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Métodos Aproximados?!

I Excepto sistemas modelo e átomo de hidrogénio, não existem
resoluções exactas em Mecânica Quântica.

I Podemos enquadrar os métodos aproximados em duas categorias:
(1) métodos perturbacionais e (2) variacionais.

I Perturbacional : baseia-se na hipótese de que o problema em estudo é
apenas ligeiramente diferente de um que tenha solução exacta.

I Variacional : Partindo do Hamiltoniano conhecido e uma função de onda
tentativa, emprega-se o método variacional de Rayleigh-Ritz por forma a
obter um limite superior da energia real.
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Métodos Aproximados: Teoria das Perturbações

I A teoria das pertubações faz uso do facto de que o Hamiltoniano real, Ĥ,
e do modelo, Ĥ0 diferem entre si por uma pequena contribuição, Ĥp,
designada por perturbação:

Ĥ = Ĥ0 + Ĥp

I Para o sistema não-perturbado temos

Ĥ0|ψ
(0)
n 〉 = E

(0)
n |ψ

(0)
n 〉

I Dois casos
I Sistemas não-degenerados: para cada E

(0)
n apenas existe um vector próprio

|ψ (0)
n 〉.

I Sistemas degenerados.
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Métodos Aproximados: Teoria das Perturbações

I Expandindo Ĥ, En e |ψ〉 em termos de uma expansão em série de
potências:

Ĥ = Ĥ(0) + λĤ1 + λ
2Ĥ2 + · · ·

En = E
(0)
n + λE (1)

n + λ2E (2)
n + · · ·

|ψn〉 = |ψ
(0)
n 〉+ λ|ψ

(1)
n 〉+ λ2|ψ

(2)
n 〉+ · · ·

I NB:
I Nem sempre existem as expansões de En e |ψn〉;
I A expansão podem não ser convergente.
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Métodos Aproximados: Teoria das Perturbações

I Sabe-se que para o sistema real:

Ĥ |ψn〉 = En |ψn〉

I Substituindo pelas respectivas expansões, tem-se que:

(Ĥ0 + Ĥp)

(∑
i=0

λi |ψ (i)
n 〉
)

=

(∑
i=0

λiE (i)
n

)(∑
i=0

λi |ψ (i)
n 〉
)

I Para λ0: En = E
(0)
n e |ψn〉 = |ψ

(0)
n 〉. Sistema Não-Perturbado.

I Para λ1 (correcção de primeira-ordem):

Ĥ0|ψ
(1)
n 〉+ Ĥ1|ψ

(0)
n 〉 = E

(0)
n |ψ

(1)
n 〉+ E

(1)
n |ψ

(0)
n 〉

I Para λ2 (correcção de segunda-ordem):

Ĥ0|ψ
(2)
n 〉+ Ĥ1|ψ

(1)
n 〉+ Ĥ2|ψ

(0)
n 〉 = E

(0)
n |ψ

(2)
n 〉+ E

(1)
n ψ (1)

n 〉+ E
(2)
n |ψ

(0)
n 〉
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TP: Correcções

I Para determinar as correcções vamos necessitar de calcular 〈ψ (0)
n |ψn〉.

I Como a perturbação é pequena |ψn〉 não deverá ser muito diferente de

|ψ (0)
n 〉, e 〈ψ (0)

n |ψn〉 ∼ 1.

I No entanto, poderemos normalizar |ψn〉, para que 〈ψ (0)
n |ψn〉 = 1.

I Substituindo a expansão, obtém-se:

〈ψ (0)
n |ψ

(0)
n 〉+

∑
i=1

λ〈ψ (0)
n |ψ

(i)
n 〉 = 1

ou

〈ψ (0)
n |ψ

(i)
n 〉 = 0
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TP: Correcção de primeira ordem

I Energia. Partindo de:

Ĥ0|ψ
(1)
n 〉+ Ĥ1|ψ

(0)
n 〉 = E

(0)
n |ψ

(1)
n 〉+ E

(1)
n |ψ

(0)
n 〉

e multiplicado por 〈ψ (0)
n |, obtém-se

〈ψ (0)
n |Ĥ0|ψ

(1)
n 〉︸ ︷︷ ︸

=0

+〈ψ (0)
n |Ĥ1|ψ

(0)
n 〉 = 〈ψ

(0)
n |E

(0)
n |ψ

(1)
n 〉︸ ︷︷ ︸

=0

+〈ψ (0)
n |E

(1)
n |ψ

(0)
n 〉

E
(1)
n = 〈ψ (0)

n |Ĥ1|ψ
(0)
n 〉

I Função de onda, como |ψ (0)
n 〉 é um conjunto completo e ortonormal:

|ψ (1)
n 〉 =

(∑
m

|ψ (0)
m 〉〈ψ

(0)
m |
)
|ψ (1)

n 〉 =
∑
m 6=n

〈ψ (0)
m |ψ

(1)
n 〉|ψ

(0)
m 〉

para m = n, 〈ψ (0)
m |ψ

(1)
n 〉 = 0.
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TP: Correcção de primeira ordem (cont.)

I O coeficiente 〈ψ (0)
m |ψ

(1)
n 〉 é obtido através da expressão de primeira ordem

〈ψ (0)
m |Ĥ0︸ ︷︷ ︸

〈ψ (0)
m |E

(0)
m |ψ

(1)
n 〉

|ψ (1)
n 〉+ 〈ψ

(0)
m |Ĥ1|ψ

(0)
n 〉 = 〈ψ

(0)
m |E

(0)
n |ψ

(1)
n 〉︸ ︷︷ ︸

E
(0)
n 〈ψ

(0)
m |ψ

(1)
n 〉

+ 〈ψ (0)
m |E

(1)
n |ψ

(0)
n 〉︸ ︷︷ ︸

E
(1)
n 〈ψ

(0)
m |ψ

(0)
n 〉=0(

E
(0)
n − E

(0)
m

)
〈ψ (0)

m |ψ
(1)
n 〉 = 〈ψ

(0)
m |Ĥ1|ψ

(0)
n 〉

I A correcção em primeira-ordem da função de onda, vem dada por:

|ψ (1)
n 〉 =

∑
m 6=n

〈ψ (0)
m |Ĥ(1)|ψ (0)

n 〉

E
(0)
n − E

(0)
m

|ψ (0)
m 〉
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TP: Correcção de segunda ordem

I Partindo da expressão de segunda, multiplicando por 〈ψ (0)
n |, obtém-se

E
(2)
n = 〈ψ (0)

n |Ĥ(1)|ψ (1)
n 〉

|ψ (2)
n 〉 =

∑
m 6=n

|〈ψ (0)
m |Ĥ(1)|ψ (0)

n 〉|2

E
(0)
n − E

(0)
m

|φm〉
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Teoria variacional

I Hamiltoniano do sistema conhecido.
I Função de onda aproximada.
I Ratio de Rayleigh:

ε =
〈ψtrial|Ĥ |ψtrial〉
〈ψtrial|ψtrial〉

I Teorema variacional:

Para qualquer |ψtrial〉, ε ≥ E0

com E0 a energia do Hamiltoniano H de menor energia.
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Teoria variacional: demonstração

I Sabendo que a função de onda ψtrial pode ser escrita como uma
combinação linear da função real (mas desconhecida):

|ψtrial〉 =
∑
n

cn |ψn〉

com H |ψn〉 = En |ψn〉.
I Considerando o integral:

ε =
〈ψtrial|Ĥ |ψtrial〉
〈ψtrial|ψtrial〉

=

∑
n |cn |

2En∑
n |cn |2

≥
E0

∑
n |cn |

2∑
n |cn |2

= E0
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Teoria variacional: Método Rayleigh-Ritz
I A função tentativa, ψtrial deve ser escolhida com base em pressupostos

f́ısicos (propriedades do sistema, simetria, nodos, comportamento nos
limites assimptóticos, etc.).

I As propriedades não conhecidas serão englobadas nos parâmetros da
expansão:

|ψtrial〉 =
∑
n

cnψi

I Obter a expressão da teoria variacional com a função de onda tentativa:

ε(c) = 〈ψtrial|Ĥ |ψtrial〉 〈ψtrial|ψtrial〉 = 1

I Usando a expressão anterior minimizar a função em relação aos
coeficientes:

∂ε
∂ck

= 0

I Usando os coeficientes c , poder-se-á obter a energia, a qual será um
limite superior do valor real para o estado fundamental, e a função de
onda.
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