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1. Mostre que p̂x é Hermı́tico.
Res.: Pelos postulados da mecânica quântica, p̂x = −ih̄d/dx, enquanto que
pela condição de Hermiticidade:∫

ψ?
mp̂xψndx =

∫
ψn(p̂xψm)?dx (1)

=

∫
ψn

(
−ih̄ d

dx
ψm

)?

dx

= ih̄

∫
ψn

d

dx
ψ?
mdx (2)

Integrando por partes (
∫
udv = uv −

∫
vdu), fazendo:

u = ψn ⇒ du =
dψn

dx
dx

dv =
d

dx
ψ?
mdx⇒ v = ψ?

m

podemos escrever a Eq. (2):

ih̄

∫
ψn

d

dx
ψ?
mdx = ih̄

[
ψnψ

?
m

+∞

−∞
−
∫
ψ?
m

dψn

dx
dx

]
(3)

= −ih̄
∫
ψ?
m

dψn

dx
dx

=

∫
ψ?
m

(
−ih̄ d

dx

)
ψndx

=

∫
ψ?
mp̂xψndx

Dado que a função de onda deve anular-se para x → ±∞, ψnψ
?
m

+∞

−∞
= 0.

Como se partiu do termo do lado direito da igualdade da Eq. (1), mostrou-se
que p̂x é Hermı́tico.
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2. Mostre que o operador Hamiltoniano para a part́ıcula na caixa de potencial de
paredes infinitas é Hermı́tico.
Res.: Sabendo que o operador Hamiltoniano é dado por

Ĥ = T̂ + V̂ =
p̂2x
2m

+ V̂

com V̂ = 0 para a região interior da caixa de potencial e p̂x = −ih̄d/dx, tem-se

Ĥ = − h̄2

2m

d2

dx2

Pela condição de Hermiticidade,∫
ψ?
mĤψndx =

∫
ψn(Ĥψm)?dx (4)

=

∫
ψn

(
− h̄2

2m

d2

dx2
ψm

)?

dx

= − h̄2

2m

∫
ψn

d2

dx2
ψ?
mdx

= − h̄2

2m

∫
ψn

d

dx

(
d

dx
ψ?
m

)
dx (5)

Integrando por partes (
∫
udv = uv −

∫
vdu), fazendo:

u = ψn ⇒ du =
dψn

dx
dx

dv =
d

dx

(
d

dx
ψ?
m

)
dx⇒ v =

d

dx
ψ?
m

podemos escrever a Eq. (5):

− h̄2

2m

∫
ψn

d

dx

(
d

dx
ψ?
m

)
dx = − h̄2

2m

[
ψn

d

dx
ψ?
m

+∞

−∞
−
∫

d

dx
ψ?
m

dψn

dx
dx

]
=

h̄2

2m

∫
d

dx
ψ?
m

dψn

dx
dx (6)

Integrando novamente por partes, com:

u =
d

dx
ψn ⇒ du =

d2ψn

dx2
dx

dv =
d

dx
ψ?
mdx⇒ v = ψ?

m

2



a Eq. 6 simplifica-se

=
h̄2

2m

[
ψ?
m

d

dx
ψn

+∞

−∞
−
∫
ψ?
m

d2ψn

dx2
dx

]
=

∫
ψ?
m

(
− h̄2

2m

d2

dx2
ψn

)
dx

=

∫
ψ?
mĤψndx (7)

Pelas Eqs. (4) e (7) demostrou-se que Ĥ é Hermı́tico.

8. Uma part́ıcula de massa m encontra-se numa caixa de potencial de paredes
infinitas de largura a. Sabendo que a função de onda é dada por

ψ(x) =
i

2

(
2

a

)1/2

sin
(πx
a

)
+

(
1

a

)1/2

sin

(
3πx

a

)
− 1

2

(
2

a

)1/2

sin

(
4πx

a

)
se for medida a energia do sistema, quais serão os posśıveis resultados e qual a
respectiva probabilidade? Qual é a energia mais provável?
Res.: Sabe-se que a função de onda para a part́ıcula na caixa de potencial de
paredes infinitas num estado n é dada por:

φn(x) =

(
2

a

)1/2

sin
(nπx

a

)
Analisando ψ(x) verifica-se que a função de onda é dada pela combinação linear
de φn(x) para os estados n = 1, n = 3 e n = 4, de onde se pode escrever ψ da
seguinte forma:

ψ(x) = c1φ1(x) + c3φ3(x) + c4φ4(x)

Os coeficientes ci têm que ter em conta a expressão genérica de φn(x). Desta
forma:

