
1© 2021 The MathWorks, Inc.

Parallel and Distributed Computing

with MATLAB

Organized with the collaboration of the

Laboratory for Advanced Computing

at University of Coimbra

Ángel Sierra % asierra@mathworks.com

Carlos Sanchis % csanchis@mathworks.com

Lucas García % lgarcia@mathworks.com

2

Why parallel computing?

▪ Save time and tackle increasingly complex problems

– Reduce computation time by using available compute cores and GPUs

▪ Why parallel computing with MATLAB and Simulink?

– Accelerate workflows with minimal to no code changes to your original code

– Scale computations to clusters and clouds

– Focus on your engineering and research, not the computation

GPU

Multi-core

CPU

3

Automotive Test Analysis
Validation time sped up 2X

Development time reduced 4 months

Calculating Derived Market Data
Updates sped up 8X

Updates reduced from weeks to days

Discrete-Event Model of Fleet Performance
Simulation time sped up 20X

Simulation time reduced from months to hours

Heart Transplant Study
Process time sped up 6X

4 week process reduced to 5 days

Benefits of parallel computing

4

Accelerating and Parallelizing MATLAB Code

▪ Optimize your serial code for performance

▪ Analyze your code for bottlenecks and

address most critical items

▪ Include compiled languages

▪ Leverage parallel computing tools to take advantage of additional

computing resources

https://www.mathworks.com/discovery/matlab-acceleration.html

https://www.mathworks.com/discovery/matlab-acceleration.html

5

Run MATLAB on multicore machines

▪ Built-in multithreading (implicit)

– Automatically enabled in MATLAB

– Multiple threads in a single MATLAB computation engine

– Functions such as fft, eig, svd, and sort are multithreaded in MATLAB

▪ Parallel computing using explicit techniques

– Multiple computation engines (workers) controlled by a single session

– Perform MATLAB computations on GPUs

– High-level constructs to let you parallelize MATLAB applications

– Scale parallel applications beyond a single machine to clusters and clouds

6

Compute 40,000 iterations (mean of 2.2 seconds per iteration)
van der Pol Equation study with parfor

https://app.highspot.com/embedded_content/9d2e8b072eb7ade042401ee9ad791234f67f1cd9?overlay=true

7

▪ Utilizing multiple cores on a desktop computer

▪ Scaling up to cluster and cloud resources

▪ Tackling data-intensive problems on desktops and clusters

▪ Accelerating applications with NVIDIA GPUs

▪ Summary and resources

Agenda

8

Parallel Computing Paradigm
Multicore Desktops

Core 3

Core 1 Core 2

Core 4

Parallel Computing Toolbox

9

Run multiple iterations on a process or thread level

>> parpool("local") >> parpool("threads")

Workers run as their own process Workers run as threads in main MATLAB

process and share memory

Choose between thread-based and

process-based environments

https://www.mathworks.com/help/parallel-computing/choose-between-thread-based-and-process-based-environments.html

10

Accelerating MATLAB and Simulink Applications

Parallel-enabled toolboxes
('UseParallel', true)

Common programming constructs

Advanced programming constructs

E
a
s
e
 o

f
U

s
e

G
re

a
te

r C
o

n
tro

l

11

Demo: Classification Learner App
Analyze sensor data for human activity classification

▪ Objective: visualize and classify

cellphone sensor data of human

activity

▪ Approach:

– Load human activity dataset

– Leverage multicore resources to

train multiple classifiers in parallel

12

Demo: Cell Phone Tower Optimization
Using Parallel-Enabled Functions

▪ Parallel-enabled functions in Optimization Toolbox

▪ Set flags to run optimization in parallel

▪ Use pool of MATLAB workers to enable

parallelism

13

Parallel-enabled Toolboxes (MATLAB® Product Family)
Enable parallel computing support by setting a flag or preference

Statistics and Machine Learning

Resampling Methods, k-Means

clustering, GPU-enabled functions

Image Processing

Batch Image Processor, Block

Processing, GPU-enabled functions

Computer Vision
Bag-of-words workflow,

object detectors

Other Parallel-enabled Toolboxes

Deep Learning

Deep Learning, Neural Network

training and simulation

Signal Processing and Communications
GPU-enabled FFT filtering, cross

correlation, BER simulations

Estimation of gradients, parallel search

Optimization & Global Optimization

http://www.mathworks.com/products/parallel-computing/parallel-support.html

14

Parallel-enabled Toolboxes (Simulink® Product Family)
Enable parallel computing support by setting a flag or preference

Simulink Control Design

Frequency response estimation

Simulink/Embedded Coder

Generating and building code

Simulink Design Optimization

Response optimization, sensitivity

analysis, parameter estimation

Communication Systems Toolbox

GPU-based System objects for

Simulation Acceleration

Other parallel-enabled Toolboxes

http://www.mathworks.com/products/parallel-computing/parallel-support.html

15

Accelerating MATLAB and Simulink Applications

Parallel-enabled toolboxes

Common programming constructs
(parfor, batch)

