore = tt.trip_minutes <= 1 | ... % really short time</pre>
                                                                       <u>File Edit View Insert Tools Desktop Window</u>
    tt.trip_minutes >= 60 * 12 | ... % unfeasibly long time
                                                                       🖺 🗃 📓 🦫 🖟 🔍 🤏 🖑 🐌 🐙 🔏 - 🗒 🛭
    tt.trip_distance <= 1 | ... % really short distance
    tt.trip distance >= 12 * 55 | ... % unfeasibly far
    tt.speed_mph > 55 | ... % unfeasibly fast
    tt.fare_amount < 0 | ... % negative fares?!
                                        % unfeasibly large fares
    tt.fare amount > 10000;
tt(ignore, :) = [];
                                                                         Number of trips
% Credit card payments have the most accurate tip data
keep = tt.payment_type == {'Credit card'};
tt = tt(keep,:);
                        Data only read once.
                       despite 21 operations
% Show tip distribution
                                                                           0.5
histogram( tt.tip_amol
Evaluating tall expression using the Local MATLAB Session:
                                                                                                   15
                                                                                                          20
                                                                                                                  25
- Pas: 1 of 1: Completed in 5 sec
                                                                                           Tip amount ($)
Evaluation completed in 5 sec
```

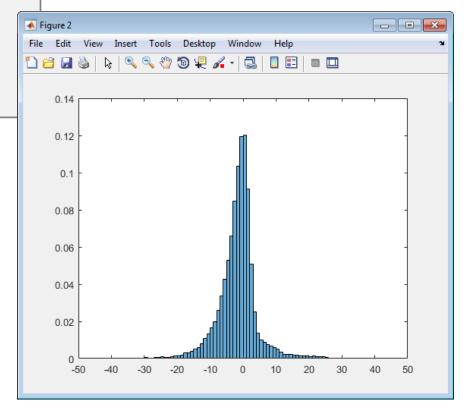

Fit predictive model


```
% Fit predictive model
model = fitlm(ttTrain, 'fare amount ~ 1 + hr of day + trip distance*trip minutes')
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 5 sec
Evaluation completed in 5 sec
model =
Compact linear regression model:
    fare_amount ~ 1 + hr_of_day + trip_distance*trip minutes
Estimated Coefficients:
                                   Estimate
                                                   SE
                                                              tStat
                                                                         pValue
    (Intercept)
                                     2.3432
                                                 0.040181
                                                               58.318
    trip distance
                                     2.5841
                                                0.0063898
                                                               404.41
    hr of day
                                 -0.0012969
                                                0.0018789
                                                             -0.69024
                                                                         0.49005
    trip minutes
                                    0.22098
                                                0.0020412
                                                             108.26
    trip distance:trip minutes
                                                              -44,798
                                  -0.007857
                                               0.00017539
Number of observations: 42373, Error degrees of freedom: 42368
Root Mean Squared Error: 2.58
R-squared: 0.938, Adjusted R-Squared 0.938
F-statistic vs. constant model: 1.59e+05, p-value = 0
```


Predict and validate model

```
% Predict and validate
yPred = predict(model,ttValidation);
residuals = yPred - ttValidation.fare_amount;
figure
histogram(residuals,'Normalization','pdf','BinLimits',[-50 50])

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 5 sec
- Pass 2 of 2: Completed in 4 sec
Evaluation completed in 10 sec
```

Scale to the Entire Data Set

Description

Location: New York City

Date(s):

All of 2015

Data size:

"Big Data" 150,000,000 rows / ~25 GB

Example: "small data" processing vs. Big Data processing

```
% Calculate average trip duration
mnTrip = mean(tt.trip minutes, 'omitnan')
% Execute commands and gather results into workspace
mn = gather(mnTrip)
% Remove some had data
tt.trip minutes = minutes(tt.tpep dropoff datetime -
tt.tpep pickup datetime);
tt.speed mph = tt.trip distance ./ (tt.trip minutes ./ 60);
ignore = tt.trip minutes <= 1 | ... % really short time
    tt.trip minutes >= 60 * 12 | ... % unfeasibly long time
    tt.trip distance <= 1 | ...
                                        % really short distance
    tt.trip_distance >= 12 * 55 | ... % unfeasibly far
   tt.speed_mph > 55 | ... % unfeasibly fast tt.fare_amount < 0 | ... % negative fares?! tt.fare_amount > 10000; % unfeasibly large
                                       % negative fares?!