ψ(x) =
i

2

(
2

a

)1/2

sin
(πx
a

)
+

(
2

2

)1/2(
1

a

)1/2

sin

(
3πx

a

)
− 1

2

(
2

a

)1/2

sin

(
4πx

a

)
=
i

2
φ1(x) +

(
1

2

)1/2(
2

a

)1/2

sin

(
3πx

a

)
+

1

2
φ4(x)

=
i

2
φ1(x) +

(
1

2

)1/2

φ3(x)− 1

2
φ4(x)
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A probabilidade de cada estado vem dada por:

Pn =
|〈φn|ψ〉|2

〈ψ|ψ〉

O denominador admite a possibilidade de ψ não estar normalizada. Como as
funções da base {φi} são ortonormais, podemos escrever

〈ψ|ψ〉 =

(
i

2

)?
i

2
+

(
1

2

)
+

1

4
=

1

4
+

1

2
+

1

4
= 1

NB: 〈ψ| = (|ψ〉)? = −i/2〈φ1| + 1/
√

2〈φ2| + 1/2〈φ3|. Por essa razão, o termo
associado a 〈φ1|φ1〉 é (−i/2)(i/2) = 1/4 e não (i/2)2 = −1/4.

As probabilidades vêm então:

P1 = (−i/2)(i/2)〈φ1|φ1〉 = 1/4

P2 = 0

P3 = (1/
√

2)2〈φ3|φ3〉 = 1/2

P4 = (1/2)2〈φ4|φ4〉 = 1/4

Ou seja, os únicos valores posśıveis de serem medidos são |φ1〉, |φ3〉 e |φ4〉.
As energias posśıveis serão as da part́ıcula na caixa de potencial com paredes
infinitas, En = (n2π2h̄2)/2ma2, para n = 1, 3 e 4. O estado mais provável
corresponde a n = 3 cuja probabilidade é 1/2.

9. Uma part́ıcula numa caixa de potencial de paredes infinitas apresenta o estado

ψ(x) =
1√
10a

sin
(πx
a

)
+ A

(
2

a

)1/2

sin

(
2πx

a

)
+

3√
5a

sin

(
3πx

a

)
(a) Determine A de modo a que ψ(x) seja normalizada.

(b) Quais serão os resultados prováveis de uma medição e quais são as pro-
babilidades de se obter cada caso.

(c) Se a medição resultar em E = (2π2h̄2/ma2) qual será o estado do sistema
após a medição.

Res.: (a) Sabe-se que a função de onda para a part́ıcula na caixa de potencial
de paredes infinitas num estado n é dada por:

φn(x) =

(
2

a

)1/2

sin
(nπx

a

)
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Analisando ψ(x) verifica-se que a função de onda é dada pela combinação linear
de φn(x) para os estados n = 1, n = 2 e n = 3, de onde se pode escrever ψ da
seguinte forma:

ψ(x) = c1φ1(x) + c2φ2(x) + c3φ3(x)

Os coeficientes ci têm que ter em conta a expressão genérica de φn(x). Neste
caso teremos que escrever:

ψ(x) =
1√
10a

sin
(πx
a

)
+ A

(
2

a

)1/2

sin

(
2πx

a

)
+

3√
5a

sin

(
3πx

a

)
=

1√
10a

√
2

2
sin
(πx
a

)
+ A

(
2

a

)1/2

sin

(
2πx

a

)
+

3√
5a

√
2

2
sin

(
3πx

a

)
=

1√
20

(
2

a

)1/2

sin
(πx
a

)
+ A

(
2

a

)1/2

sin

(
2πx

a

)
+

3√
10

(
2

a

)1/2

sin

(
3πx

a

)
=

1√
20
φ1(x) + Aφ2(x) +

3√
10
φ3(x)

Pela condição de normalização:

〈ψ|ψ〉 =

(
1√
20

)2

+ A2 +

(
3√
10

)
= 1

A2 = 1− 19

20

A =
1√
20

A função normalizada será: |ψ〉 = 1/
√

20|φ1(x)〉+1/
√

20|φ2(x)〉+3/
√

10|φ3(x)〉

(b) Pela análise da função de onda apenas os estados n = 1, 2 e 3 serão
posśıveis. As probabilidades serão:

Pn = |〈φn|ψ〉|2

Logo

P1 = (1/
√

20)2〈φ1|φ1〉 = 1/20

P2 = (1/
√

20)2〈φ2|φ2〉 = 1/20

P3 = (3/
√

10)2〈φ3|φ3〉 = 9/10
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(c) Se a energia medida é E = 2π2h̄2/ma2, o estado do sistema imediatamente
após a medição é n = 2

ψ(x) = φ2(x) =

√
2

a
sin

(
2πx

a

)
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