Advanced programming constructs

E
a
s
e
 o

f
U

s
e

G
re

a
te

r C
o

n
tro

l

16

Explicit Parallelism: Independent Tasks or Iterations
Simple programming constructs: parfor

▪ Examples: parameter sweeps, Monte Carlo simulations

▪ No dependencies or communications between tasks

MATLAB client

Workers

Time Time

17

▪ Examples: parameter sweeps, Monte Carlo simulations

▪ No dependencies or communications between tasks

Explicit Parallelism: Independent Tasks or Iterations

MATLAB client

Time

for i = 1:5

y(i) = myFunc(myVar(i));

end

Workers

Time

parfor i = 1:5

y(i) = myFunc(myVar(i));

end

18

▪ System of ODEs

ሶ𝑦1 = 𝜈𝑦2
ሶ𝑦2 = 𝜇 1 − 𝑦1

2 𝑦2 − 𝑦1

▪ Compute mean period of y

▪ Use parfor to study impact of 𝜈, 𝜇

Demo: parameter sweep for van der Pol oscillator
Embarrassingly parallel tasks in MATLAB

19

Demo: Parameter Sweep
Embarrassingly parallel tasks in MATLAB

▪ Parameter sweep

– Truss under a dynamic load

– Sweeping over cross-sectional area and number of elements

Displacement, d

Load

Length, L

Height, H

N = 4

20

Mechanics of parfor Loops

a = zeros(10, 1)

parfor i = 1:10

a(i) = i;

end

a
a(i) = i;

a(i) = i;

a(i) = i;

a(i) = i;

Worker

Worker

WorkerWorker

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

21

Optimizing parfor

Type Category

sliced input input

broadcast input

reduction output

sliced output output

loop only exist on worker

temporary only exist on worker

Troubleshooting variables in parfor-loops

Use more

Keep small

https://www.mathworks.com/help/releases/R2019b/parallel-computing/troubleshoot-variables-in-parfor-loops.html

22

Parallelism using parfor

23

Tips for Leveraging parfor

▪ Consider creating smaller arrays on each worker versus one large array

prior to the parfor loop

▪ Take advantage of parallel.pool.Constant to establish variables on pool

workers prior to the loop

▪ Encapsulate blocks as functions when needed

Understanding parfor

http://www.mathworks.com/help/distcomp/parfor-limitations.html

24

Execute additional code as iterations complete

▪ Send data or messages from

parallel workers back to the

MATLAB client

▪ Retrieve intermediate values and

track computation progress

function a = parforWaitbar

D = parallel.pool.DataQueue;

h = waitbar(0, 'Please wait ...');

afterEach(D, @nUpdateWaitbar)

N = 200;

p = 1;

parfor i = 1:N

a(i) = max(abs(eig(rand(400))));

send(D, i)

end

function nUpdateWaitbar(~)

waitbar(p/N, h)

p = p + 1;

end

end

25

Execute functions in parallel asynchronously using parfeval

▪ Asynchronous execution on parallel workers

▪ Useful for “needle in a haystack” problems

MATLAB

Workers

for idx = 1:10

f(idx) = parfeval(@magic,1,idx);

end

for idx = 1:10

[completedIdx,value] = fetchNext(f);

magicResults{completedIdx} = value;

end

fetchNext

Outputs

26

for i = 1:5

y(i) = myFunc(myVar(i));

end

parfor i = 1:5

y(i) = myFunc(myVar(i));

end

MATLAB client

Explicit Parallelism: Independent Tasks or Iterations

for i = 1:5

y(i) = myFunc(myVar(i));

end

parfor i = 1:5

y(i) = myFunc(myVar(i));

end

Run Multiple Simulations in Parallel with parsim

▪ Run independent

Simulink simulations in

parallel using the
parsim function

parsim

Workers

TimeTime

27

Virgin Orbit Simulates LauncherOne Stage Separation Events

Challenge

Simulate separation events for LauncherOne

spacecraft

Solution

▪ Use MATLAB, Simulink, and Simscape

Multibody to model components and automate

Monte Carlo simulations

▪ Used Parallel Computing Toolbox to run

simulations in parallel on multicore processors

Results

▪ Simulations completed 10 times faster

▪ Simulation set up times cut by up to 90%

▪ Hardware designs informed by simulation

results

“With Simulink, we can employ simplifying assumptions and

parallel processing to reduce simulation times from days to

hours…Just as important, we can automate the simulations so

they run in the background or overnight, and have the results

waiting for us in the morning.”