                                        % unfeasibly large fares
-t(ignore :) = []
```

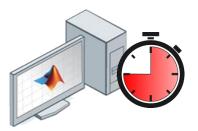
```
% Access the data
ds = datastore('taxiData\*.csv');
tt = tall(ds);
Big Data processing
```

```
% Calculate average trip duration
mnTrip = mean(tt.trip minutes, 'omitnan')
% Execute commands and gather results into workspace
mn = gather(mnTrip)
% Remove some bad data
tt.trip minutes = minutes(tt.tpep dropoff datetime -
tt.tpep pickup datetime);
tt.speed mph = tt.trip distance ./ (tt.trip minutes ./ 60);
ignore = tt.trip minutes <= 1 | ... % really short time
   tt.trip_minutes >= 60 * 12 | ... % unfeasibly long time
   tt.trip distance <= 1 | ...
                                     % really short distance
   tt.trip_distance >= 12 * 55 | ... % unfeasibly far
   tt.speed_mph > 55 | ...
                                     % unfeasibly fast
   tt.fare_amount < 0 | ...
                                    % negative fares?!
   tt.fare amount > 10000;
                                     % unfeasibly large fares
t+(ignor/ :) - [].
```


Scaling up

If you just have **MATLAB**:

Run through each 'chunk' of data one by one

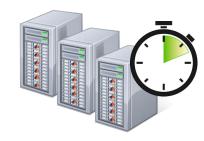


If you also have Parallel Computing Toolbox:

Use all local cores to process several 'chunks' at once

If you also have a cluster with MATLAB Parallel Server:

Use the whole cluster to process many 'chunks' at once



Scaling up

Working with clusters from MATLAB desktop:

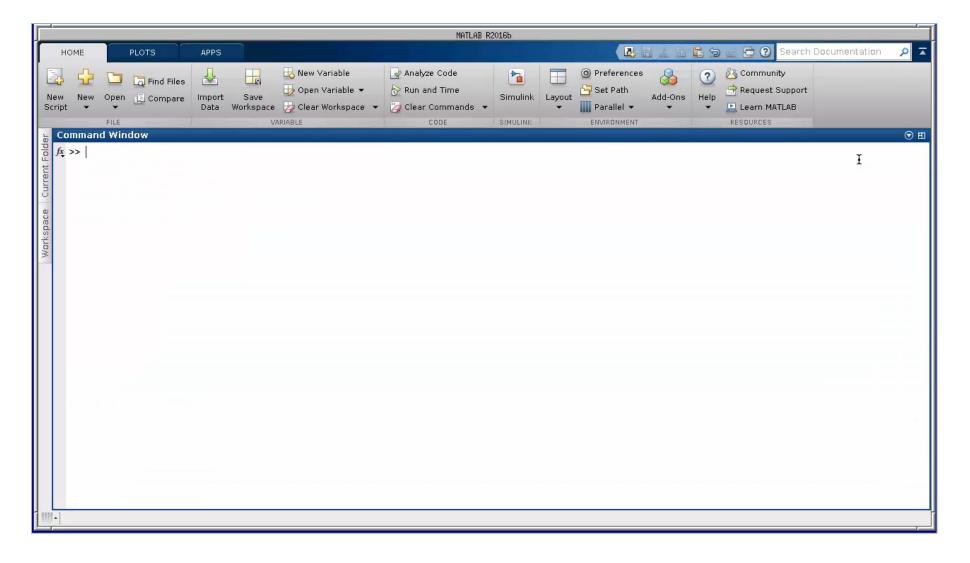
- General purpose MATLAB cluster
 - Can co-exist with other MATLAB workloads (parfor, parfeval, spmd, jobs and tasks, distributed arrays, ...)
