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1. Mostre que p, é Hermitico.
Res.: Pelos postulados da mecéanica quantica, p, = —ihd/dx, enquanto que
pela condi¢ao de Hermiticidade:
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Integrando por partes ([ udv = uwv — [ vdu), fazendo:
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podemos escrever a Eq. (2):
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Dado que a funcao de onda deve anular-se para z — =£o00, ¥,¥5, = 0.

Como se partiu do termo do lado direito da igualdade da Eq. (1), mostrou-se
que p, € Hermitico.



2. Mostre que o operador Hamiltoniano para a particula na caixa de potencial de
paredes infinitas é Hermitico.
Res.: Sabendo que o operador Hamiltoniano é dado por
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com V =0 para a regiao interior da caixa de potencial e p, = —ihd/dz, tem-se
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Pela condi¢ao de Hermiticidade,
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Integrando por partes ([ udv = uwv — [ vdu), fazendo:
u =1, = du= d¢ndx
dx
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podemos escrever a Eq. (5):
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Integrando novamente por partes, com:
d d*y,
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dv = i@/),fndx =v =1
dx



a Eq. 6 simplifica-se
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Pelas Eqs. (4) e (7) demostrou-se que H é Hermitico.

. Uma particula de massa m encontra-se numa caixa de potencial de paredes
infinitas de largura a. Sabendo que a fun¢ao de onda é dada por
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¢(x) = % (2) sin (%) + (%) sin (?ﬂij) —% (2) sin <47;TI>

se for medida a energia do sistema, quais serao os possiveis resultados e qual a
respectiva probabilidade? Qual é a energia mais provavel?

Res.: Sabe-se que a funcao de onda para a particula na caixa de potencial de
paredes infinitas num estado n é dada por:
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Analisando 9 (x) verifica-se que a fungao de onda é dada pela combinagao linear
de ¢, (z) para os estados n = 1, n = 3 e n = 4, de onde se pode escrever 1 da
seguinte forma:

Y(x) = c101() + c303(x) + capa()

Os coeficientes ¢; tém que ter em conta a expressao genérica de ¢, (z). Desta
forma:
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A probabilidade de cada estado vem dada por:
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O denominador admite a possibilidade de 1) nao estar normalizada. Como as
fungoes da base {¢;} sdo ortonormais, podemos escrever
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NB: (| = (|)* = —i/2(¢1] + 1/v/2(¢a| + 1/2{3]. Por essa razdo, o termo
associado a {(¢q|¢1) ¢ (—i/2)(i/2) = 1/4 e nao (i/2)* = —1/4.

As probabilidades vém entao:

Py = (—i/2)(i/2)(¢1]¢1) = 1/4
P2 = 0

Py = (1/V2)*(¢s]¢3) = 1/2

Py = (1/2)*(¢als) = 1/4

Ou seja, os unicos valores possiveis de serem medidos s@o |¢1), |¢3) e |p4).
As energias possiveis serao as da particula na caixa de potencial com paredes
infinitas, E, = (n?7%h%)/2ma?, para n = 1, 3 e 4. O estado mais provavel
corresponde a n = 3 cuja probabilidade é 1/2.

9. Uma particula numa caixa de potencial de paredes infinitas apresenta o estado
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(a) Determine A de modo a que v (z) seja normalizada.

(b) Quais serdao os resultados provaveis de uma medi¢ao e quais sao as pro-
babilidades de se obter cada caso.

(¢) Se a medicao resultar em E = (272h*/ma?) qual serd o estado do sistema
apos a medicao.

Res.: (a) Sabe-se que a fungao de onda para a particula na caixa de potencial
de paredes infinitas num estado n é dada por:

o= (2) o (%)



Analisando ¢ (z) verifica-se que a fungao de onda é dada pela combinagao linear
de ¢, () para os estados n =1, n = 2 e n = 3, de onde se pode escrever 1 da
seguinte forma:

V() = c1¢1(2) + cada () + c3ds(z)

Os coeficientes ¢; tém que ter em conta a expressao genérica de ¢, (z). Neste
caso teremos que escrever:
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Pela condigao de normalizagao:
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A funcao normalizada serd: [¢) = 1/v/20]¢1())+1/v/20|p2(x))+3/v/10|¢s(z))

(b) Pela anédlise da fungdo de onda apenas os estados n = 1, 2 e 3 serao
possiveis. As probabilidades serao:

Py = [(¢ul)

Logo
Py = (1/V20)*{¢n]¢n) = 1/20
Py = (1/v/20)*(¢2|¢p2) = 1/20
Py = (3/V/10)*(¢s¢s) = 9/10



(¢) Se a energia medida é E = 212h? /ma?, o estado do sistema imediatamente
apos a medicao é n = 2

0(a) = ) = 2 sin ()