- Patrick Harvey, Associate Engineer at Virgin Orbit

Link to user story

Virgin Orbit’s LauncherOne vehicle assembled (top), with

exploded view showing the fairing, payload, and first and

second stages (bottom).

https://www.mathworks.com/company/user_stories/virgin-orbit-simulates-launcherone-stage-separation-events.html

28

parsim has simplified running parallel simulations

Pre-

Starting with

29

Monitor Multiple Simulations at Once with Simulation Manager

▪ View the progress of the

simulations

▪ Examine simulation settings

and diagnostics

▪ View simulation results in the

Simulation Data Inspector.

https://app.highspot.com/embedded_content/4f5b897649db1e5b928b72b46e7a8951fdf9a4de?overlay=true

30

Simulation Manager can also be used to inspect the variation in

outputs with parameters

▪ Visualize simulation results as

the simulations are running

https://app.highspot.com/embedded_content/75ed45bb92a70974003e4739fb304498734bc868?overlay=true

31

for i = 1:5

y(i) = myFunc(myVar(i));

end

parfor i = 1:5

y(i) = myFunc(myVar(i));

end

Explicit Parallelism: Independent Tasks or Iterations

for i = 1:5

y(i) = myFunc(myVar(i));

end

parfor i = 1:5

y(i) = myFunc(myVar(i));

end

Demo: Thermal Model of House
Run parallel simulations with parsim

▪ Simulation of home heating cost by

parameter sweeping (temperature

set point)

▪ Use a SimulationInput object to

change block parameter and run

simulations in parallel

32

Benefits of using parsim

▪ Run multiple simulations on your machine or clouds and clusters

▪ Transfer base workspace variables to workers

▪ Automatically transfer all files to workers

▪ Automatically return file logging data

▪ Automatically manage build folders

▪ Display progress

▪ Manage errors

Desktop Multicore Cluster

33

Accelerating MATLAB and Simulink Applications

Parallel-enabled toolboxes

Common programming constructs

Advanced programming constructs
(spmd, createJob, labSend,..)

E
a
s
e
 o

f
U

s
e

G
re

a
te

r C
o

n
tro

l

34

▪ Utilizing multiple cores on a desktop computer

▪ Scaling up to cluster and cloud resources

▪ Tackling data-intensive problems on desktops and clusters

▪ Accelerating applications with NVIDIA GPUs

▪ Summary and resources

Agenda

35

▪ Offload computation:

– Free up desktop

– Access better computers

▪ Scale speed-up:

– Use more cores

– Go from hours to minutes

▪ Scale memory:

– Utilize tall arrays and distributed arrays

– Solve larger problems without re-coding algorithms

Take Advantage of Cluster Hardware

MATLAB Desktop

(Client) GPU

Multi-core

CPU

Computer Cluster

36

Cluster

Parallel Computing Paradigm
Clusters and Clouds

MATLAB Parallel Server

MATLAB

Client)

37

Scale to clusters and clouds

With MATLAB Parallel Server, you can…

▪ Use more hardware with minimal code

change

▪ Submit to on-premise or cloud clusters

▪ Support cross-platform submission

– Windows client to Linux cluster

38

Aberdeen Asset Management Implements Machine Learning–Based

Portfolio Allocation Models in the Cloud

Challenge
Improve asset allocation strategies by creating

model portfolios with machine learning techniques

Solution
▪ Use MATLAB to develop classification tree,

neural network, and support vector machine

learning models

▪ Enable rapid results using MATLAB Parallel

Server to run the models in the Azure cloud

Results
▪ Processing times cut from 24 hours to 3

▪ Quickly validate results by iterating multiple

machine learning models

Link to user story

Interns using MATLAB at Aberdeen Asset Management.

“Our processing times went from 24 hours to 3 when we started running

on the Azure cloud with MATLAB Parallel Server,” notes Mann. “Because

the job scheduler is integrated into MATLAB, it’s easy to take advantage

of parallel computing just by opening a pool and using parfor loops.”

- Emilio Llorente-Cano, senior investment strategist at Aberdeen Asset

Management

https://www.mathworks.com/company/user_stories/university-college-london-improves-computational-literacy-with-online-and-onsite-matlab-training.html
http://www.mathworks.com/company/user_stories/aberdeen-asset-management-implements-machine-learning-based-portfolio-allocation-models-in-the-cloud.html?s_tid=srchtitle

39

batch Simplifies Offloading Serial Computations
Submit jobs from MATLAB and free up MATLAB for other work

job = batch('myfunc');

MATLAB Client

Head

worker

Batch Jobs

Batch Results

Parallel Pool

40

batch Simplifies Offloading Serial Computations
Submit jobs from MATLAB, free up MATLAB for other work, access results later

job = batch('myfunc','Pool',3);

MATLAB Client

Head

worker

Batch Jobs

Batch Results

Parallel Pool

parfor

41

batchsim Simplifies Offloading Simulations
Submit jobs from MATLAB to offload and run Simulink simulations

job = batchsim('mySim','Pool',3)

MATLAB Client

Head

worker

Simulation Jobs

Simulation Results

Parallel Pool

parsim

42

• System of ODEs

ሶ𝑦1 = 𝜈𝑦2
ሶ𝑦2 = 𝜇 1 − 𝑦1

2 𝑦2 − 𝑦1

• Compute mean period of y

• Use parfor, study impact of 𝜈, 𝜇

Speed up a parameter sweep using parfor on a cluster with

MATLAB Parallel Server
Demo: Parameter sweep for van der Pol oscillator

43

Migrate to Cluster / Cloud

▪ Use MATLAB Parallel Server

▪ Change hardware without changing algorithm

44

MATLAB Job Scheduler allows you to set up a MATLAB cluster

from scratch

MATLAB

Client)

