Ab Initio Based Double-Sheeted DMBE Potential Energy Surface for N3(2A″) and Exploratory Dynamics CalculationsGalvão; B. R. L.; Varandas, A. J. C. J. Phys. Chem. A 114, 12390 (2011). DOI: 10.1021/jp2073396 |
|
Accurate Double Many-Body Expansion Potential Energy Surface for Ground-State HS2 Based on ab Initio Data Extrapolated to the Complete Basis Set LimitSong, Y. Z.; Varandas, A. J. C. J. Phys. Chem. A 115, 5274 (2011). DOI: 10.1021/jp201980m |
|
Ab-Initio-Based Global Double Many-Body Expansion Potential Energy Surface for the Electronic Ground State of the Ammonia MoleculeLi, Y. Q.; Varandas, A. J. C. J. Phys. Chem. A 114, 6669 (2010). DOI: 10.1021/jp1019685 |
Quasiclassical Trajectory Study of the C(1D) + H2 Reaction and Isotopomeric Variants: Kinetic Isotope Effect and CD/CH Branching RatioJoseph, S.;Caridade, P. J. S. B. ; Varandas, A. J. C. J. Phys. Chem. A 115, 7882 (2011). DOI: 10.1021/jp2032912 |
|
Adiabatic quantum dynamics calculations of the rate constant for the N + NH → N2 + H reactionYang H.;Varandas, A. J. C. Chem. Phys. Lett. 497, 159 (2011). DOI: j.cplett.2010.08.005 |
|
Quasiclassical Trajectory Study of Atom-Exchange and Vibrational Relaxation Processes in Collisions of Atomic and Molecular NitrogenCaridade, P. J. S. B. ; Galvão, B. R. L.; Varandas, A. J. C. J. Phys. Chem. A 114, 6063 (2010). DOI: 10.1021/jp101681m |
Refining to near spectroscopic accuracy the double many-body expansion potential energy surface for ground-state NH2Rodrigues, S. P. J.; Fontes, A. C. G.; Li, Y. Q.; Varandas A. J. C.; Chem. Phys. Lett. 516, 17 (2011). DOI: 10.1016/j.cplett.2011.09.050 |
Ab Initio Study of Hydrazinyl Radical: Toward a DMBE Potential Energy SurfacePoveda, L. A.; Varandas, A. J. C. J. Phys. Chem. A 114, 11663 (2010). DOI: 10.1021/jp102841f |
|
Accurate MRCI and CC Study of the Most Relevant Stationary Points and Other Topographical Attributes for the Ground-State C2H2 Potential Energy SurfaceJoseph, S; Varandas, A. J. C. J. Phys. Chem. A 114, 13277 (2010). DOI: 10.1021/jp109830s |
Accurate global ab initio potentials at low-cost by correlation scaling and extrapolation to the one-electron basis set limitVarandas, A. J. C. Chem. Phys. Lett. 11, 11663 (2010). DOI: 10.1021/jp102841f |
|
The Jahn-Teller effect in the triply degenerate electronic state of methane radical cationMondal T.; Varandas, A. J.C.; J. Chem. Chem. 2011, 135, 174304 (2011). DOI: 10.1021/jp2073396 |
|
Generalized Born–Oppenheimer treatment of Jahn–Teller systems in Hilbert spaces of arbitrary dimension: theory and application to a three-state model potentialVarandas, A. J.C.; Sarkar B.; Phys. Chem. Chem. Phys. 2011, 13, 8131 (2011). DOI: 10.1039/C0CP02598D |
|
Geometrical phase effect in Jahn–Teller systems: Twofold electronic degeneracies and beyondVarandas, A. J.C.; Chem. Phys. Lett. 2010, 487, 139 (2011). DOI: 10.1016/j.cplett.2010.01.032 |
The HO2+O3 reaction: Current status and prospective workVarandas, A. J. C.; Viegas, L. P.; Comp. Theo. Chem. 965, 291 (2011). DOI: 10.1016/j.comptc.2010.09.010 |
|
Can water be a catalyst on the HO2 + H2O + O3 reactive cluster?Viegas, L. P.; Varandas, A. J. C.; Chem. Phys. (in press) DOI: 10.1016/j.chemphys.2011.04.022 |
|
How Well Can Kohn−Sham DFT Describe the HO2 + O3 Reaction?Viegas, L. P.; Branco. A.; Varandas, A. J. C. ; J. Chem. Theory Comput. 6, 2751 (2010). DOI: 10.1021/ct100364x |
|
HO2 + O3 Reaction: Ab Initio Study and Implications in Atmospheric ChemistryViegas, L. P.; Varandas, A. J. C.; J. Chem. Theory Comput. 6, 412 (2010). DOI: 10.1021/ct900370q |