 - Uses local memory and file caches on workers for efficiency

- Spark-enabled Hadoop clusters
 - Data in HDFS
 - Calculation is scheduled to be near data
 - Uses Spark's built-in memory and disk caching

Example: Running on Spark + Hadoop

```
% Hadoop/Spark Cluster
numWorkers = 16;
setenv('HADOOP_HOME', '/dev_env/cluster/hadoop');
setenv('SPARK HOME', '/dev env/cluster/spark');
cluster = parallel.cluster.Hadoop;
cluster.SparkProperties('spark.executor.instances') = num2str(numWorkers);
mr = mapreducer(cluster);
% Access the data
ds = datastore('hdfs://hadoop01:54310/datasets/taxiData/*.csv');
tt = tall(ds);
```


Example: Running on Spark + Hadoop



tall arrays vs. distributed arrays

- tall arrays are useful for out-of-memory datasets with a "tall" shape
 - Can be used on a desktop, cluster, or with Spark/Hadoop
 - Low-level alternatives are mapreduce and MATLAB API for Spark
- distributed arrays are useful for in-memory datasets on a cluster
 - Can be any shape ("tall", "wide", or both)
 - Create custom functions with spmd + gop

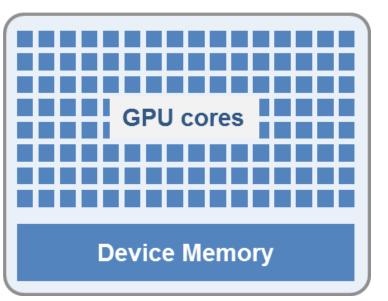
	Tall Array	Distributed Array
Support Focus	Data Analytics, Statistics and Machine Learning	Linear Algebra, Matrix Manipulations
Data Shape - Tall	✓	✓
Data Shape - Wide		✓
Prototype on Desktop	✓	\checkmark
Helps on Desktop	✓	
Run on HPC	✓	✓
Run on Spark/Hadoop	✓	
Fault Tolerant	✓	

Agenda

- Utilizing multiple cores on a desktop computer
- Scaling up to cluster and cloud resources
- Tackling data-intensive problems on desktops and clusters
- Accelerating applications with NVIDIA GPUs
- Summary and resources

Graphics Processing Units (GPUs)

- For graphics acceleration and scientific computing
- Many parallel processors
- Dedicated high speed memory



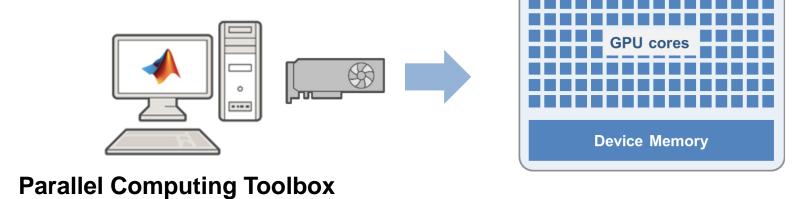
GPU Requirements

- Parallel Computing Toolbox requires NVIDIA GPUs
- www.nvidia.com/object/cuda_gpus.html
- GPU support by release

MATLAB Release	Required Compute Capability
MATLAB R2021a	3.5 or greater
MATLAB R2018a and later releases	3.0 or greater
MATLAB R2014b – MATLAB R2017b	2.0 or greater
MATLAB R2014a and earlier releases	1.3 or greater

GPU Computing Paradigm

NVIDIA CUDA-enabled GPUs



80

NASA Langley Accelerates Acoustic Data Analysis with GPU Computing

Challenge

Accelerate the analysis of sound recordings from wind tunnel tests of aircraft components

Solution

- Use Parallel Computing Toolbox to process acoustic data
- Cut processing time by running computationally intensive operations on a GPU

Results

- GPU computations completed 40 times faster
- Algorithm GPU-enabled in 30 minutes
- Processing of test data accelerated

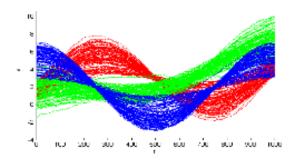
Wind tunnel test setup featuring the Hybrid Wing Body model (inverted), with 97-microphone phased array (top) and microphone tower (left).

"Our legacy code took up to 40 minutes to analyze a single wind tunnel test. The addition of GPU computing with Parallel Computing Toolbox cut it to under a minute. It took 30 minutes to get our MATLAB algorithm working on the GPU—no low-level CUDA programming was needed."