Worker

Worker

Worker

Additional information

MATLAB

Job

Scheduler

Headnode

https://www.mathworks.com/help/matlab-parallel-server/integrate-matlab-job-scheduler.html

45

Support for integration with third-party schedulers

Scheduler Ready to use

options

Customizable via generic

scheduler API

Example Plugins

available

Slurm   

Microsoft® Windows® HPC

Server


Grid Engine family  

IBM® Platform LSF   

PBS family   

HTCondor  

Other schedulers 

Additional information

https://www.mathworks.com/products/matlab-parallel-server/supported.html

46

Broad Range of Needs and Cloud Environments Supported

Even more hardware to meet scaling needs

GPU

Multi-core CPU

Access requirements Desktop in the

cloud

Cluster in the cloud

(Client can be any cloud on on-premise desktop)

Any user could set up NVIDIA GPU Cloud MathWorks Cloud Center

Customizable template-based set up MathWorks Cloud Reference Architecture

Full set-up in custom environment Custom installation - DIY

• More /better hardware

• Proximity to cloud data

GPU

Multi-core CPU

GPU

Multi-core CPU

Learn More: Parallel Computing on the Cloud

http://www.mathworks.com/products/parallel-computing/parallel-computing-on-the-cloud/index.html

47

MathWorks Reference architectures enable advanced environments
Amazon Web Services and Microsoft Azure

▪ Published on GitHub, by MathWorks

– MATLAB

– MATLAB Parallel Server

– MATLAB Production Server

▪ Benefits:

– Quick infrastructure setup in the cloud

– MATLAB pre-installed

– Incorporates best practices

– You can adapt or extend for your specific

needs

Cloud templates

Architecture diagrams

Step by step instructions

48

MATLAB Parallel Server – license update

Users who checkout 200 workers can scale without further check-outs

MATLAB Computational Engines Workers

checked outUser 1 User 2

1000 1000

800 800

600 600

400 400

200 200

0 0 0

Backward compatible: Update license file and network license manager OR use online licensing

MATLAB Computational Engines Workers

checked outUser 1 User 2

1000 1000

800 800

600 600

400 400

200 200

100 0 100

MATLAB Computational Engines Workers

checked outUser 1 User 2

1000 1000

800 800

600 600

400 400

200 200

100 200 300

MATLAB Computational Engines Workers

checked outUser 1 User 2

1000 1000

800 800

600 600

400 400

200 200

800 200 400

MATLAB Computational Engines Workers

checked outUser 1 User 2

1000 1000

800 800

600 600

400 400

200 200

800 900 400

49

MATLAB Parallel Server for Campus-Wide License

▪ One license, no limits

– Updated license allows unlimited scaling for all users

– Network license manager (Flex)

▪ Typically used with HPC centers, organizational clusters, or departmental clusters

▪ One activation can simultaneously serve multiple clusters on the same network

– Online licensing

▪ Typically used with cloud clusters, personal clusters, or group clusters

▪ Eliminates the need to set up a network license manager

50

Run MATLAB in the cloud

Virtual Network

License Manager

(Hosted by your

organization or by

MathWorks)

Virtual Machine

Remote Desktop

• Run MATLAB in the cloud to access better

hardware

• Perform data analytics on cloud-stored

data

• Deploy MATLAB via Azure Marketplace or

MathWorks Reference Architecture

51

Create and manage AWS cloud clusters with Cloud Center

Use Cloud Center to create and access

compute clusters in the Amazon cloud for

parallel computing

You can access a cloud cluster from your

client MATLAB session like any other cluster

in your own onsite network

Requires:

1. MATLAB Parallel Server license

configured to use online licensing

2. Amazon Web Services (AWS) account

https://www.mathworks.com/help/cloudcenter/
https://www.mathworks.com/products/matlab-parallel-server/online-licensing.html

52

Create and manage cloud clusters in the Azure Marketplace

53

Create and manage cloud clusters with cloud reference architectures

https://github.com/mathworks-ref-arch

▪ What’s included:

– Virtual machine images

– Cloud templates

– Architecture diagrams

– Step-by-step instructions

https://github.com/mathworks-ref-arch

54

Resources for scaling: clouds and clusters

Environment Motivation

Cloud Workstation • AWS Reference Architecture (MATLAB)

• Azure Reference Architecture (MATLAB)

• Azure Marketplace – MATLAB (BYOL)

DGX, NGC (GPU Workstation) • MATLAB Deep Learning container on NVIDIA GPU Cloud for NVIDIA DGX

• Create a MATLAB Container Image

On-Premise and Cloud

Clusters

• Integrate MATLAB with Third-Party Schedulers

• Integrate MATLAB Job Scheduler for Online Licensing

Cloud Center • MathWorks Cloud Center (AWS)

Marketplace • Microsoft Azure Marketplace (MATLAB Parallel Server)

Cloud Reference Architecture • AWS Reference Architecture (MATLAB Parallel Server)

• Azure Reference Architecture (MATLAB Parallel Server)

Additional information

https://github.com/mathworks-ref-arch/matlab-on-aws
https://github.com/mathworks-ref-arch/matlab-on-azure
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/mathworks-inc.matlab-byol?tab=Overview&tab=Overview
https://www.mathworks.com/help/cloudcenter/ug/matlab-deep-learning-container-on-dgx.html
https://github.com/mathworks-ref-arch/matlab-dockerfile
https://www.mathworks.com/help/matlab-parallel-server/integrate-matlab-with-third-party-schedulers.html
https://www.mathworks.com/help/matlab-parallel-server/integrate-matlab-job-scheduler-using-online-licensing.html
https://www.mathworks.com/help/cloudcenter/
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/mathworks-inc.matlab-parallel-server-listing?tab=Overview
https://github.com/mathworks-ref-arch/mdcs-on-aws
https://github.com/mathworks-ref-arch/mdcs-on-azure
https://www.mathworks.com/solutions/cloud.html

55

▪ Utilizing multiple cores on a desktop computer

▪ Scaling up to cluster and cloud resources

▪ Tackling data-intensive problems on desktops and clusters

▪ Accelerating applications with NVIDIA GPUs

▪ Summary and resources

Agenda

56

Extend Big Data Capabilities in MATLAB with Parallel Computing

11 26 41

12 27 42

13 28 43

15 30 45

16 31 46

17 32 47

20 35 50

21 36 51

22 37 52

Distributed Arrays

Apache Spark™ on Hadoop

Tall

Datastores

57

Overcoming Single Machine Memory Limitations
Distributed Arrays

▪ Distributed Data

– Large matrices using the combined

memory of a cluster

▪ Common Actions

– Matrix Manipulation

– Linear Algebra and Signal Processing

▪ A large number of standard MATLAB

functions work with distributed arrays just

as they do for normal variables

58

distributed arrays

▪ Distribute large matrices across workers running on a cluster

▪ Support includes matrix manipulation, linear algebra, and signal processing

▪ Several hundred MATLAB functions overloaded for distributed arrays

11 26 41

12 27 42

13 28 43

15 30 45

16 31 46

17 32 47

20 35 50

21 36 51

22 37 52

MATLAB Parallel Server

MATLAB

Parallel Computing Toolbox

59

distributed arrays

MATLAB Parallel Server

% prototype with a large data set

parpool('cluster');

% Read the data – read the whole dataset

ds = datastore('colchunk_A_*.csv');

% Send data to workers

dds = distributed(ds);

% Run calculations

A = sparse(dds.i, dds.j, dds.v);

x = A \ distributed.ones(n^2, 1);

% Transfer results to local workspace

xg = gather(x);

Working with distributed arrays

% prototype with a small data set

parpool('local');

% Read the data – read in part of the data

ds = datastore('colchunk_A_1.csv');

% Send data to workers

dds = distributed(ds);

% Run calculations

A = sparse(dds.i, dds.j, dds.v);

x = A \ distributed.ones(n^2, 1);

% Transfer results to local workspace

xg = gather(x);

MATLAB

Parallel Computing Toolbox

Develop and prototype locally and then scale to the cluster

https://www.mathworks.com/help/parallel-computing/working-with-codistributed-arrays.html

60

Machine

Memory

Tall Arrays

▪ Applicable when:

– Data is columnar – with many rows

– Overall data size is too big to fit into memory

– Operations are mathematical/statistical in nature

▪ Statistical and machine learning applications

– Hundreds of functions supported in MATLAB and

Statistics and Machine Learning Toolbox

Tall Data

61

tall array
Single

Machine

Memory

Tall Arrays

▪ Automatically breaks data up into

small “chunks” that fit in memory

▪ Tall arrays scan through the

dataset one “chunk” at a time

▪ Processing code for tall arrays is

the same as ordinary arrays

Single

Machine

MemoryProcess

62

Demo: Predicting Cost of Taxi Ride in NYC
Working with tall arrays in MATLAB

▪ Objective: Create a model to predict the cost of a taxi ride in New York City

▪ Inputs:

– Monthly taxi ride log files

– The local data set contains > 2 million rows

▪ Approach:

– Preprocess and explore data

– Work with subset of data for prototyping

– Fit linear model

– Predict fare and validate model

63

Example: Prototyping
Preview Data

>> ds = datastore('taxidataNYC_1_2015.csv');
>> preview(ds)

VendorID tpep_pickup_datetime tpep_dropoff_datetime passenger_count trip_distance pickup_longitude pickup_latitude
________ ____________________ _____________________ _______________ _____________ ________________ _______________