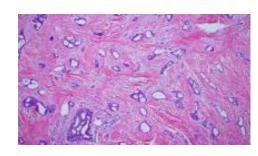
- Christopher Bahr, research aerospace engineer at NASA

Link to user story

Speeding up MATLAB applications with GPUs

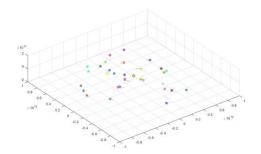


10x speedup *K-means clustering algorithm*

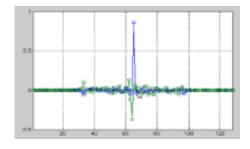


14x speedup template matching routine

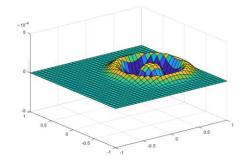
12x speedup using Black-Scholes model



44x speedup simulating the movement of celestial objects



4x speedup adaptive filtering routine



77x speedup wave equation solving

Programming with GPUs

Parallel-enabled toolboxes

Common programming constructs

(gpuArray, gather)

Advanced programming constructs

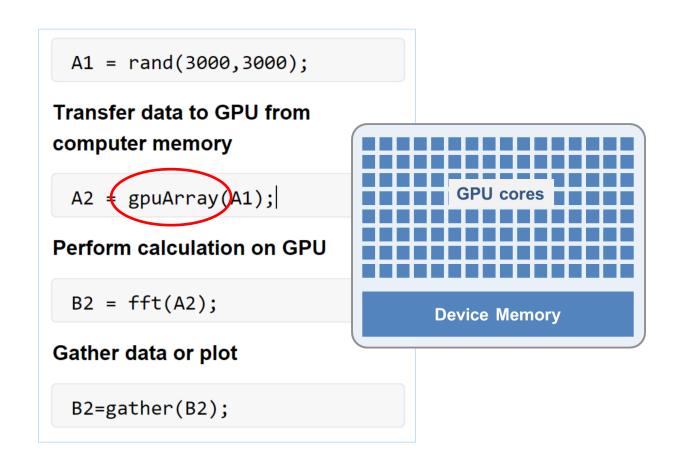
Demo: Wave Equation

Accelerating scientific computing in MATLAB with GPUs

- Objective: Solve 2nd order wave equation with spectral methods
- Approach:
 - Develop code for CPU
 - Modify the code to use GPU computing using gpuArray
 - Compare performance of the code using CPU and GPU

Speed-up using NVIDIA GPUs

- Ideal Problems
 - Massively Parallel and/or Vectorized operations
 - Computationally Intensive
- 500+ GPU-enabled MATLAB functions
- Simple programming constructs
 - gpuArray, gather



Programming with GPUs

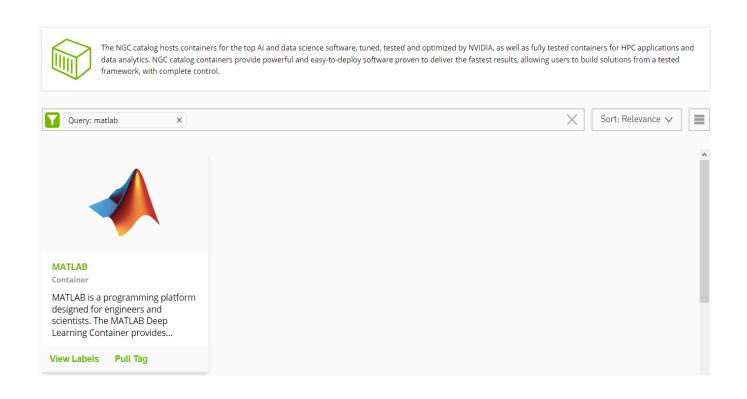
Parallel-enabled toolboxes

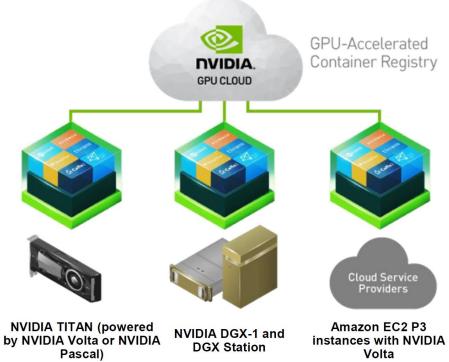
Common programming constructs

Advanced programming constructs (spmd, arrayfun, CUDAKernel, mex)

Deep learning with MATLAB and NVIDIA GPU cloud containers

Use MATLAB NGC containers in the cloud, on DGX, or on your machine





Agenda

- Utilizing multiple cores on a desktop computer
- Scaling up to cluster and cloud resources
- Tackling data-intensive problems on desktops and clusters
- Accelerating applications with NVIDIA GPUs
- Summary and resources

Feedback

http://bitly.com/matlab-lca-21

Summary

Easily develop parallel MATLAB applications without being a parallel programming expert

Run many Simulink simulations at the same time on multiple CPU cores.

- Speed up the execution of your applications using additional hardware including GPUs, clusters and clouds
- Develop parallel applications on your desktop and easily scale to a cluster when needed

Some Other Valuable Resources

- MATLAB Documentation
 - MATLAB → Advanced Software Development → Performance and Memory
 - Parallel Computing Toolbox
- Parallel and GPU Computing Tutorials
 - https://www.mathworks.com/videos/series/parallel-and-gpu-computing-tutorials-97719.html
- Parallel Computing on the Cloud with MATLAB
 - http://www.mathworks.com/products/parallel-computing/parallel-computing-on-thecloud/