2 2015-01-10 02:24:04 2015-01-10 02:36:10 2 2.19 -73.999 40.729
1 2015-01-18 21:29:35 2015-01-18 21:34:15 1 1 -74.017 40.705
2 2015-01-23 18:23:02 2015-01-23 18:39:32 3 2.22 -73.973 40.787
1 2015-01-01 05:29:50 2015-01-01 05:48:55 1 3.6 -73.943 40.817
1 2015-01-18 00:06:42 2015-01-18 00:11:43 1 0.8 -73.983 40.762
2 2015-01-29 23:56:41 2015-01-30 00:02:49 5 0.87 -73.982 40.772
2 2015-01-05 16:58:24 2015-01-05 17:03:33 5 0.78 -73.992 40.743
1 2015-01-23 23:49:53 2015-01-23 23:55:42 2 1.4 -73.956 40.78

Description
▪ Location: New York City
▪ Date(s): (Partial) January 2015
▪ Data size: “small data” 13,693 rows / ~2 MB

64

Example: Prototyping
Create a Tall Array

>> tt = tall(ds)
tt =

M×19 tall table

VendorID tpep_pickup_datetime tpep_dropoff_datetime passenger_count trip_distance pickup_longitude pickup_latitude
________ ____________________ _____________________ _______________ _____________ ________________ _______________

2 2015-01-10 02:24:04 2015-01-10 02:36:10 2 2.19 -73.999 40.729
1 2015-01-18 21:29:35 2015-01-18 21:34:15 1 1 -74.017 40.705
2 2015-01-23 18:23:02 2015-01-23 18:39:32 3 2.22 -73.973 40.787
1 2015-01-01 05:29:50 2015-01-01 05:48:55 1 3.6 -73.943 40.817
1 2015-01-18 00:06:42 2015-01-18 00:11:43 1 0.8 -73.983 40.762
2 2015-01-29 23:56:41 2015-01-30 00:02:49 5 0.87 -73.982 40.772
2 2015-01-05 16:58:24 2015-01-05 17:03:33 5 0.78 -73.992 40.743
1 2015-01-23 23:49:53 2015-01-23 23:55:42 2 1.4 -73.956 40.78
: : : : : : :
: : : : : : :

Input data is

tabular – result

is a tall table

Number of rows is

unknown until all

the data has been

read

Only the first few

rows are displayed

65

Example: Prototyping
Calling Functions with a Tall Array

▪ Most results are evaluated only

when explicitly requested
(e.g., gather)

▪ MATLAB automatically

optimizes queued calculations

to minimize the number of

passes through the data

% Calculate average trip duration
mnTrip = mean(tt.trip_minutes,'omitnan')

mnTrip =

tall double

?

Preview deferred. Learn more.

% Execute commands and gather results into workspace
mn = gather(mnTrip)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 4 sec
Evaluation completed in 4 sec

mn =

13.2763

Once the tall table is created, can process much like an ordinary table

66

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: 0% complete
Evaluation 0% complete

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 5 sec
Evaluation completed in 5 sec

% Remove some bad data
tt.trip_minutes = minutes(tt.tpep_dropoff_datetime -
tt.tpep_pickup_datetime);
tt.speed_mph = tt.trip_distance ./ (tt.trip_minutes ./ 60);
ignore = tt.trip_minutes <= 1 | ... % really short time

tt.trip_minutes >= 60 * 12 | ... % unfeasibly long time
tt.trip_distance <= 1 | ... % really short distance
tt.trip_distance >= 12 * 55 | ... % unfeasibly far
tt.speed_mph > 55 | ... % unfeasibly fast
tt.fare_amount < 0 | ... % negative fares?!
tt.fare_amount > 10000; % unfeasibly large fares

tt(ignore, :) = [];

% Credit card payments have the most accurate tip data
keep = tt.payment_type == {'Credit card'};
tt = tt(keep,:);

% Show tip distribution
histogram(tt.tip_amount, 0:25)

Data only read once,

despite 21 operations

Example: Prototyping
Calling Functions with a Tall Array

67

Example: Prototyping
Fit predictive model

% Fit predictive model
model = fitlm(ttTrain,'fare_amount ~ 1 + hr_of_day + trip_distance*trip_minutes')

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 5 sec
Evaluation completed in 5 sec

model =

Compact linear regression model:
fare_amount ~ 1 + hr_of_day + trip_distance*trip_minutes

Estimated Coefficients:
Estimate SE tStat pValue
__________ __________ ________ _______

(Intercept) 2.3432 0.040181 58.318 0
trip_distance 2.5841 0.0063898 404.41 0
hr_of_day -0.0012969 0.0018789 -0.69024 0.49005
trip_minutes 0.22098 0.0020412 108.26 0
trip_distance:trip_minutes -0.007857 0.00017539 -44.798 0

Number of observations: 42373, Error degrees of freedom: 42368
Root Mean Squared Error: 2.58
R-squared: 0.938, Adjusted R-Squared 0.938
F-statistic vs. constant model: 1.59e+05, p-value = 0

68

Example: Prototyping
Predict and validate model

% Predict and validate
yPred = predict(model,ttValidation);
residuals = yPred - ttValidation.fare_amount;
figure
histogram(residuals,'Normalization','pdf','BinLimits',[-50 50])

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 5 sec
- Pass 2 of 2: Completed in 4 sec
Evaluation completed in 10 sec

69

Scale to the Entire Data Set

Description
▪ Location: New York City
▪ Date(s): All of 2015
▪ Data size: “Big Data” 150,000,000 rows / ~25 GB

70

Example: “small data” processing vs. Big Data processing

% Access the data
ds = datastore('taxidataNYC_1_2015.csv');
tt = tall(ds);

“small data” processing

% Access the data
ds = datastore('taxiData*.csv');
tt = tall(ds);

Big Data processing

% Access the data
ds = datastore('taxidataNYC_1_2015.csv');
tt = tall(ds);

% Access the data
ds = datastore('taxiData*.csv');
tt = tall(ds);

% Calculate average trip duration
mnTrip = mean(tt.trip_minutes,'omitnan')

% Execute commands and gather results into workspace
mn = gather(mnTrip)

% Remove some bad data
tt.trip_minutes = minutes(tt.tpep_dropoff_datetime -
tt.tpep_pickup_datetime);
tt.speed_mph = tt.trip_distance ./ (tt.trip_minutes ./ 60);
ignore = tt.trip_minutes <= 1 | ... % really short time

tt.trip_minutes >= 60 * 12 | ... % unfeasibly long time
tt.trip_distance <= 1 | ... % really short distance
tt.trip_distance >= 12 * 55 | ... % unfeasibly far
tt.speed_mph > 55 | ... % unfeasibly fast
tt.fare_amount < 0 | ... % negative fares?!
tt.fare_amount > 10000; % unfeasibly large fares

tt(ignore, :) = [];

% Calculate average trip duration
mnTrip = mean(tt.trip_minutes,'omitnan')

% Execute commands and gather results into workspace
mn = gather(mnTrip)

% Remove some bad data
tt.trip_minutes = minutes(tt.tpep_dropoff_datetime -
tt.tpep_pickup_datetime);
tt.speed_mph = tt.trip_distance ./ (tt.trip_minutes ./ 60);
ignore = tt.trip_minutes <= 1 | ... % really short time

tt.trip_minutes >= 60 * 12 | ... % unfeasibly long time
tt.trip_distance <= 1 | ... % really short distance
tt.trip_distance >= 12 * 55 | ... % unfeasibly far
tt.speed_mph > 55 | ... % unfeasibly fast
tt.fare_amount < 0 | ... % negative fares?!
tt.fare_amount > 10000; % unfeasibly large fares

tt(ignore, :) = [];

71

Scaling up

If you just have MATLAB:

▪ Run through each ‘chunk’ of data one by one

If you also have Parallel Computing Toolbox:

▪ Use all local cores to process several ‘chunks’ at once

If you also have a cluster with MATLAB Parallel Server:

▪ Use the whole cluster to process many ‘chunks’ at once

72

Scaling up

Working with clusters from MATLAB desktop:

▪ General purpose MATLAB cluster

– Can co-exist with other MATLAB workloads (parfor,

parfeval, spmd, jobs and tasks, distributed arrays, …)

– Uses local memory and file caches on workers for efficiency

▪ Spark-enabled Hadoop clusters

– Data in HDFS

– Calculation is scheduled to be near data

– Uses Spark’s built-in memory and disk caching

73

Example: Running on Spark + Hadoop

% Hadoop/Spark Cluster
numWorkers = 16;

setenv('HADOOP_HOME', '/dev_env/cluster/hadoop');
setenv('SPARK_HOME', '/dev_env/cluster/spark');

cluster = parallel.cluster.Hadoop;
cluster.SparkProperties('spark.executor.instances') = num2str(numWorkers);
mr = mapreducer(cluster);

% Access the data
ds = datastore('hdfs://hadoop01:54310/datasets/taxiData/*.csv');
tt = tall(ds);

74

Example: Running on Spark + Hadoop

https://app.highspot.com/embedded_content/8f64dd9d4be97c090d102980ec69fe448c6ee97c?overlay=true

75

tall arrays vs. distributed arrays

▪ tall arrays are useful for out-of-memory datasets with a “tall” shape

– Can be used on a desktop, cluster, or with Spark/Hadoop

– Low-level alternatives are mapreduce and MATLAB API for Spark

▪ distributed arrays are useful for in-memory datasets on a cluster

– Can be any shape (“tall”, “wide”, or both)

– Create custom functions with spmd + gop

Tall Array Distributed Array

Support Focus Data Analytics, Statistics and

Machine Learning

Linear Algebra, Matrix

Manipulations

Data Shape – Tall ✓ ✓

Data Shape – Wide ✓

Prototype on Desktop ✓ ✓

Helps on Desktop ✓

Run on HPC ✓ ✓

Run on Spark/Hadoop ✓

Fault Tolerant ✓

76

▪ Utilizing multiple cores on a desktop computer

▪ Scaling up to cluster and cloud resources

▪ Tackling data-intensive problems on desktops and clusters

▪ Accelerating applications with NVIDIA GPUs

▪ Summary and resources

Agenda

77

Graphics Processing Units (GPUs)

▪ For graphics acceleration and scientific computing

▪ Many parallel processors

▪ Dedicated high speed memory

78

GPU Requirements

▪ Parallel Computing Toolbox requires NVIDIA GPUs

▪ www.nvidia.com/object/cuda_gpus.html

▪ GPU support by release

MATLAB Release Required Compute Capability

MATLAB R2021a 3.5 or greater

MATLAB R2018a and later releases 3.0 or greater

MATLAB R2014b – MATLAB R2017b 2.0 or greater

MATLAB R2014a and earlier releases 1.3 or greater

http://www.nvidia.com/object/cuda_gpus.html
https://www.mathworks.com/help/parallel-computing/gpu-support-by-release.html

79

GPU Computing Paradigm
NVIDIA CUDA-enabled GPUs

Parallel Computing Toolbox

80

NASA Langley Accelerates Acoustic Data Analysis with GPU Computing

Challenge
Accelerate the analysis of sound recordings from

wind tunnel tests of aircraft components

Solution
▪ Use Parallel Computing Toolbox to process

acoustic data

▪ Cut processing time by running computationally

intensive operations on a GPU

Results
▪ GPU computations completed 40 times faster

▪ Algorithm GPU-enabled in 30 minutes

▪ Processing of test data accelerated

“Our legacy code took up to 40 minutes to analyze a single

wind tunnel test. The addition of GPU computing with

Parallel Computing Toolbox cut it to under a minute. It took

30 minutes to get our MATLAB algorithm working on the

GPU—no low-level CUDA programming was needed.”

- Christopher Bahr, research aerospace engineer at NASA

Link to user story

Wind tunnel test setup featuring the Hybrid Wing

Body model (inverted), with 97-microphone phased

array (top) and microphone tower (left).

http://www.mathworks.com/company/user_stories/nasa-langley-research-center-accelerates-acoustic-data-analysis-with-gpu-computing.html?by=company

81

Speeding up MATLAB applications with GPUs

4x speedup
adaptive filtering routine

77x speedup
wave equation solving

12x speedup
using Black-Scholes model

14x speedup
template matching routine

10x speedup
K-means clustering algorithm

44x speedup
simulating the movement of celestial objects

NVIDIA Titan V GPU, Intel® Core™ i7-8700T Processor (12MB Cache, 2.40GHz)

82

Programming with GPUs

Parallel-enabled toolboxes

Common programming constructs
(gpuArray, gather)

Advanced programming constructs

E
a
s
e
 o

f
U

s
e

G
re

a
te

r C
o

n
tro

l

83

Demo: Wave Equation
Accelerating scientific computing in MATLAB with GPUs

▪ Objective: Solve 2nd order wave equation with spectral methods

▪ Approach:

– Develop code for CPU

– Modify the code to use GPU

computing using gpuArray

– Compare performance of

the code using CPU and GPU

84

Speed-up using NVIDIA GPUs

▪ Ideal Problems

– Massively Parallel and/or

Vectorized operations

– Computationally Intensive

▪ 500+ GPU-enabled

MATLAB functions

▪ Simple programming

constructs
– gpuArray, gather

MATLAB GPU computing

https://www.mathworks.com/discovery/matlab-gpu.html

85

Programming with GPUs

Parallel-enabled toolboxes

Common programming constructs

Advanced programming constructs
(spmd,arrayfun,CUDAKernel,mex)

E
a
s
e
 o

f
U

s
e

G
re

a
te

r C
o

n
tro

l

86

Deep learning with MATLAB and NVIDIA GPU cloud containers

Use MATLAB NGC containers in the cloud, on DGX, or on your machine

https://ngc.nvidia.com/catalog/containers/partners:matlab

87

▪ Utilizing multiple cores on a desktop computer

▪ Scaling up to cluster and cloud resources

▪ Tackling data-intensive problems on desktops and clusters

▪ Accelerating applications with NVIDIA GPUs

▪ Summary and resources

Agenda

88

Feedback

http://bitly.com/matlab-lca-21

89

Summary

▪ Easily develop parallel MATLAB applications without being a parallel

programming expert

▪ Run many Simulink simulations at the same time on multiple CPU cores.

▪ Speed up the execution of your applications using additional hardware

including GPUs, clusters and clouds

▪ Develop parallel applications on your desktop and easily scale to a cluster

when needed

90

Some Other Valuable Resources

▪ MATLAB Documentation

– MATLAB → Advanced Software Development → Performance and Memory

– Parallel Computing Toolbox

▪ Parallel and GPU Computing Tutorials

– https://www.mathworks.com/videos/series/parallel-and-gpu-computing-tutorials-

97719.html

▪ Parallel Computing on the Cloud with MATLAB

– http://www.mathworks.com/products/parallel-computing/parallel-computing-on-the-

cloud/

http://www.mathworks.com/help/matlab/performance-and-memory.html
http://www.mathworks.com/help/distcomp/index.html
https://www.mathworks.com/videos/series/parallel-and-gpu-computing-tutorials-97719.html
http://www.mathworks.com/products/parallel-computing/parallel-computing-on-the-cloud/

91© 2021 The MathWorks, Inc.

